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Abstract. Extremal stress paths between any two stresses are investigated for elastic-

plastic materials, extending existing results which hold for the case when one of the stress

points is at the origin. Assumptions about the differentiability of the various work and

complementary work functions are relaxed, and it is shown that the maximum comple-

mentary work U is a potential for the strain in the sense that the strain lies in the

subdifferential of U. In the same way the minimum work W is a potential for stress.

Parallel investigations with respect to maximum complementary plastic work and plastic

work show that these quantities are potentials for stress and plastic strain increment,

respectively. A holonomic constitutive law based on the relations between stress and

strain, obtained when the stress history follows an extremal path, is constructed.

1. Introduction. The general problem of formulating constitutive laws for elastic-plastic

materials is a complex one, given the path-dependent nature of the response of such

materials. For example, consider the situation shown in Fig. 1.1, in which a value of stress

a0 and corresponding strain e° are given, and it is required to find the strain e

corresponding to a. A fundamental assumption about plastic material behavior is that e is

not unique, but depends on the path traversed between o° and a. For this reason

elastic-plastic constitutive laws are conventionally given in the rate form

e = e(d,o, h J, (') = J-( ), (1.1)

where h a is a set of internal variables and t (0 < t < 1) parametrizes path length, say, so

that e may be found from

e = e° +

for the path f(r) shown in Fig. 1.1.

f e(f(t),f(t),hjt))dt (1.2)
•/n
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a = fci)

<7°= f (0)

Fig. 1.1. A stress path between o° and o.

Various attempts have been made at formulating constitutive laws for elastic-plastic

materials which give strain as a function of stress. Such theories, known as holonomic or

deformation theories, are by their very nature approximations since they take no account of

path-dependence. But if the range of stress paths to which they are applied is limited in

some sense, then deformation theories provide reasonable approximations of the actual

material behavior. Hencky (1924) and Nadai (1931) were among the first to propose

deformation theories, but the widespread belief that such theories were limited strictly to

proportional loading (and the fact that proportional loading was of limited practical

significance) led to a certain amount of hestitation in their being accepted. Budiansky

(1959) succeeded in dispelling this belief to some extent by showing that, using Nadai's

theory, quite acceptable results could be obtained for loading paths which deviated

considerably from proportional loading.

Within the context of mathematical programming approaches to elastic-plastic prob-

lems, Maier and his associates (Maier (1969), Cohn and Maier (1979)) have made

extensive use of holonomic approaches; any load path which deviates considerably from

radial is approximated by a piecewise linear path, and holonomic behavior is assumed

within any linear section of the path.

In principle, any scheme or rule by means of which one associates with a stress point a

a single path between a given stress point o° and a, is sufficient to establish a holonomic

relation. For this we simply use (1.2) to establish the constitutive relation

e = £° + g(a) = e(a). (1.3)

This relation, being one-to-one, is invertible and we have

a = a( e) (1-4)
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as the inverse relation. Once such a scheme for choosing paths has been decided upon and

used to establish the relations (1.3) and (1.4), the next step is to define a fictitious nonlinear

elastic material called a holonomic material, as one having the constitutive relations above.

The use of these constitutive relations instead of the actual relations (1.1) will lead to

results which differ in general from those corresponding to an elastic-plastic material,

unless the stress paths arising in the problem do not differ radically from those used in the

first place to set up (1.3). An alternative, converse approach is to postulate a constitutive

relation of the form (1.3), and subsequently to investigate the range of stress paths for

which it approximates reasonably the behavior of an elastic-plastic material. This is the

case for the Hencky-Nadai theory, which is based on the assumption that the stress and

strain deviators are proportional (see Budiansky (1959), Kachanov (1974)). It can be

shown that the theory is valid for a range of stress paths other than radial paths. The

theory is established for stress paths emanating from the origin, i.e., a0 = 0.

The first approach, namely that which starts by establishing a rule for choosing stress

paths, has been used by Martin, Ponter, and others (see Ponter and Martin (1972), and

Martin (1975) for a review), who associate with each stress point a a path emanating from

the origin which has the property that the complementary work U along this path is a

maximum (Fig. 1.2). This choice of path has far-reaching, and very advantageous

consequences. It can be shown that the work function W along the strain path correspond-

ing to the extremal stress path is a minimum, and furthermore that U and W are,

respectively, potential functions for strain e and stress a:

e = dU/da, a = dlV/de. (1-5)

A holonomic material with the constitutive relations (1.5) makes for a well-posed varia-

tional theory for the associated boundary-value problem, given that U and W are shown

also to be convex.

f (extremal)

Fig. 1.2. An extremal path in stress space.
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This procedure may likewise be applied to the complementary plastic work function Up

and the plastic work function Wp (Ponter and Martin (1972)); results similar to (1.5) are

found, with e, U, and W replaced by plastic strain p. the maximum complementary plastic

work Up and minimum plastic work Wp, respectively.

The aim of the present contribution is to extend and place on a firmer foundation the

Martin-Ponter theory, in a variety of ways. First, we consider extremal stress paths

emanating from a fixed but arbitrary nonzero stress point a0 with corresponding strain

e°, and terminating at a point a. Secondly, no assumptions of differentiability are made

with respect to the work and complementary work functions; it is still possible to show

that these functions are convex, and (1.5) are replaced by statements to the effect that e

and a lie, respectively, in the subdifferentials of U and W:

e e 3U(a), a £ dW(e). (1.6)

Similar results are obtained with respect to plastic work and complementary plastic work.

We also introduce the idea of treating the complementary work and work functions as

mappings of a path to a scalar: for example, as we see in Sec. 2, U is defined by

U: H -> R, U(t) = fl i(i(t))-i(t)dt, (1.7)
Jo

where H is an appropriately defined space of functions and f(r) is the path between o°

and o. There is an equivalence class [f] of paths for which U is a maximum, and we can

establish a one-to-one correspondence between [f] and the corresponding stress point a,

from which follows the maximum complementary work function U:

(j. rnxn R 0(a) = U(f) forf e [f]. (1.8)

Similar considerations apply with respect to the work function.

We rework Martin and Ponter's treatment of extremal complementary plastic work Up

and plastic work Wp in this more general framework. In particular, we avoid the use of

the multivalued function a(p), where p is plastic strain, in the definition of plastic work

Wp. The plastic work is instead defined by making use of complementary plastic work

together with conjugacy arguments.

We show that the extremal functions Up and Wp are convex (a result missing from the

original treatment) and that Up and Wp are, respectively, potentials for plastic strain and

stress.

The fact that we develop a holonomic theory for what are, in effect, initially stressed

materials allows us to implement the theory proposed here in an incremental fashion in a

boundary-value problem. Suppose, for example, that it is required to solve an elastic-plas-

tic problem for a load history P(/) such as that shown in Fig. 1.3. A single-step holonomic

theory which is valid for straight-line paths only, say, will generally produce unacceptable

answers, but if we divide P(/) into segments as shown in the figure and solve first for the

response due to the load P(?j) using a holonomic theory, and next for the response at

P (t2) using the state at P( /L) as an initial state, and so on, then a more acceptable result is

to be expected. This aspect is treated in greater detail in a separate contribution (see

Griffin, Reddy, and Martin (1986)).
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Fig. 1.3. A loading history P(r).

2. Extremal stress paths and complementary work. Consider a material point which has

associated with it a stress a0 and corresponding strain e°. Suppose that the stress a() is

changed to a value a along a path f(?) (0 < f < 1), where f(0) = a0 and f(l) = a (Fig.

1.1). Corresponding to this change in stress there will be a change in strain, from e° to a

value e. The strain e is related to the stress a via an appropriate constitutive relation, and

if this constitutive relation is path-dependent, then the strain e will depend not only on a

but also on the path f(/) between a0 and a.

We assume that the material point is part of an elastic-plastic material, which at this

stage it suffices to characterize by requiring that the three following postulates are obeyed.

Postulate 1. The strain e corresponding to a stress a may be decomposed into an elastic

component e and a plastic component p: e = e + p. The elastic strain e is uniquely

determined by a, and is given by

e = Do, (2.1)

where D is a fourth-order tensor of elastic moduli, while the plastic strain p is a function

of a as well as of the path from cf° to a. Corresponding to any given stress path f(t) with

f(0) = a0, the plastic strain p(0 is a single-valued function of stress:

p = p(o) orp(f) = p(f(0), P(0) = p°. (2.2)

Thus the strain is also a single-valued function of stress:

e = Da + p(a) = e(<j) (2.3)

or

e(t) = e(f(/)), e(0) = e°.
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Postulate 2. Let a1 and a2 be arbitrary values of stress, with corresponding values of

strain e1 = e1 + p1 and e2 = e2 + p2. If a2 is reached from a1 along a straight-line path

f(f) = (1 — t)ol + to2, 0 < t < 1, then

(o1 — °2) '(p1 ~~ P2) > 0. (2.4)

Postulate 3. Let f(/) (0 < / < 1) be any closed stress path, that is, f(0) = f(l). Then

• do < Oor f1 e(f(r))-i(t)dt < 0, f(0) = f(l). (2.5)
•'o

In addition to the above postulates we make the usual assumption that the elasticity

tensor D is strongly elliptic:

o • Da = Djjklojjok/ > ju|a| for some ju > 0. (2.6)

A comment on our use of the above postulates is in order. Postulates 1 to 3 are

sufficient for the construction of the classical theory of plasticity, but these postulates are

often found in slightly different, though equivalent forms. Martin (1975), for example,

uses instead of (2.4) the inequality (a 1-a2)-(e1-e2)> 0, which can be reached as a

consequence of (2.1), (2.4), and (2.6). In what follows, we will assume at all times that

postulates 1 to 3 hold.

Suppose, then, that we are given a material point with values o° and e° of stress and

strain. Along any given stress path f(t) (0 < t < 1) emanating from o° and terminating at

a the strain is determined uniquely by e(/) = e(f(/)). Here f(0) = o" and f(l) = o. We

define the complementary work U associated with such a path by

U: Ha -> R, U(f) = f1 e(f(r)) • f(t)dt, (2.7)
Jo

where Ha = {f: f = (/.,), 0,1), f(0) = a0, f(l)=o} and H\ 0,1)= {uG

L,(0, 1):£i e L2(0,1)}, where L2(0,1) is the space of (Lebesgue-) square-integrable func-

tions on (0,1).

An extremal path f e Ha is defined to be one for which

[/(f) > 17(f) for all f e Ha. (2.8)

We introduce next

Lemma 2.1. The Complementary Work Inequality. Let f(?) (0 < t < 1) be an extremal path

between a0 and o with complementary work U(f), and let g(/) (0 < t < 1) be an arbitrary

path between o° and a*(^ a), with complementary work U(g). If e(a*) is the strain

corresponding to o* then

17(f)-£/(g)-e(o*)-(o-o*)>0. (2.9)

Proof. The proof follows without modification that given by Ponter and Martin (1972)

(see also Martin (1975), page 726) for the case a0 = 0. □

Extremal stress paths are, in general, not unique. To take one example, suppose that o°

lies in the elastic region, that is, in the region bounded by the initial yield surface

<#>(o) = 0, and a lies outside this region. Then if f is an extremal path from o° to a, so is
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any other path g which differs from f only in the elastic region (Fig. 2.1), since the

complementary work between two points in the elastic region is path-independent.

We can, however, define an equivalence class [f] of extremal paths between ct° and a by

[f].= U(g)=U(f)j;

then if we define the set of equivalence classes of extremal paths between a0 and all points

a in RNXN by

we observe that there is a one-to-one correspondence between elements of Ha and stress

points in RNxN. We denote this correspondence by

A:Ha -» Rnxn, A(f) = a for any f e [f].

It follows that we may define the function U by

U:RNxN^R, U=U°A~\ or £r(o)= U(A~1(a))=U(f). (2.10)

From Lemma 2.1 follows

Theorem 2.1. (a) The complementary work functional U: RNXN -»> R is convex.

(b) The strain e corresponding to a stress a reached along an extremal stress path

belongs to the subdifferential of U, that is,

e = e(o) e dU(a) = {r): t/(t) — U(a) — t)-(t— a)>0},

so that

g(°) = |^| • (2-11)

if U is differentiable at a.

Fig. 2.1. Two extremal paths between a" and
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Proof, (a) The convexity of U follows from (2.9). Choose g in Lemma 2.1 to be an

extremal path from o° to a*. Then setting a* = 6a + (1 - 6)t in (2.9) (0 < 6 < 1) and

multiplying throughout by 6, we have

6U(a) - 6U{6a + (1 - 0)t) - 0(1 - 6)l{6a +(1 - 6)t) -(o - t) > 0.

Next, setting a = t, o* = 0<j + (1 - 0)t, and multiplying throughout by (1 - 6), we

obtain

(1 — 0)U(t) — (1 — 6)0(6a + (1 — #)t) + 0(1 — 6)i(6a + (1 — 0 )t ) • (<j — t) > 0.

Adding, we get 0(6a + (1 - 6)t) < 60(a) + (1 - 6)0(t), which confirms the convexity

of 0.
(b) That e(o) lies in the subdifferential of U at o follows from (2.9) by making g an

extremal path. Furthermore, from the convexity of 0 it follows from a standard result in

convex analysis (Aubin and Ekeland (1984), Ekeland and Temam (1976), Chapter 1,

Proposition 5.3, Rockafeller (1970), Part V) that if U is differentiable at a, then

dU(a) = {dO/da}. This concludes the proof. □

The proof of Theorem 2.1 differs from that given by Ponter and Martin (1972), who

assume the differentiability of 0 at the outset. Of course, differentiability of 0 is a

necessary property if we are to expect e(cf) corresponding to a given path to be

single-valued. When 0 is differentiable it is a potential function for the strain, and we are

then at liberty to define a fictitious nonlinear elastic material with constitutive relation

e = 9f//9o, the elastic behavior being inferred from the property of path-independence:

■ da = 0,

where e = 9fy/9a. Such a material coincides with an elastic-plastic material only in the

event that the stress path followed is an extremal path. We call this fictitious material a

holonomic material.

3. Extremal strain paths and work. An analogous development may be carried out with

respect to paths in strain space. Consider a material point with stress a0 and strain e°, and

let f(0, 0 < t < 1, be a stress path from a0 to a. The map e defined in (2.3) allows us to

define a corresponding strain path b(O^0 < t < 1, byb = £°forb(/) = e(f(/)), with

b(0) = e°, b(l) = e = i(a). (3.1)

The work W associated with the strain path b is defined by

W: He -» R, W(b) = f1 a(b(t)) • b(t)dt, (3.2)
Jo

where a = i"1 and

Ht = (b :b = 0,J, bu e H\0,1), b(0) = e°, b(l) = e}. (3.3)

An extremal strain path b e He is defined to be one for which

W( b) < W{b) for all be//, (3.4)

As in the case of extremal stress paths, there is a one-to-one correspondence between

the set He of equivalence classes of extremal strain paths and the set of strains, which is

denoted by

B :Hc->R"x", 5(b) = e for b e [b].
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We define the function W by

W:RNXN^R, W=W°B-\ or W(z) = W(B~1(e)) = W(b). (3.5)

We now record a few properties of extremal strain paths and the extremal work function

W.

Theorem 3.1. (a) If f(/) (0 < t < 1) is an extremal stress path between a0 and a then

b(/) = e(f(/)) is an extremal strain path.

(b) The work function W defined by (3.4) is convex.

(c) o = d(e) e dW(t), so that

-( \ dW°(t)- IT (3.6)

if W is differentiable at e.

Proof, (a) Let f and f be two stress paths satisfying f(0) = f(0) = a0, f(l) = a1 and

f(l) = o2, and set e(f(f)) = b(/), e(f(0) = K0> with b(l) = b(l) = e*. In other words, the

two stress paths f and f are mapped into strain paths which commence and terminate at

the same points (Fig. 3.1). We have

f i(f(/)) • f(t) dt + [ d(b(/)) • b(r) dt = o1 • e* - a0 • e°,
Jo Jo

or

[/(f) + W{b) = a1 • e* - a0 • e°,

and

f ■ i(t) dt + f a(b(/)) • b(/) dt = a
J(\

= "2 • e* — a0 • e°,

or

U(t) + W(b) = o2 ■ e* - o° ■ e°.

From Lemma 2.1, U(f) - o1 ■ e* > U(i) - a ■ £*, whence W(b) < W(b); in other words,

the extremal stress path f is mapped to the strain path b which is an extremal strain path,

so in effect we may write W^b) = W^e*).

Fig. 3.1. Strain paths b, b corresponding to stress paths f, f.
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(b) Let f and f be two extremal paths emanating from a0 and terminating at a1, a2,

with images the extremal strain paths b and b emanating from e° and terminating at e1

and e2. Then

U(a') + W(e') = a' ■ e' - a0 • e°, i = 1,2.

The use of Lemma 2.1 leads to

^(e1) — W(e2) — o2 • (e1 — e2) > 0.

An argument similar to that used in the proof of Theorem 2.1(a) then gives the required

result.

(c) The proof of (c) follows that of Theorem 2.1(b). □

4. Complementary plastic work and plastic work. The additive decomposition of the

strain into elastic and plastic components allows the possibility of defining work and

complementary work functionals associated with the elastic and plastic strains. Let f(/) be

a stress path with f(0) = o° and f(l) = a; then along this path the strain e and elastic

strain e are found from

e = e (a), e = Do, (4.1)

so that

Thus,

p(a) = 6(a) — Da. (4.2)

[/(f) = /"' [Df(0 + p°] -i(t)dt+ f1 Ap(f(/)) ■ i(t) dt,
J A J(\

(jco mp(f) fjp^

where p° is the plastic strain at o° and Ap = p - p°, so that Ap(a) = p(a) - p°, £/comp is

the complementary energy function between a0 and a, while Up is called the complemen-

tary plastic work function. The integral defining [/comP is path-independent so that U

derives its path-dependence from Up.

In view of the path-independence of [/comp it makes sense to define the function Ue by

Ue :RNxN^R, Ue( a) = [7comp(f)

for any path f(t) between a0 and a; indeed, we have

Ue(a) = i(a - 0°) ■ D(o - a0) + e° -(a - a0). (4.4)

It follows also that if f is an extremal stress path for U, then f is at the same time an

extremal path for Up, since

U"{i) = U(i) - Ucomp(f)

^ t/(f) - Ucomp(f) = t/(f) - Ucomp(f)

= U"(f), f e Ha.

As before we establish a one-to-one correspondence between members of Ha and stress

points, so that we may define by analogy with (2.10) the function Up: RNXN -> R by

Up(o) = U"(f). (4.5)

By using the second postulate, (2.4), it is possible to derive a complementary plastic work

inequality in much the same way as (2.9) is derived. We summarize this result in
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Lemma 4.1. Let f(r) (0 ^ t < 1) be an extremal stress path with f(0) = a0, f(l) = a, and let

g(0 (0 < / < 1) be a stress path, not necessarily extremal, such that g(0) = o° and

g(l) = a* =/= a. Then,

UP(() - up(g) - Ap(a*) (a - a*) > 0. □ (4.6)

From Lemma 4.1 we immediately deduce results parallel to those embodied in Theorem

2.1. We summarize these results below.

Theorem 4.1. (a) The function Up: RNXN -> R is convex.

(b) Ape 3 Up(a). Thus Ap(cr) = dUp/da if Up is differentiable at a. □

The existence of a plastic work function Wp, which bears the same relation to Up as W

does to U, is not as readily deduced since the function a = o(Ap) is multivalued. We

resolve this by appealing to the concept of a conjugate or polar function (Aubin and

Ekeland (1984), Ekeland and Temam (1976), Chapter 1, Sec. 5. Rockafellar (1970), Part

III). Given the convex function Up\ RNxN —> R and a point a, we define the conjugate

function Wp\ RNxN -> R of Up by Wp(q) = a • q - Up(a), where q e 3t/(a). The

following properties of Wp then follow from the definition of Wp.

Theorem 4.2. (a) If q e 3Up(a) then a e dW"(q).

(b) Wp is convex.

Proof, (a) Let q e 3Up(a) and r e dUp(j). Then

Wp( r) — fVp(q) — o (r — q) = r • t — Up( t) — q • a + Up(a) — a (r — q)

= Up(o) - Up(t) - r -(a - t) > 0.

(b) follows in the same way as the proof of Theorem 3.1(b). □

We thus have available a function Wp, called henceforth the plastic work function,

which can be defined and given desirable properties without the need to work with the

multivalued function a(Ap). There are of course values of Ap for which a(Ap) is

single-valued, and for such cases a = dWp/d(Ap) = dWp/dp. But W is not differentiable

everywhere, in particular, not at p = p°, at which point dWp(0) corresponds to the set of

all stresses a such that an elastic path exists from o° to a.

5. Determination of extremal stress paths. Extremal stress paths have previously been

determined (see Ponter (1968), Martin (1971), Soechting and Lance (1969), and for a

review, Martin (1975)) for elastic-plastic materials which undergo kinematic hardening

and isotropic hardening, with the assumption that the stress paths emanate from a0 = 0.

This treatment excludes, for example, the possibility of finding the extremal path from a

point a0 to a point a in a kinematically hardening material for which the current yield

surface does not enclose the origin. The present formulation allows us to find extremal

stress paths from any point a0 to any point a; our methods are different but the

conclusions differ very little from those given earlier. By way of an example we determine

here extremal stress paths for kinematically hardening materials only.

The problem, then, is the following. Given an elastic-plastic kinematically hardening

material which obeys Postulates 1 to 3 in Sec. 2, find the extremal paths between two

points o° and a. For such a material the yield function $ depends on o and p in the form

<#> = <£(cr,p) = 4>(a - hp) = 0, (5.1)
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where h is a positive constant. Without loss of generality, we assume that a0 lies inside

the current yield surface and a lies outside of it (Fig. 5.1), that is,

c#>(o°,p0) < 0, <f>(o,p°) > 0.

Then an extremal path will consist of two segments, one going from o° to a point a', say,

on the yield surface ^(a,p°) = 0 and the remainder of the path going from a' to a. Of

course any path between a0 and a' which remains inside the yield surface will suffice

since such a path will be an elastic one, and therefore extremal. The problem that remains

is one of locating a', and of determining the path between a' and a. A formal statement

of the problem is thus:

Minimize

subject to

/'Jo
1 Ap(f) ■ i(t) dt (5.2)

<t>(a,p) = <t>(o - hp) = 0, (5.3)

where f(/) (0 < t < 1) is the path between a', which is as yet unknown, and a. We use a

Lagrange-multiplier approach and minimize

Ap>f) = f1 [Ap(?) ■ f(0 + A<J>(f(/),p(/))] dt, (5.4)
Jo

where A is a Lagrange multiplier. The requirement that J be stationary with respect to p

and f yields

0 = <A/(p,f), (q,g)> = lim 6 lJ(p + 6»q,f + 0g)
6^0

= f1 [Ap ■ g + f • q + A(M • g + N • q)] dt
Jo

= fl [-i» ■ g + f • q + A(M • g + N • q)] dt, (p = Ap),
-'n

t a

Fig. 5.1. Extremal path for a linear kinematieally hardening material.
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after integrating the first term in the integrand by parts, wherein M = 3<#>/3a and

N = d<f>/dp. Since g and q are both arbitrary we must have

p = AM, f = -\N. (5.5)

But for kinematic hardening

d(j)/da = d4>/da, 3^>/3p = hd<p/do,

where a = o — hp, so that N = -hM. Hence

f = h\M, (5.6)

that is, the extremal path emanates from the current yield surface at a point a' such that

a - a' is codirectional with M, the normal to <f> (Fig. 5.1). Note that we also recover from

(5.5) the classical normality rule.

If we make use of the von Mises yield function with kinematic hardening, then we have

<#>(<*,p) = Ks - M-(s - h?) - k2-, (5-7)

where s = a — \okkI is the deviatoric stress and k is a constant. Suppose that the plastic

strain associated with o° is p = p°; then </>(o', p°) = 0, so that at (a', p°), M'=

d(p/da | a_a, = s' — hp0. Now since f = hp we find upon integration along the extremal

path that

a - o' = h(p - p°), (5.8)

so that

p - p° = a(s' - hp0)

for an appropriate constant a. Substitution in the yield condition <f>(a\ p°) = 0 gives

-L(p-p»).(p-p»)-^.o,
2 a

or

a =
|P~P°I

]/2k

so that

s'(Ap) = ,/2k-^- + hp0. (5.9)
I Ap|

Finally, to obtain the complementary plastic work and plastic work functions we use

Up(a) = f1 Ap(/) ■ f(0 dt
Jo

= hf^ Ap(/) • p(0 dt= |(p • p - p° • p°) - hp0 ■ Ap

h= ^AP•AP

= 2~ °') _ a')- (510^
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Hence,

Wp{Ap) = a • Ap - U"{o)

= |lAP|2 + ®'(Ap) • Ap

= ^IApT + S'(AP) • Ap (since Apkk = 0), (5.11)

where s'(Ap) is given by (5.9). It is readily verified that for p - p° ¥= 0, Wp is differentia-

ble and a = dWp/dAp. Indeed, for p - p° ¥= 0,

%Wp , a 3 / , * \= /)AP+ " AP)-
3Ap 9Ap

Now

t^(s' • Ap) = v/2 k
Ap + Ap _ (Ap ■ Ap)

r r r3
+ hp

(r = |p - p°| = |Ap|)

= ]/l k\p/r + hp.

Wp is not differentiable at 0, a fact which reflects the multivaluedness of a(0), and we

have o(0) e dW"(0).

6. A holonomic material. With a full characterization of extremal paths at our disposal

we are now in a position to define a constitutive law for a nonlinear elastic material, this

material behaving in the same way as an elastic-plastic material if the stress paths followed

are extremal.

Given a material point with stress a0 and strain e° (so that the plastic strain p" can be

found from p° = e° - Da0), we define a holonomic material to be one for which the stress

a, the strain e, and the plastic strain p are related by

a = c(e - p) = C(Ae - Ap) + Ce°, (6.1)

oe3F(Ap), (6.2)

where C is the fourth-order elasticity tensor inverse to D (see (2.1)). Constitutive equations

dual to (6.2) may be set up using the complementary plastic work function, but in

conventional displacement-based problems, (6.1) is more useful.

In the case of a holonomic law derived from a kinematically hardening elastic-plastic

material we can be more explicit about (6.2); in this case (6.2) can be written alternatively

as

o(Ap) =/i(Ap + p°) + i/2&Ap/|Ap|, Ap + 0, (6.3)

o(0) - hp0 e 3^(0) (6.4)

where (^(Ap) = /2A:|Ap| is the nondifferentiable part of Wp. It is a straightforward

matter to show that Eqns. (6.3) and (6.4) are equivalent to the following conditions:

|o — /;p| < t/2 k =* Ap = 0, (6.5)

|o — hp\ = y/lk => there exists /? > 0 such that Ap = /S(a — /?p). (6.6)

This is illustrated for a one-dimensional situation in Fig. 6.1.
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hp°-

Ap

, 2 k + hp0

Fig. 6.1. A one-dimensional representation of the plastic work function W'' and its derivative, the stress.

In a companion paper (Reddy and Griffin (1986)) we examine variational formulations

of boundary-value problems based on (6.1), (6.2); the appropriate variational formulation

is shown to be a variational inequality of the second kind.

Convergence of finite element approximations of these boundary-value problems is also

examined. Then in another contribution (Griffin, Reddy, and Martin (1986)) we under-

take a detailed numerical investigation of the efficacy of using a holonomic law such as

(6.1), (6.2) in an incremental fashion to determine approximations to the response of

elastic-plastic bodies for arbitrary load histories.
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