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A LINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION

FOR VISCOELASTIC RODS AND PLATES*

By

RICHARD D. NOREN
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Abstract. It is proved that the resolvent kernel of a certain Volterra integrodifferential

equation in Hilbert space is absolutely integrable on (0, oo).Weaker assumptions on the

convolution kernel appearing in the integral term are used than in existing results. The

equation arises in the linear theory of isotropic viscoelastic rods and plates.

1. Introduction. We study the equation

y'(t) =-A* Ly(t) + g(t), j>(0) = y0, t > 0 (' = ^), (1.1)

in a Hilbert space H, where y(j and g(t) belong to H, A: R 1 -» R is locally absolutely

continuous, L denotes a self-adjoint linear operator defined on a dense domain D of H.

We assume the spectrum of L is contained in [1, oo) and*denotes the convolution

h\ * h2(t) = (' hx(t - s)h2(s)ds.
Jo

Let {Ex} be the spectral family corresponding to L. Define

r oo

U(t) = / «(/, X) dEx

where u{t, A) is the solution of

u'(t) = -\A * u(t), u(0) = 1, t > 0. (1-2)

Existence, uniqueness, and representation results for (1.1) work out just as in [6]. In

particular, the conclusions of Theorem 1.1 below imply that

U'(t)y = jt[U(t)y], if L~l/2y e D~ (1.3)

' Received July 8, 1986.

©1987 Brown University

503



504 RICHARD D. NOREN

moreover, if y0 e D, g: R * -» H is continuous with g(t) e D for all ?, and Lg: R + —> H

is locally Bochner-integrable, then the unique solution of (1.1) is given by

)'(<) = U(t)y0 + U*g(t). (1.4)

The results (1.13), (1.18), and (1.19) in Theorem 1.1 imply, respectively,

||t/(0ll<i (t> 0), (1.5)

lim \\rU(t) || = 0, (1.6)

fJo
\\U{t)\\dt < oo. (1.7)

Under various assumptions on g, (1.4)—(1.7) can be used to study the asymptotic

behavior of y(t) as / -» oo.

Throughout this paper, the Fourier transform h is defined for a function h such that

h(t)e'(" e Ll(R + ) for all a > 0 by the formula

h( t) = f e~'T'h(t)cJt (Imr < 0),
Jo

h(T0)= lim h( t) (r0eR),
t—»T0,imr<0

whenever the limit exists.

The assumptions on A are as follows:

A(t) = a(r)f(t) (Imr < 0), (1.8)

where

/(t) = F(h(r)/a(T)), F(w) = , (1.9)

m, p, and q are nonnegative, p > 0, q > mp, (110)

and

a(t) and b(t) are continuous, nonnegative, nonincreasing, (1 11)

convex, and not constant on R+, with a(0) + A(0) < oo.

In [6], the stronger assumption — a'(0) — b'(0) < oo is also used.

The equation for a dynamic problem in linear viscoelasticity [1] can be obtained by a

"correspondence principle" from the corresponding problem in the purely elastic case.

Formal differentiation of (1.1), with L = A2, y(t) = j(-, ?), followed by an application of

the Fourier transform (with m = p = 1/2, q = 1 in (1.9)) yields the transformed equation

for transverse vibrations in a viscoelastic plate (see [6]). Similarly, the equations for waves

in a rod come from (1.1), (1.8), (1.9) with m = 0, p = 2, q = 1; for longitudinal waves,

L = -d2/dx2, while for bending waves, L = d2/dx4. In all cases we must take self-ad-

joint boundary conditions. There are indications that for certain viscoelastic materials the

assumption that A(0) or A'(0) is finite may not be valid. (See [8] and references in [8]).

Recently authors have studied (1.1) and equations related to (1.1) assuming that the

convolution kernel or its derivative become infinite at the origin. (See [2], [3], [7], [8], [9],

[11], and [12]).
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Our first result is:

Theorem 1.1. Suppose (1.10) and (1.11) hold.

(i) There exist B e L2(R + ) such that the function

K0 =/(o°M0 + /' B(s)
Jc\

ds

satisfies (1.8).

(ii) For X > 0, u(t, X) satisfies

m(t, X) = [/t + A^(r)]-1 (Imr < 0), (1-12)

|u(f,\)|<l {t> 0). (1.13)

(iii) If in addition,

and

where

B

-a' and -b' are convex on R + , (1-14)

x5[C(x) + Ch(x)\
lim sup  — < oo, (1.15)

.vio [5(x) + Bh(x)\

C(x) = f -a'(s)ds, Ch(x) = f -b'(s)ds, (1-16)
Jo Jo

(x) = f -sa'(s) ds, Bh(x) = f -sb'(s)ds, (1.17)
J CI J CI

then

lim sup |/w(/,A)|=0, (1-18)
1«\<0C

r OC

/ sup \u(t, X) | dt < oo. (1-19)
J0 1 <\< oo

In [6], Hannsgen proved the same result with the condition a(0) + 6(0) < oo in (1.11)

replaced by -a'(0) — b'(0) < oo. Note that the condition -a'(0) — b'(0) < oo implies

(1.15). The proof of Theorem 1.1 follows the proof of Hannsgen's result. The only

difference is that we will use the estimates (2.1), (2.2), and (2.8), below, instead of the

relations

a (t) = -it 'a(O) + 0(t 2), &(T) = ~'T ^(0) + 0( r 2),

a( r) = -i t 'a(O) — a'( 0)t 2 + o( r 2),

b(r) = -ir '£(0) — b'(0)t 2 + o(t 2) (t-> co,re5),

where S = {t e C: lmr<0, t =£ 0}. To keep the paper more self-contained, we will

include the entire proof. The part of the proof that differs from that in [6] will be found in

the estimates from (2.26) to the end.

Remarks, (a) Regarding (i), it will be seen below in (2.2) that /(oo) exists and equals

F(b(0)/a(0)).
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(b) The assumption (1.15) is quite mild. If ~(a(t) + b\t)) has a singularity at t = 0 like

t~a, 0 < a < 1, -logr, log(-log/), or /_1(-logr)~q, q > 1, then an easy calculation shows

that (1.15) holds. As already mentioned, if -a'(0) — b'(0) < oo then (1.15) holds.

(c) In Sec. 3 we give an example of a piecewise linear function -a' (with any b) that

satisfies (1.11) and (1.14) but not (1.15). I do not know if (1.19) holds for this example.

The condition a(0) + b(0) < oo is assumed in Theorem 1.1. The following result allows

b( 0) = oo.

Theorem 1.2. Assume that (1.10) holds. Let b(t) = t~p, 0 < /? < 1, and assume that a(t)

satisfies (1.11) and (1.14). Then (1.13), (1.18), and (1.19) must hold.

Note. Our proof of these two theorems does not extend to a(t) = t~a, 0 < a < 1, even

if -b'(0) < oo.

2. Proof of Theorem 1.1. We first recall some consequences of (1.11). By [5], the

functions

a(t) = <P(t) — ir6( r)

and

b(T) = ^(t) - iTdx(t)

are analytic in (Imr < 0} and continuous in S. Moreover, if Imr < 0 and Re r > 0, a(t)

and b(t) lie in {~ir/2 < argw < 0}: if (1.14) also holds, this conclusion remains true

when Im t = 0, t > 0. In this paper, -it < arg w < it (w e C).

Integration by parts and the Riemann-Lebesgue theorem show that

<5(t) = -/T_1a(0) + b(T~1) = -/T_1ft(0) + o(t"1) (t -» oo). (2.1)

As a consequence, it follows that

/(t) =/( oo) + o(l), ^(t) = r'2b(0) + o(t~2),

0(t) = r~2a(0) + o(t~2) (t->oo),

where /(oo) = F(b(0)/a(0)).

From [12], we know that a(t) and 6(t) are differentiable for t > 0 and

2"3/2 f / a(t) dt < |a(r) | < 4 f / a(t)dt, (2.3)
Jo Jo

|fl'(T) I ̂  40 f ^ ta(t) dt (t>0), (2-4)
•'o

fill /01/T ta(t)dt

(2.2)

/'Sf)

dr < oo, (2.5)

J°\{j^a(t)dt)

with similar estimates for b. By [5, Lemma 2.2],

0'(t)<O (t > 0). (2.6)

If (1.14) also holds, [2, Lemma 5.1] shows that a and b belong to C2(0, oo) with

|o"(t) | < 6000 f1/T t2a(t) dt, (2.7)
Jo
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(2.8)

and [7, p. 236] shows that

CB(1/t) < 4>(t) < KB(1/t), t > 0,

CBh(l/r) < ^>j(t) < KBh(\/j), t>0,

for some positive constants C and K where

B(x) = f -sa'(s) ds and Bh(x) = f -sb'(s) ds.
Jo Jo

From (2.3)—(2.5) and (2.7) it follows that

j-l |t«?"(t)| + |a'(r)| <

>« l<Kr)l2

The formulas for b which are analogous to (2.3)—(2.7) and (2.9) also hold.

The fractional linear transformation F maps {Rew > 0} onto the disk with diameter

[m/q, 1 /p). Moreover,

0 < argF(vv) < argw (0 < argw < it/2), (2.10)

F(w) = F(w) (w e C).

It follows that arga(r)/(T) lies between arga(r) and argft(T), and strictly between them

when arg a ( t ) =£ arg b ( t ) ( t g S). In particular, if we write

A(t) = <J>(t) — ;t0(t),

then in {Imr < 0} (and in S when (1.17) holds) we have,

<D(t)>0. (2.11)

For the remainder of the paper, M denotes a constant whose value may change each

time that it appears.

To prove (i), define

G( t) = (/(t) -/(co))(Ta(T).

For 0 < t < 1, we have

|/(t) — /(oo) | =
{q - mp)(a(0)b(T) - /?(0)a(r))

(pb( 0) + qa(0)){pb(T) + ^(t))

<Af|a(0)fc(r) — ft(0)a(r)|=o(T ') aST-^oo,

where we have used the Riemann-Lebesgue lemma. Together with (2.1), the paragraph

preceding (2.1), and the properties of F, G belongs to the Hardy class H2 in {Imr <0}.

Thus G = B for some B in L2(R + ) and

~~G(T) +/(°°)<S(t) =/(t)<3(t).

Therefore (1.8) holds with A as in (i), as asserted.
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The proof of (ii) is the same as in [6], The formulas (2.14)—(2.23) from [6] are valid.

The verification of these is the same as in [6] except that the formulas

a( t) = -/T_1a(0) — a'( 0)r'2 + o(t~2),

b(r) = /t_16(0) — b'(0)r~2 + o( t"2)

do not hold. In their place we use (2.1), (2.2), and (2.8). We list these results in

(2.12)—(2.21) below:

lim exists and is real and nonnegative. (2.12)
t —*o A(t)
T GS

For each A > 0

u( t, A) is continuous in {Imr < 0}. (2.13)

Also, a, b e C2(0, oo) when (1.14) holds; therefore A e C2(0, oo). We have

f.M"(r)| + M"'(t)|
'() \A( t)\2 V 'Jo \A(t) I

\tA'( t)| + \t2A"(t)\
= 0(1) (r —> 0 +), (2.15)

M(t)|

= 0{\) (t -» oo, j = 0,1,2). (2.16)

Furthermore, u e C2(0, oo) as a function of t, and

iMliAl = 0(T-y-i) (T _» oo, j = 0,1,2, A > 0), (2.17)
9t'

m(t,A)=0(t_1) (t —> oo, tg S, A>0), (2.18)

«(•, A) e LHR + ) (0 < A < oo). (2.19)

With D(t, A) = ^I(t) + ;'tA_1, choose p > 0 such that

\A(t)\^2t (0 < t < p). (2.20)

By (2.12), p exists.

Finally, we have the representation

TTu(t,\) = Im( A''«!(/) + i\~2u2{t) + Xiui(t) + w4(?. A) + «5(r, A)}, (2.21)

where

1

«i(0 = 7 /

«2(0 = 7 /'1 'O

"3(0 = 7/' •'O

"4('>a) = 77- /
AJr A)

0 A2(t)

1 rp eiTI

dr,

i2(r)

2/T(r)

i(r)
dr,

1 /-p , , 2tJt
e  

'o i3(r)'

1 /"P T2£>t(t, A)

A) a3(j)d(t,\)

/, \ \ if50 /T? dt(t<^) ,
M«(/,A) = -r-/ e ——  AT.

5 'H £>2(t,A)

2 1
+

/1( T ) £>( T, A)
^T,
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Following [6] we show that

\u4(t, X) | < Mr2 (\,t> 1), (2.22)

\u5(t,A)|< Mr1 (\,t> 1). (2.23)

Then by (2.21), (2.19), and (1.13), (1.19) follows. Moreover, (1.18) is a consequence of

(2.21), (2.22), (2.23), and the Riemann-Lebesgue theorem.

For (2.22), integrate by parts in the definition of u4 (using (2.15)) and then use (2.15)

and (2.20).

For (2.23), integrate u5 by parts (using (2.16)) and then use (2.11) and (2.16) to see that

t2X

17
x

u5\ t, ^ < M
1 , T~3 r-4 + A"2
1 + ——   +/

p \D2(t, X/L)\ |Z)3(t,A/L)|
dr, (2.24)

where L is defined in (2.26) below. Define Wj = coj(A) > 0 by #(coj) = A"1. By (2.6), o>j is

unique when it exists. Now let w(A) = cjj(A) when exists and cjj ^ p, and let

<o(A) = p otherwise. As shown in [5], « is continuous and nondecreasing, and by [5, Eq.

(6.8)], there exists Q > 0 such that

|<o(A) - t|(co(A) + t)

t2A

!-.(,) (r>p, \>\). (2.25)

To proceed we need a lower bound on Im D(t, X/L) = -t0(t) + tX 1. Writing 0(t)

explicitly in terms of <f>, <f>lt 6, and 6X, a straightforward calculation shows that

lim 0<T) = L = ^(O)2 +{mp + q)a(0)b(0) + mpa(0)2 ,

t—oo 6( t) (pb(0) + qa(0))2

where we have used (2.2) and (2.8).

Define the function

,, > piTd^r))2+(mp + q)j26{T)ei{T) + mpT2e2(T)
LAr) = ; — —i •

( p + qT0(r))

We then have

e(r)-f 5* L »(t)4- »(-r)|i,(T) - i| - |0(t) - i,(x)ff(T) |. (2.27)

We find a common denominator and use (2.2) and (2.8) to estimate |0(t) — 0(t)L1(t)|.

The result of this straightforward but tedious calculation is

|$(t) " L1(t)0(t)|< M(B2{t~{) + 52(t"1)) (t>Pj), (2.28)

where pj is a positive constant.

A similar calculation shows that for some p2 > 0,

IL^t) - L\ < Mr2\b(0)9{T) - | (t > p2).

Integration by parts yields

9( t) = a(0)r~2 — T~2Re(-a')(T),
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and

6X( t) = b(0)T2 — t"2 Re(-£>')(t) (t > 0).

Therefore,

| Lj(t) - L|< A/|RerV)(r) - Re(^7)(r)|

<M|(-a')(T)| + |(-6')(0| (2-29)

< jV/| j" / ds + J ^ —b'(s) ds j (t > p2),

where the last inequality is a consequence of [12, Lemma 1] applied to -a' and -b'.

There exist positive constants p3, Mx, M2 such that

"A , v . ,, f l/T
;(1/t) < Af, f -b'(s)ds and t2B2(\/t) ^ M2 ( -a'(s)ds (r>p3)

•'n •'n

because B(x) < x/0x-a'(s) ds and /0V-a'(s) ds -» 0 as * -> 0. (Similarly for 5fc).

Therefore (2.27), (2.25), (2.29), (2.2), and (2.28) imply that there is a constant M1 > 0

such that

e<T)-f
L|co — t|(co + t) M, /*i/t /

t2A t2 •'o
^ -a'(s) — b'(s) ds (2.30)

Jn

for r > p4 = max{ pl, p2, p3}.

Next, we assume that p5 is so large that

(i) -a'(s) - b'(s)ds < , r > p5, (2.31)

.2 2c-2
(U) f°r-/2>^

(a consequence of (2.2) and the definition of to),

(iii) e(A) < <o/2 for w/2 > p5,

where e(A) = e is defined below in (2.33). Define p6 = max{p4,p5}. In the following, we

also redefine co to be max{2p6, <0} and denote the new function by the same letter, w.

For p6 < t < «/2, we use (2.30) and (2.31) to obtain

ew-f L

t2A

L

> t2A

(w — t)(w + t) ^ ( 7 — a'(s) — b'(s) ds
L Jn

2 to2 2Mxu2 / La(0) \

" " T " a(0)L \ SMl I

Leo2

2t2A
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Therefore,

I fu/2 T~3 , t'4 + A2 ,

\D{t,\/L)\2 \D{t,\/L)\

M ru/2 r"3fa/2 T T + A -

A \ (w2/At2) (<o2/Ar)3

.A A2 w4 ,
< A/1 —- H   H - < Af.

. w3 CO5 CO6

Define e = e( A) by the formula

= fnW uI~/W ~a'(s^ ~ b'(s)ds. (2.33)
a(0)L Jo

Note that e(A) -» oo as A -» oo because -a'(0 + ) - b'(0 + ) = oo and w -> co as

A -» oo.

For p6 < w/2 < t < u - e and u + e < r we use (2.30), (2.31), and (2.33) to obtain the

estimate

Q
Llco — t|

^ tA

> L\a - t|

tX

L|co — t|

tX

w + t -a'(s) - b'(s) ds

r tL|w — t|

A/14w2/01/t -a'(5) _ ^

a(0) coLe

L|w — t|

2tA

Therefore,

^11/2 L + e)\\D(T,\/L)\2 \D(t,\/L)\3 J 7

M fx r"3A2 (t~4 + A~2)A3
<T  ; + \

A ■'u/2 |<o — t| |co — t|

A rx -> , r00

(2.34)

/OO /• Ovx dx + / x dx
w

< M,

where we have used (2.31).

For co-e<r<« + ewe need a lower bound for Re D(t, A) = 0(t). By writing 0 out

in terms of <f>, <f>j, 6, and 6,, and using (2.8) we obtain

i = + M, (2-35)
$ D ^ \</>(t) <f>i(T)/ \B( t"1) Bh(r-]) /
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for p < t, where

N = p24>\ + 2pq4>x<t> + q<t>2 + p2(r01)2 + pqT26dl + q2{ T0J2,

and

D = p(t>]<t> +(q + mp)<S>x§2 + mq<j>3 + /?(#>( T0,)~ + 2mp(j>T6 t6x + mq<j>(T0)2

+ (q - mp)<t>l('r6)2.

Therefore, by (2.31), (2.33), and (1.15) we have the estimate

/U . . .»

—--+

1 + f T 3 T 4 + A

*L-e \D(t, A)|2 + |Z>(r,A)|3

1 /'" + E T 3 T 4 + A 2 , , .
r  2 + dj {2M)
^L-e$(T)2 <J)( r)

Me Me
+

\(B(2/u) + Bh(2/u)jV Xi(B(2/u) + Bh( 2/w))

< M
jc4 x5Jq -a'(s) - b'(s) ds

(B(x) + Bh(x))2 (B(x) + Bh(x))3

< M,

where x = 2/w.

For p < t < p6, we use (2.35) to obtain

1 rPl t"3 t~4 + A"2 1 /-Pi t"3 t~4 + A-2 . , .
V /  r H 7 < t- /    H  — dr < M. (2.37)
H | Z) ( t , A/L) | |£)(t, A/L)|3 Aip $(t)2 $(t)3

The estimates (2.37), (2.36), (2.34), (2.32), and (2.24) show that (2.23) holds, finishing

the proof of Theorem 1.1.

The proof of (1.13) in Theorem 1.2 is the same as the corresponding proof in [6]. The

proof of (1.18) and (1.19) follows that of Theorem 1.1 exactly up to formula (2.24), except

that instead of (2.16) and (2.24) we have, respectively,

A(t) = O^j / a(s) ds j

A"'(t) = O^J/ sa(s) + sb(s) ds j (2.38)

A"(r) = 0^r~lJ / sa(s) +sb(s) ds j (asr -> oo),

and

/ X \
< M

t2 A ( A
«s I t, TL L

1 t 1 f ^ sa(s) + sb(s) ds
Jn

|D(t, A/L)|2

A"2 + ( /01/t m(5) + sb(s) ds)2

\D(t, A/L)|3

(where we have used (2.4)).

/.O

!+(

(2.39)
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A straightforward calculation shows that

0(t) 1
hm . = -

T—>00 0(t) P

and there is a constant R such that

R
0(t) - ~0(t) <"7>

T

for some pj > p. The rest of the argument follows as in [6], with L = l/p (see [6, formula

(2.30) until the end of the proof]). We will therefore omit the details.

3. An example. Let -a\t) = Yf£=0ak{xk - f)X[o,**)(0 where x[0,«)(0 equals one for

0 < / < a and zero otherwise, and ak = 21' , xk = 2<~,75)2" for k = 0,1,2, Let b(t)

be any function satisfying (1.11) and (1.14). The function a(t) satisfies (1.11) and (1.14)

by its definition and the calculation

n 1 00
oo > / -a'(t) dt = — Y. akxl < 00•

k = 0

An easy calculation shows that for xn+l < x < xn,

x n oo

C(x)= f -a'(s)ds = x Y, ak(xk-x/2) + |
•/l> , n ,. .. , ,

and

A: = 0 k = n + \

B(x)=f -sa'(s) ds = x2 X ak(xk/2 - x/3) + i ^ akxl
0 &=0 A=n+1

It is also easy to see that

C(x) ~ xanxn, B(x) ~ x2anxn as n -» oo,

where F ~ G as n-* oo means lim„^00F/G= 1. It follows that x5C{x)/B(x)}' ~

\/{anxn)2. Now the fact that limn^xl/(a„xn)2 = oo implies that (1.15) does not hold.
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