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Abstract. A particular solution of the Stokes' flow equations is presented which shows a

nonuniformity of limits between the near and far flow fields which relates to the Stokes'

paradox.

1. Introduction. The Stokes' paradox represents the nonexistence of bounded solutions

to the Stokes' equations for the two-dimensional flow past a finite body; the velocities are

found to grow logarithmically with the distance from the body. The basic resolution to the

paradox for such flows was presented by Oseen (1910), though it wasn't until the singular

perturbation analyses of Kaplun and Lagerstrom (1957), and Proudman and Pearson

(1957) that the nature of the paradox was fully understood. The solution of the Stokes'

equations is an inner solution in the neighborhood of the body, and the uniform stream at

infinity can only be recovered from the solution of the Oseen equation, which includes a

convective term. The singular solution, called a stokeslet, with velocities which grow as the

logarithm of the radial distance, then forms the inner boundary condition for an Oseen

flow.

In this brief note, an example of a two-dimensional Stokes flow is presented where a

uniform stream and a stokeslet are different, nonuniform limits for the overlap region

between the near and far flow fields. Although there is an element of artificiality in the

particular situation, the ability of the biharmonic equation of Stokes flow to display this

feature is of definite mathematical interest. The equivalent problem in three dimensions

does not possess this nonuniformity.

2. Two-dimensional model. The specific model considered represents the flow between

two concentric circular cylinders with radii a and \a (A > 1). If ar is the radial distance

from the center, and 6 is the angular measure, then the radial and angular velocities can

be written as U0u(r,6), U0v(r,8) respectively, where U0 is the velocity scale. When the
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stream function \p(r,9) is defined by u = r~\pg, v = -\pr, then the Stokes' equation is just

vV = 0. (1)

We now set the boundary conditions:

m = sin0, = 0 on r = 1; u = v = 0 on r = A. (2)

This indicates a simple outflow and inflow from the surface of the inner cylinder, with no

net increase for the mass flux. The solution to this problem is straightforward, being given

by \p(r,6) = 4>(r)cos0, where 4> is the sum of terms proportional to r\ rlnr, r, r'1.

Satisfying the boundary conditions implies

\p =     7— C°S^     f( A2 - 1 + 2 In A)r3 - 2( A2 - 1)( A2 + 3)r In r
W 4(A2 - 1){(A2 + l)lnA -(A2 - 1)}

+ (2(A4 - 3)ln A - (A2 - 1)(A2 - 3)}r + (2A4lnA - 3(A2 - 1)}r1]. (3)

Now, when A » 1 and r = O(l), the expression (3) is given by

ip = + r_1)cos0 + O {(In A )_1}; (4)

it is noted that this could have been found directly as the solution to (1) subject to the

conditions (2) on r = 1 alone through excluding the terms r3 and rlnr which have the

fastest growth as /• -» oo. Hence, if there is no outer cylinder, then the effect of this inflow

and outflow from the surface of the cylinder r = 1 is to produce a uniform stream with

magnitude \U0 at infinity in the direction corresponding to 0 = \<n. A similar phenome-

non was discovered by Jeffery (1922) for the flow due to two equal counter-rotating

circular cylinders, and perhaps (4) represents the simplest example of what has come to be

known as Jeffery's paradox (cf. Dorrepaal, O'Neill, and Ranger (1984)). When the outer

cylinder is present, but has a large radius, then (4) represents the dominant part of the

solution where r = 0(1).

Next, we write r = Ap, and then take X 1 with p = 0( 1); the approximation to (3) is

now given by

^ = "41nA ~ P ~ 2PlnP)cos6' + ^{(lnA)"1}]. (5)

Here we note that the expression (5) could have been obtained (up to a multiplicative

constant) by solving (1) with just the boundary conditions (2) on r = A, which also has the

weakest singularity as p -> 0. When, in fact, we let p -» 0, it follows that \p —

Ap In p cos 8/(2 In A), which represents a stokeslet at the origin, with velocities propor-

tional to In p. Under normal circumstances, it would be expected, when A is large, that the

separate limits for ip, with r -> oo and p -» 0, are the same, and it is the nonuniformity of

the limits here which is of interest. Further, as r -» oo the stream function is that for a

uniform stream, whereas as p -» 0 the stream function is that for a stokeslet, which is

often taken to represent the effect of a uniform stream past a finite body in two

dimensions; the resolution is completely within the Stokes' equation.

It is observed that the vorticity derived from (5) is to = -(2p - p_1)(A In A)-1cos0,

which is zero for all p = 2"1/2 = 0.707.
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If the boundary conditions (2) are changed to u = sgn6 (-1r < 8 < 77), v = 0 on r = 1,

u = d = 0 on r = A, A » 1, then a uniform stream is still present for large r, now with

velocity 2U0ir~l, and the stokeslet follows as p -* 0. In fact, the situation is similar for

each odd function u(l,6) which has a nonzero term in sin# for its Fourier series

expansion, and satisfies [m(1, 6)]Z„ = 0.

When the analogous three-dimensional axisymmetric problem, with a balanced inflow

and outflow out of the sphere r = 1, and no slip on r = A, is considered, the nonuniform-

ity is absent. The two limits r -> 00 and p -» 0 are equivalent and represent the stream

function for a (three-dimensional) stokeslet.

References

[1] J. M. Dorrepaal, M. E. O'Neill, and K. B. Ranger, Two-dimensional Stokes flows with cylinders and line

singularities, Mathematika 31, 65-75 (1984)

[2] G. B. Jeffery, The rotation of two circular cylinders in a viscous fluid, Proc. Roy. Soc. A. 101, 169-176 (1922)

[3] S. Kaplun and P. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J.

Math. Mech. 6, 585-593 (1957)

[4] C. W. Oseen, Ueber die Stokes'sche Formel, und iiber eine verwandte Aufgabe in der Hydrodynamik, Ark.

Math. Astronom. Fys 6, No. 29 (1910)

[5] I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a

circular cylinder, J. Fluid Mech. 2, 237-262 (1957)


