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I. Introduction. In a series of papers [1 ]—[3] Ericksen has considered semi-inverse

solutions for finite elastostatics in which a prismatic body is deformed into helical

configurations, in the absence of body forces. Since these solutions describe deformations

in which strain is independent of one material coordinate, they give stress distributions

which are natural candidates as finite elastic generalizations of the Saint-Venant solutions

for extension, torsion, and simple bending. They then would seem to provide a natural

model for the response of a rod or bar to finite extension, torsion, and curvature, when

those parameters vary only gradually with respect to a coordinate measuring distance

along the rod. Indeed, for slender rods subjected to large displacements and rotations but

only small strains, it has been shown using a perturbation expansion (Parker [4]) that the

leading approximation to the configuration of each cross section is given by a linear

combination of Saint-Venant solutions. Consequently, for slender rods, the bending and

torsional rigidities of Kirchhoff s theory are correctly given by the Saint-Venant solutions.

In [5], Parker extends the treatment for slender rods into the range where a nonlinear

constitutive law is required. This yields a theory in which the tension, torque, and bending

moments are derived from a stored energy function as in Green and Laws [6], Moreover, it

shows that the appropriate stored energy is a "cross-sectional energy" closely related to

the integral arising in Ericksen's treatment of helical deformations.

This paper extends the asymptotic approach in three ways: by considering dynamic

effects, by allowing finite strain, and by treating reference configurations which are

themselves helical. A system of material coordinates natural for technical theories is

chosen. One coordinate measures distance along the "reference curve of centers," which is

a helix. The other two are orthogonal Cartesian coordinates in planes intersecting the helix

orthogonally. Although generally this coordinate system is nonorthogonal, the deforma-

tions in which all material cross sections deform into congruent shapes are readily
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described (as intimated by Ericksen [1,2]) by a generalization of the procedures for

analyzing helical deformations of a prism. For helicoidal reference shapes, the analysis

relates the stress-resultant and couple-resultant to a "cross-sectional energy" which takes

into account the reference shape of a typical cross section and allows for material

anisotropy. Unfortunately, the corresponding states of deformation of the cross sections

form only a two-parameter family, so yielding constitutive rules which are too restrictive

for describing the dynamics of curved rods, twisted rods, and spiral springs.

The family of deformed cross sections is enlarged by considering the "periodic

solutions" discussed by Ericksen [7]. For general helicoidal bodies, these solutions

determine a four-parameter family of "canonical deformations" of a typical cross section.

This family may be used to give constitutive rules for the bending moments, torque, and

tension as functions of two curvatures, the twist, and the extension. The resulting theory is

a natural nonlinear generalization of Kirchhoff theory, with the familiar constitutive rules

based on the Saint-Venant semi-inverse solutions of linear elasticity replaced by rules

derived from a certain "canonical energy" of three-dimensional elasticity.

The procedure which relates the constitutive rules to the periodic, static deformations of

the rod is outlined in general. Particular attention is given to the case of rods of circular

cross section and having anisotropy which is invariant under rotations about the axis. In

this case, the full four-parameter theory may be developed in terms of solutions of

variational problems over a single circular cross section. This special case illustrates how

the distinction between helical solutions and more general periodic solutions involves the

"ambiguous twist of Love" (Alexander and Antman [8]).

2. Kinematic description. We shall treat elastic rods, which in their unstressed reference

configuration are helicoidal, with helical axis parallel to the vector I3 of a fixed orthogonal

triad Ix, I2, and I3 of unit vectors. One representative helix within the material is chosen as

the "curve of centers" and in the reference configuration its position has the form

x = R(7) = Rn + k 1 cosa(I1cos/cy + I2sin kY) + I3Ysina. (2.1)

Along this helix Y measures distance, k1 cos a is the helical radius, 2 77A "1 sin a is the

pitch, and a is the helical angle (see Fig. 1). The outward principal normal is

Ij cos kY + I2sin kY, the curvature is k cos a, and each turn of the helix corresponds to a

length 2irk~l along the reference curve of centers. Three orthonormal vectors EL(Y)

(L = 1,2, 3) are defined at each Y by

Ej( Y) = (I j cos kY + 12 sin kY )cos<j> + (-Ij sin kY + I2cos/cY )sinasin<£ - I3cosasin<£,

E,(Y) = -(I,cosity+ 12sin /:Y )sin<;> + (-Ijsin k7+ l2coskY)sinacos<J> - I3cosacos<#>,

E3(Y) = (-^sin/cY + I2cos£Y)cosa + I3sina. (2.2)

These vectors make constant angles with the outward principal normal Et cos<f> -

E2 sin<£, binormal Et sin<£ + E2 cos<f>, and unit tangent E3 to the reference helix. Each

rotates uniformly about the initial twist vector ic = kI3 according to

/ , dE, ,
E 'l(Y) = ^ = kAEl. (2.3)
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Fig. 1. Helicoidal reference configuration, showing E^V) and E2(V) in the plane of the outward principal

normal P( Y) = lt cos kY + I2 sin k Y.

Material coordinates Yj(J = 1,2,3) are then chosen so that position within the reference

configuration is given by

x = R(y) + y„Ea(y) = xKiK, y=y3. (2.4)

The equations Y1 = Y2 = 0 describe the curve of centers, each surface Y = constant

describes a plane cutting this helix orthogonally, while Yx and Y2 are orthogonal Cartesian

coordinates within each such plane.1 The region occupied by the body is specified by

Ya <=&, y3=7G(0,L), diam^<sc L. (2.5)

It may be seen that the choices (2.2) and (2.4) are sufficiently general to permit the

conventional choice of Ya = 0 as the locus of the centroids of the cross sections and the

choice of the Yx and Y2 axes as principal inertial axes. Identification of the curve of

centroids is a nontrivial procedure for general heliform shapes but, anyhow, is not

'Roman indices range over the values 1, 2, 3, while Greek indices range over the values 1. 2. The summation

convention for repeated indices is used. Primes denote derivatives with respect to Y.
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necessarily the most convenient choice in finite elasticity. However, making this choice

includes the following reference configurations:

(i) a = a twisted, straight bar of pitch Ink'1,

(ii) a = 0, a planar curved bar of radius A:

(iii) a = 777, k = 0, a straight rod, or beam.

Only in cases (ii) and (iii) do the coordinates Y, form an orthogonal system in the

reference configuration.

Deformed configurations of the rod are described by

x = x(Y, t) = r(Y, t) + u,(Y„, Y,t)ei(Y,t) = Xjlj, (2.6)

where e,(Y, t) (i = 1,2,3) form a right-handed orthogonal triad of unit vectors having

angular velocity to(y, t) and twist vector k(Y,t) such that

e, = 3e,/3/ = co A e,, e' = de/dY = k A e,, i = 1,2,3. (2.7)

The condition

w,(0, y, 0 = 0 all Yj (2.8)

ensures that x = r(y, t) is the deformed configuration of the curve of centers, while the

definition

r' = 3r/9K = Ae3 (2.9)

selects e3(y,/) as the unit tangent to this curve of centers, with A = A(Y,t) being the

stretch. The vectors e, and e2 are related to the local material orientation by

h2i1(0, Y,t) = 0, Ml l(0,y,r) > 0, (2.10)

which makes ex(y, t) tangential to the material surface Y2 = 0 at the curve of centers (see

Love [9], p. 397). (A more symmetric condition Uj 2(0, Y, t) = «2>1(0, Y, t) is frequently

applied in linear theories, but the added complexity brings no conceptual benefits in the

present theory.) The velocity V(T, t) on the curve of centers is defined by

r = V(y,0- (2.11)

3. Dynamics. In the absence of body forces, the momentum equations may be written as

7\j,K=p(\)vj, (3.1)

where TKj are the components of Piola-Kirchhoff stress so that the traction on an element

NK\KdS of the reference surface is i/TK/NKdS, where v = i>;I; = x is the material

velocity, p = p(X) is the reference density, and where the colon denotes partial differenti-

ation with respect to the Lagrangian coordinates XK.

The momentum equations for rod dynamics

9F _ . _ 9q , ,

3y q at ' ^^
3M 3r 3 it 3r , ,"37 + 3y A ~ "37 + ¥ A q' ' ' ^

in the absence of body forces and of tractions on the lateral surface 3^ X (0, L) are then

obtained by the integration of equations (3.1) over cross sections 2 and by defining the

stress-resultant F, stress couple M, linear momentum q, and angular momentum it (see

Green and Laws [6]). In the case of naturally straight rods (a = r, see (i) and (iii)) with
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Y = X3, the appropriate definitions are

F- // TylJdS = ¥(X3,t), M = JJ {xh^„()} A TvljdS,

q

3 £>

JJ p\dS, v = JJ {x - r(X3,t)} A(pv)dS. (3.4)
S> J?

The crucial component of any rod theory is the completion of the dynamical system

(3.2), (3.3) by constitutive laws relating F, M, q, and n to the kinematics of the curve of

centers x = r(Y,t), and of the associated triad {e,(Y,/)} (generalizations leading to

"director theories" are also possible). Implicitly, any rod theory treats the configuration,

stress state, and velocity distribution of each cross section as depending constitutively on

only a small number of kinematic parameters. Such assumptions are likely to be valid only

when distortions of the cross sections are characterized by parameters which vary

significantly with Y only over scales large compared to the cross-sectional diameter

D = diam 2>. This suggests the use of asymptotic formulations as first introduced by Hay

[10] and developed by Rigolot [11], [12] and the present author [4], [5], [13], Indeed, for the

statics of naturally straight, untwisted rods having a linear constitutive law, the distortion

of each cross section is shown in [4] to be related to the stretch, curvature, and twist as a

superposition of Saint-Venant's solution for stretching, bending, and torsion. That theory,

like the generalization [5] to nonlinear, small-strain elasticity, allows large rotations and

displacements. Since Saint-Venant's solutions describe deformations with uniform stretch,

curvature, or twist, it might appear that a natural generalization to finite elasticity is

provided by Ericksen's semi-inverse treatment of heliform configurations [1], [2], [3],

However, since the traction system over each cross section has a resultant F = Fe which is

parallel to the helical axis and has moment about any point x = x0 + Ae of that axis of

the form M = Me, the helical solutions yield deformations characterized by only two

parameters, F and M. A resulting rod theory is too degenerate since it contains fewer

parameters than does elastica theory. Consequently, we base the description on Ericksen's

[7] "periodic" solutions in which A and k, are independent of t but periodic in Y. Thus,

A = A*(Y) = A*(Y + b), k i = k*(Y) = k*(Y + b),

with corresponding distortions of each cross section of the form

«, = uf(Ya,Y) = u*(Ya,Y + b).

We anticipate that this approximation should be relevant when b (like F and M) varies

significantly only over distances » D.

As suggested by Ericksen [3], analysis for bodies having helicoidal reference configura-

tions introduces few difficulties. We treat hyperelastic materials with strain-energy density

W= W{xj:K,X)=W(HiJxj:K,X), (3.5)

which is invariant under rotations represented by the arbitrary proper orthogonal matrix

H (HHr = I, detH = + 1). The components xj K of the deformation gradient are

defined by

ii.i],,. ,
dXK 3XK J
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and the corresponding Piola-Kirchhoff stress components are

r - JK. Cxd\tkj 9 • (3-6)
axj : K

Integration of the momentum equations (3.1) over an arbitrary material region & then

gives

d

dt fIJ fl T*>N«dS- (3.7)

where dX = dXxdX2dXv

For application to the twisted rod (2.1)-(2.5), it is advantageous to replace the

Lagrangian coordinates XK by the helicoidal material coordinates Ys using (2.1) and (2.4)

to define the functions

Xk=Xk(Yj), Yj=Yj{Xk), (3.8)

which are invertible for Yj e X (0, L). The appropriate stress measure, motivated by

consideration of (3.7) as in [3], is tR/ where

rRj = JYr : K^Kj' TKj = J 1Xk rTRj, (3-9)

J = det XL p = (det YR . ̂ \

and for any scalars / and g

Jk dYK' z.j dXj-

Note that rRjl ■ is not the force per unit area of the material surface YR = constant, but

that \lTRjdYPdYQ is the traction on the coordinate element dYPdYQ, whenever eRPQ = 1.

Inclusion of the factors J and in (3.9) and definition of the surface element NRd2 by

Nr d~2 = J~lXK RNKdS, NKdS = JYRKNRd2, NRNR = 1

means that the traction on any surface element may be written as

ljTkjNKdS = ljTRJNRd1..

Equation (3.7) may then be expressed as

d_

dt /// p(\)vjd\ = // tRJNRd2= /// rRj Rd\, (3.10)

or, equivalently,

Tr,,r = Pbj, (3-11)

where p(Y) = p(X)J and dY = dY{dY2dY3. Moreover, following Ericksen [3], it can

readily be shown that

Tr> = ~dx ' (3J2)axj.R
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where

9x,  ,
^•«=aV W{Xj,Rt^JW(xpiK,X). (3.13)

Here WdY is the strain energy in the material element dY and, following from (3.5),

possesses the invariance property

W{xJtR, Y) = W( HJkxk R, Y) for all HtJHkj = Sik.

As remarked by Ericksen [3], introduction of the factors J in (3.9) and (3.13) avoids the

use of metric tensors and yields simple forms for (3.11) and (3.12), so allowing us to

"discard one piece of luggage."

In (3.13) the derivatives Xj R are found from (2.6), (2.7), and (2.9), which give

IjXj.r = *,r = +Ue3 + UjK A e,)5fi3.

Thus,

Xj.R = MjkpkR,

where

Pka = Pki = Uk, 3 + ASk3 + eklmKlUm (314)

and where Mjk = ek ■ I ■ are the elements of the proper orthogonal matrix M(Y, t) for

which ek = M/k I and I. = Mjkek. The invariance of W under rotations gives

W{xhR^)= W{pkR, Y),

so that, when the traction tr I is resolved along the directions of the local triad ek(Y, t)

(k = 1,2, 3) as

TR j Ij = aRkek> rRj = MjkoRk,

the stress components aRk are given by

dW 1# dW ,,
°Rk = gT = (3-15)

°PkR j - R

Expressing the momentum equation (3.11) as

(T«A),K = (°Rk^k),R = P*. (3-16)

and then resolving into components along the directions ek yields

°Rj,R + ejikKi^k = Paj = Piv, + ejmno}mvn), (3.17)

where the components vh a, of velocity v and acceleration a are given by

v = x = v,e, = V(y,/) +(«/+ elmnwmu„)e„

a = v = a,e, = i),e, + to A v.

The corresponding boundary condition stating that the traction IjTKjNK vanishes on the

lateral boundary is

0rjNr = 0 = oajNa on3^x(0,L). (3.18)
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Integration of (3.16) over a cross section Y = constant and use of (3.18) then gives (3.2)

and (3.3) for a naturally helical body, provided that the definitions (3.4) are amended to

F(Y,t)=JJ o3JejdS, M(Y, t) = JJ {x - r(Y,t)} A a3jejdS,
s 9>

q = JJ p\dS, it = JJ {x - r( Y,/)} A (pv) dS. (3.19)
Si Si

As is normal in rod and beam theories, detailed boundary conditions over X3 = 0, L are

left unspecified at this stage. ■

4. Canonical distortions. To associate distortions w,(Y, t) with the stretch A(Y,t),

curvatures Ka(Y, /), and torsion k3(T, t) at a typical cross section, we take as leading-order

approximations the distortions governed by (3.14)—(3.17) in which A, and k, are

independent of t and periodic in F, with fundamental period b{> 0). Like the corre-

sponding problem for helical deformations of initially straight prisms (Ericksen [1]) this

problem has a variational formulation. Indeed, the appropriate specializations of (3.17)

and (3.19) are, respectively, the Euler-Lagrange equations and natural boundary condi-

tions associated with stationary values of the b-canonical energy2

<h(u„u,y, A(Y),K/(Y))= J" JJ W( pjR, Ya) dS dY, (4.1)
n 2

for specified A(Y), k/(Y) satisfying A(b) = A(0), K/(b) = /c^O), and with pjR given by

(3.14) subject to Uj(Ya, b) = Uj(Ya, 0), pJR(Ya, b) = pjR(Ya, 0).

In the "periodic configurations," deformed cross sections at Y and Y + b are con-

gruent, but do not, in general, have the same orientations. The locations of the two cross

sections differ by a translation along a certain "twist axis" and a certain rotation about

that axis. The special case, u 3 = 0, A = constant, k( = constant, describes "helical

configurations" in which all cross sections are congruent. These have distortions w, =

w,( Ya) corresponding to stationary values of the cross-sectional energy

E{u„u,<a- A,k,)= JJ W( p/R,Ya)dS, dS = dYx dY2, (4.2)
3>

where (3.14) takes the simplified form

Pja = Uj.a' Pj3 = ASj3 + ejk,Kku,. (4.3)

Indeed, the Euler-Lagrange equations and natural boundary conditions become

+ eJk,K,a3k = 0 over 3, (4.4)

oajNa = 0 over 93>, (4.5)

where aR - is given by (3.15).

"This describes deformations of a "canonical body" for which Y) does not depend explicitly on Y3. For this

body, any inhomogeneity and anisotropy on a cross section at Y3 is congruent to the inhomogeneity and

anisotropy on y'3 = 0.
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Another special case is the limit b -» oo. This is analogous to the static solutions for an

elastica in which the elastica is asymptotic to a straight line parallel to the stress-resultant

F.

The variational problems based on (4.1) and (4.2) do not naturally incorporate the

kinematic constraints (2.8)—(2.10) determining appropriate 6-periodic functions A(Y) and

k,(y) (or constants A, /c, for (4.2)), so it is best to analyze periodic configurations by

adapting the representation in [7] as

x(Y) = x0+ *,(¥„¥)},(¥)+ aYj3, w,(Ya, ¥ + b) = wt(Ya, Y), (4.6)

where

j;(r) = k A j, = Kj3 A j,. (4.7)

Equation (4.7) shows that the orthonormal triad of vectors {j,(T)} rotates uniformly

about the member J3 of a fixed orthonormal triad {J,}, with period 2-jt/k in Y, according

to

jL( Y) = Jj cos icy + J2 sin RY, j2( Y) = -Jjsin RY + J2cosicy, j3 = J3. (4.8)

Thus, Wj are displacement components relative to the "twist axis" x = x0 + aYi3. Since,

for any fixed constants x,> the curve x = x0 + x,j,(D + a^h defines a helix having

pitch I-jtci/k and having the twist axis as axis, any "^-periodic" material configuration

(4.6)—(4.8) describes a coiling relative to the helices. The cross section at Y + b differs

from that at Y only by a displacement baJ3 and a rotation through an angle bR about the

twist axis.

Differentiating (4.6) and resolving x R into components along ]k( Y) = M/k I; gives

x,,r = MjiPiR, Mjt = j,(y) • I j,

where

Pia = w,iB, Pi 3 = w,j + a8n + *ei3 ,w,. (4.9)

Then, replacement of pJR in (4.1) by pjR simplifies the b-canonical energy to

a,K,b) - Joh // W(pJR,Ya)dSd¥. (4.10)

Stationary values of E amongst wt{Ya,Y) having Wj(Ya, b) = W;(Ya, 0), w:J(Ya,b) =

wi(Ya, 0) is equivalent to solution of the canonical boundary value problem (C):

°rj,r + ej3k*°3k = 0 over 3> X (-oo, oo), (4-11)

°ajNa = 0 over dS> X (-oo, oo), (4.12)

dW
a RJ ^PjR (4.13)

together with (4.9) and the periodicity condition

Wj(Ya,¥ + b) = Wj(Ya,Y).

Before confirming and extending Ericksen's result [7] that the stress-resultant must have

the form F = FJ3 and, except in the case F = 0, hii/lv = integer, the moment M of the

tractions about a point of the twist axis must also be parallel to J3, we note that the
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problem (C) possesses some invariances. Neither a coordinate change Y -> Y + c, nor a

rigid body displacement

w1 —> H'jCOSfJ) — w2sin<J>, w2 —► wx sin<£ + w2cos<£, w3 —* w3 + d

representing a rotation $ and a translation d along the twist axis, changes the form of (C).

Consequently, functions w, corresponding to any stationary value E = E(a, ic, b) of (4.10)

contain the three parameters <j>,c, d. To fix ideas, we use this arbitrariness to simplify the

interpretation of the curve of centers

x = x0 + w,.(o,y)j,.(y) + ayj3 = r*(y). (4.14)

By choosing c appropriately, we make the radial distance

|(r* - x0) A j31 = {wf(0,y) + w22(0, Y)}1/2

from the twist axis have a maximum at Y = 0. Then suitable choices of <£ and d allow us

to set

w2(0,0) = 0 = w3(0,0), w'j(0,0) ^ 0.

The corresponding configurations are denoted by

w:=w*(Ya,Y,a,K,b), (4.15)

P*« = P* = <3 + a8n + «ei3lW?<

where w*, p*R and all derivatives except those with respect to b are periodic in Y with

period = b.

Corresponding to each Y, the stress-resultant and stress-couple are readily characterized

by considering the cross-sectional energy E*(Y, a,K,b) defined by

E*(Y,a,R,b) = // w(pfR,Ya)dS, (4.16)
3>

where pjR = p*R gives a stationary value to E in (4.10). Then, resolving F and M into

components along the local triad (j,(y)} as F = F*\k, M = MA*jA. gives

Fk*= // <dS, M* = eA/mJJ w*a*m dS,

where a* = dW/'dp*3. Since all components F*, M* are periodic in Y with period b,

while the vectors ja(l/) have period 2tt/k, it follows immediately from the integrated form

of the equilibrium equations

Fk*{Y + b)jk(Y + b) = F(y + b) = F(y) = F/(y)j,(y)

that F*(Y) = 0, unless Kb/ltr is an integer. However, even with jA(y + b) = ^.(y) the

moment equation

M*(Y + b)\k(Y + b) = M(y + b) = M(y) - ba] A F(y)

= M*(Y)\k(Y) - baevkF*(Y)\k{Y)

gives aF*(Y) = 0. Consequently, F = F3*J3 unless a = 0 so that the portion 0 < Y < b

of the rod is formed into a ring. Also, this moment equation gives

M:{Y){u{y+b)-ia{Y)} =0,
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so that

F = FJ3, M = MJ3, (4.17)

except possibly when Kb/lv = integer, in which case congruent cross sections at Y and

Y + b have the same orientations.

Now, from (4.15) and (4.16),

= JJ °*n£dS' If °>'dS' r"' r<"-E'6)'
3> Si

and similarly

^If = // a*ejnw* dS = e3ijfj w*o*j dS = M* = M(a, ic, b).

Using the definition

E{a,K,b) = b l( E*(Y, a,R, b) dY,
Jo

these give

dE_ _ 99E _ 9E*

9a 9a ' 9ic 9ic ' (4.18)

Hence, except possibly in the case Kb/lm = integer, the stress system over each cross

section in a canonical deformation is equipollent to

Mj jvi = Mj (4 29)
9a 3' M 9ic

Thus, the magnitudes F and M of F and M are derived directly from the stationary

value bE(a, ic, b) of (4.10), without calculation of E* at each value of Y. To determine

components Ft and Mt of the stress- and couple-resultants at each cross section, it is

necessary also only to find the deformed geometry of the curve of centers in a canonical

deformation. This is treated in the following section. Nevertheless, in a practical computa-

tion of E(a,R,b) and w* the identities (4.18) may provide a useful check. Another is

provided by the result

97

9 F* rr
= jf aRjPj*R,i dS

3)

= // {(<»}*).„ + dS,

which reduces to

IF-£//•»*. («o)
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in view of the lateral boundary condition (4.11) and the equilibrium equations (4.10). A

further identity

dE* 3 ff ... H*r r (J Wj

II a>''~dtds (421»ab ay JJ v a;>
SI

is derived by a similar sequence of steps.

5. The canonical constitutive laws. In a canonical configuration (4.14), (4.15) having

w, = w*{ Ya, Y, a, k, b), the curve of centers is given by

x = r*(Y) = x0 + w*(Y) + aYj3, (5.1)

where

w*(F) = w,*(0, Y,a,ic,b)l(Y).

Consequently, the stress-couple M associated with the cross section Y is given by

M(7) = M-w*AF = mj3 + FJ3 A w*(y).

The orthonormal triad {e,*(y)} characterizing the local rod orientation is defined in

terms of the vectors

= />*(°,y,tf,K,fr)j,(y), (t^y) = />?1(o,y,a,ic,&)jI.(y),

which are respectively the material derivatives x 3 and x x at points of the curve of centers.

Thus,

* _ ^3 * M-i — (m-i " e*)e*
e* = -—ef =      , e* = e3* A ef.

IMmI I M-i -(ill • e3*)e3*|

Derivatives of these define the curvatures k* and the torsion k* by

de*
— = K* A e* = eijkK*(Y)e*, k* = k* • eJt (5.2)

while the corresponding stretch is A*( Y) = ||x3(y )|. (These functions k*( Y), A*(Y)

provide appropriate functions for the variational problem (4.1).)

For each set of values (a,R,b), the functions K*(y), A*(Y) and the components

Mt■ = M • e*, Fl. = F ■ e* of the resultants are periodic functions of d = 2-nY/b. By

analogy with Kirchhoff theory for slender rods (where the components Mi are linearly

related to the k, via Saint-Venant's semi-inverse solutions and where F3 is proportional to

A — 1, see [4]), we propose to relate Mt and F implicitly to k: and A by expressing all of

these quantities in terms of the four parameters a, ic, b, 6. Additionally we evaluate the

momenta q and it defined in (3.19) as though the configuration was

x = r( Y, t) + u*e,(Y, t),

where

«,*( ̂  a,K,b.0)={ w*( y„, Y,a,R,b) — <((), Y, a, ic, ft)}jt • ef
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gives the four parameter set of distortions of cross sections occurring in canonical

deformations. Then, in the momentum equations (3.2) and (3.3) we write

M = Mj(a, ic, b, d)ej, F • e3 = F3(a, ic, b, 8), (5.3)

q = mV( Y,t) + m^{e,g,(a,ic,M)}, (5.4)

00 r /• 0 W ̂

it = mgJ(a,K,b,6)eJ A V + Ijk(a,R, b,6)eJ A + eljke, J J pu*-^dS,( 5.5)

where

V= a?' mgj(a, k, b, 0) = J J pufdS, m = psfS

Ijk(a,K,b,e) = // pu*u*kdS = IkLkj'

Together with the kinematic relations

gy = Kj(a,K,b,d)ej A e,, |^ =/l(a, k,&,0)e3, (5.6)

these form a complete set of equations governing a, ic, b, 0, r, e2, e3, and F2.

The system (3.2), (3.3), (5.3)—(5.6) defines a special "constrained theory" of rods [14, see

p. 647], one that is based on cross-sectional distortions which make the traction vanish on

the lateral boundary 3^, which take into account the material composition and natural

(twisted) shape of the rod and which are consistent with the field equations in certain

(static) deformations. It also bears some relationship to a "coarse theory" derived from a

fine theory (three-dimensional elastodynamics) by the process described by Muncaster

[15]. The present coarse theory concerns the evolution of the class of "coarse states"

P — {Ka(^'0> t(F, t), A(Y,t), r(Y,t), e,(Y,t)}. For general motions of the rod, Eqs.

(2.6)-(2.10) provide the mapping which relates p to the full deformation given by x(T, t).

Muncaster outlines a general (but complicated) procedure characterizing the "constitutive"

terms required in the equations for the evolution of the states p (here, the rod equations

(3.2) and (3.3)). As he states, it is not usually tractable to determine all fine details (here

ui(Ya, Y, t)) corresponding to general states p. To derive a "closed" system of evolution

equations, it is necessary to use approximations or asymptotic methods. Examples suggest

that the first approximation to the fine details is given by treating certain parameters in p

as constants. This is exactly the case in the present theory, where the cross-sectional

configurations corresponding to k0,t, and A are taken as u*(Ya, a,R, b,6) with the

parameters a, ic, b, 6 arising in periodic configurations chosen to give the correct local

values of kq, t, and A. Thus, the constitutive response is chosen to be an exact

consequence of three-dimensional elasticity in a small class of (static) deformations.

6. Rods having axial symmetry. For rods and tubes which are axially symmetric in their

straight reference configuration the periodic configurations are relatively simple to cate-

gorize. In this case, the full four-parameter family of canonical deformations can be

represented in terms of stationary values of a family of "cross-sectional energies".
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The natural material coordinate system is the Lagrangian system {XK), with 3) being

the circular region XaXa < R2 (or an annulus r2 < XaXa < R2). Axial symmetry implies

that the strain energy function (3.5) has the invariance property W($Xj/%XK, XK) =

W(dxj/dXL, X, ) for all coordinate systems

X[. = HlkXk, HLrHlk = SRK, X3 = Xj

obtained from {XK} by a rotation about the I3 axis. Thus, for any value of b, any

deformation given parametrically by

x(X) = x0 + w,(^)j,(T) + aY}3, (6.1)

Y1 = Xlcos0 - X2sin0, Y2 = X^inO + X2cos8, 9 = 2irY/b, (6.2)

j;(r) = i?j3 a j,, y=x3

deforms each material helix Yft = constant into a helix of period 2tt/k. With respect to the

natural material coordinates { XK} it must be viewed as a "6-periodic deformation," yet in

terms of the appropriate coordinates {Yj} it is simply a helical deformation. The

cylindrical outer surface deforms into a helicoid and all cross sections have congruent

distortions.

Since (4.9) simplifies to

Pia = wi.a> Pil = aSi3 + *emyv„ (6.3)

making pjR independent of Y, the corresponding stationary values of the integral in (4.10)

are given by stationary values E*(a,K,b) of the cross-sectional energy

// w(e„.r.)
St

dS.

It follows immediately from (4.17)—(4.19) that at each cross section

<)F* ~ 9 F*

As in (4.14), we choose the corresponding minimizers

w* = w*( Ya, a, ic, b) to have w2* = vv3* = 0, w* >0 at Ya = 0.

The curve of centers x = x0 + wf(0, a, ic, b^Y) + a7j3 is a helix of radius w* =

wf(0, a, ic, b), but the functions w* are still determined only to within a transformation

^ Ha/jHfiy = 8py, which corresponds to a change in the origin of 0, or Y.

Except in the case wf(0, a, ic, b) = 0 of pure extension and torsion, this arbitrariness is

removed by selecting = R, Y2 = 0 as the locus of maximum w*w*, so that the material

curve Fj = R, Y2 = 0 is the helix of maximum radius.

A reference triad {e*(7)} can be defined in terms of derivatives of the configuration

(6.1) with respect to X3 and Xl, in a manner similar to that in Sec. 5. However, this is not

the simplest choice. The unit tangent to the curve of centers is

e3*(y) = j2(^)c°s/? + j3 sin/S,
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where the deformed helical angle /? satisfies

sin/? = a/A, cos/? = kw*/A, A = [a2 +(/cw*)2j / .

For each 2v increase in 8 the material element d\/dXl at Xa = 0 advances one turn

around the curve of centers relative to the orthogonal triad e$, jl5 and A (which itself

rotates uniformly about the direction j3). However, d\/dXx does not rotate uniformly

with 8. A simpler choice of material triad contains the vectors e* and jjcos# + e3* A

jj sin#. Thus, in terms of the triad of vectors

ef = j1(y)cos# + {j2(7)sin/? - j3(y)cos/? }sin0,

e2* = -ji(^)sintf + (j2(y)sin/? - j3(y)cos/?}cos0,

e* = j2(y)cos/? + j3(y)sin/?,

the curvatures Ka - ic ■ e* and torsion r = i< ■ e3* have the forms

Kj =-w*K2y4-1sinfl, k2 =-w*k2^"1cos0, t = aRA'1 = t(o,k, b), (6.5)

and the canonical distortions are

= {w*{ Yp,a,K,b)j, — w*j(} -e*, (6.6)

which are ^-periodic functions of Y. The corresponding stress- and couple-resultants

aE* . 9E* . ^9E *

F_i7j" M" irij +
have components M, = M • ef, F3 = F • which may be expressed as

JdE* KW*2 9E*
Ma = B(a,K, b)Ka, M3 = aA~l \ ^

-iM!
? *

The constitutive laws (6.7) are derived from stationary values of the cross-sectional

energy, defined over a single cross section and depending on the three parameters

(a,R,b). As might be anticipated, the "bending rigidity" B(a,K,b) like the torque

M^(a, k, b) and tension F3(a, ic, b) is independent of the ratio k2/k1. Equations (6.7) give

a specific, simplified form for (5.3). Equations (5.4) and (5.5) likewise have a simplified

form. For example, the deformed location of the mass center of the cross section is

computed as

mSPi = // P{wi"ii~ w*'h)dS = mGk(a,K,b)\k,

so that the dependence on 8 takes a specific trigonometric form. In this, as in other

quantities in (5.5), 6 may be eliminated in favor of kv k2, a, k, and b, where

k2 + k2 = ( w*k/A)2. This yields a four-parameter set of constitutive laws and associated

momenta appropriate for solution of (3.2) and (3.3) for naturally straight rods or tubes

having axial symmetry.
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We conclude by remarking that the canonical deformations illustrate the ambiguity of

twist [8] which may arise in analysis of the stationary values of (4.1). For given (a, k, b)

there may be a strictly helical deformation in which cross sections at Y0 and Y0 + b are

congruent, but differ only by a displacement and a rotation through an angle Kb. This

deformation should be associated with b = 0, since the "periodicity" may be arbitrarily

small. A truly "^-periodic" configuration may be distinguished from the helical deforma-

tion by the fact that the material curve X{ = R, X2 = 0, [*o> *0 + links the

surface spanned by the curve of centers x = r(F) and the axis x = x0 + aYj} exactly once

in the former configuration, but zero times in the latter.
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Note added in proof-. The author has recently become aware of the important work of

Dr. A. Mielke concerning Saint-Venant's problem, to appear in Arch. Rat. Mech. Anal.
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