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1. Introduction. In 1963, Walter Leighton published a paper [7] in which he provided
Liapunov functions for general classes of second- and third-order differential equations.
In a subsequent paper [3], the current author and Walter Leighton considered Liapunov
functions for second-order systems that were more general than those given in Leighton’s
1963 paper. Further, this latter paper gave a class of weighted Liapunov functions for
certain second-order systems. Further work utilizing weighted Liapunov functions for
second-order equations was published by the current author in [1] and by S. Duchich and
the current author in [2]. A separate paper by A. Skidmore [8] extended Leighton’s 1963
work on third-order equations to fourth-order equations, but no “weighting” was consid-
ered in either paper. ‘

The purpose of this paper is to extend Leighton’s work (in [7]) on third-order systems
by providing a class of weighted Liapunov functions for an equation

X+ ¢(x,%,%)=0
and the associated system

x=y, y =z, i=-¢(x,y,2). (1.1)

This system is a bit more general than third-order systems considered by Leighton in
[7]. Moreover, for third-order systems considered by Leighton in [7], our weight functions
V., (w = weight) reduce to those given by Leighton when w = 1. In turn, as pointed out
by Leighton in [7], his Liapunov functions are “sharp” in that they provide stability
criteria in linear cases when the Routh-Hurwitz condition holds. Thus our class of
functions provides breadth and sensitivity.

* Received June 4, 1986.
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2. A class of Liapunov functions. We assume here that ¢ is of class C” in an open set
containing the origin and that the origin is an isolated critical point of (1.1).

We will consider weight functions w(x, y, z) which are of class C” neighboring the
origin and are positive in a deleted neighborhood of the origin.

For such a function w and a constant «, we define

V.(x,y,z)= ,[0: ow(x,0,0) dv + f()". w(x,u,0)¢(x,u,0)du
+a{zyw(x,y,0) +/X w(1,0,0)$(2,0,0) dr
Jo

+ /(;)‘ ulw(x,u,0)¢.(x,u,0) +w,(x,u,0)¢(x,u,0)] du}.

If w=1 and if ¢(x, y,2z) = z¢(x, y) + 6(x, y), then this reduces to the function

considered by Leighton in [7].
In the sequel it will be convenient to define

A(x,y) = w(x,y.0)¢(x, y.0)
and
B(x,y) =yw(x,,0)¢.(x, ,0) + yw.(x, y,0)$(x, ».0).
To compute V,, we first compute the various first partial derivatives. We obtain

av, z y

a—xw ='/(; ow (x,0,v)dv + /0) (A.(x,u) + aB (x,u))du
+aw(x,0,0)0(x,0,0) + azyw (x, y,0),

av,

8): =A(x, y) + aw(x,y,0)z + azyw,(x, y,0) + aB(x, y),

av,

E"’ =zw(x,0,z) + ayw(x, y,0).

We then have
v, = yf: ow (x,0,v) dv + yfy (A (x,u)+aB (x,u))du
0 0

+ayw(x,0,0)¢(x,0,0) + azy’w (x, y,0)

+z[w(x, ¥,0)¢(x, ,0) + aw(x, y,0)z + azyw,(x, y,0) + aB(x, y)]
~¢(x, y,2)[z2w(x,0,2) + ayw(x, y,0)]

_—_yz[%/y (A (x,u)+ aB (x,u)) du] + zZ[aw(x,y,O) + aywv(x,y,O)]
A .

+Zy(w + %/0: ow (x,0,v)dv + aywx(x,y,O))

+Zw(x»y70)¢(xﬁy’0) +ayW(x,0,0)¢(X,0,0)
~z¢(x, y, 2)w(x,0,2) — ayw(x, y,0)¢(x, y, z)
= Cy*+ Dzy + Ez?,

(2.1)
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where C, D, and E are given by

C= %foy (A (x,u) +aB(x,u) - Ay(x,u)) du,
aB(x,y) 1

D= +_/Z (ZM".((X’(),U)_aW(x,y’O)(pz(x’y’U))dv
zJy

y
1 >
+ayw (x, y,0) + qb(x,y,z)—/ w,(x,u,v)du,
’ YJo

1/-’ a(ow)

E=aw(x,y,0)+aywv(x,y,0)—; —az——(x,y,v)dv.
: 0

We obtain the following result.

THEOREM 1. If there exists a weight function w and a constant « such that V,, is positive
definite neighboring the origin and such that E < 0 and D? — 4EC < 0, then the origin is
an asymptotically stable critical point of (1.1) and V,, is a Liapunov function for (1.1).

Here we assume that ¢ and w satisfy the regularity conditions given at the beginning of
Sec. 2. Further, the theorem allows us to conclude asymptotic stability since the set ¥, = 0
is the x axis, which is an invariant set (see [4]).

Example 1. We let w = 1 and find sufficient conditions for the asymptotic stability of
the origin. If ¢(x, y,z) = z¢/(x, y) + 0(x, y), these conditions agree with those given in
(7).

We first find conditions which insure that ¥, (w = 1) will be locally positive definite.
Consider the matrix

82y,
(aij) = ( axiaxj)»

It is easily shown that

. ag? 2
det(a;)" =| ¢0  ¢0+ a¢? afs
0 o 1

where the superscript denotes evaluation at the origin. If we assume that
o>a,  ¢2>0, ¢ >0 (2.2)

and let « = (¢9)(¢))7", then the principal minors of the above determinant will be
positive and hence V' will be locally positive definite.
The discriminant D? — 4EC of (2.1) evaluated at the origin is given by

X

(D> - 4EC)° = (-4EC)° = —4(a — ¢)(¢ — ¢°).

which will be negative neighboring the origin if ¢? < ¢). Since E° = a — ¢, it follows
that V,(w = 1) is a Liapunov function for (1.1) if (2.2) holds and if ¢? < ¢) (here
a=($)¢) ).
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If the above conditions hold and ¢ contains higher-order terms in z, V,, (w = 1) is a
Liapunov function. For instance, V, is a Liapunov function when ¢(x, y, z) = 4z + z3 +
x + 2. Such cases weren’t considered by Leighton in [7].

Now assume that w is any weight function satisfying the regularity conditions given at
the beginning of Sec. 2. Further, assume that w® > 0 and that (2.2) holds and that
¢? < ¢. It can be shown that

0,0 0,0
. aw’¢, W, 0 |
de‘( 8x‘8‘;€-)= wool Wi+ awlel aw®|.
9%
0 aw’ w?

Also,
(D2 - 4EC)0 = —4(ozw0 — w‘)¢?)(w0¢2 - w%?)

We obtain the following result, which in certain cases provides a large class of Liapunov
functions for (1.1).

THEOREM 2. Let w, > 0 and assume that ¢ satisfies (2.2) and that ¢? < ¢%. Then V,, is a
Liapunov function for the system (1.1), where a = (¢2)(¢?)~". 4

In some earlier papers (see [1], [2], [3]) concerning second-order systems, particular
attention was given to considering estimates of regions of asymptotic stability obtained
from V,, by varying the weight function w. For certain weight functions and certain
second-order systems, one obtains better estimates than with the single estimate provided
by V, with w = 1. In certain cases (see [1], [2]) optimal estimates over certain subclasses of
weight functions may be found.

The following example illustrates that some of these methods carry over to the
third-order case.

Example 2. In the following example we consider a system (see [5, p. 228])

x =y, y =z, = -y — bz — f(x). (2.3)

Under appropriate conditions, the equation V' = V(P,) will be an estimate of the region of
asymptotic stability, where V' is the function above with w = 1 for the system (2.3) and
V(P,) is the smallest positive critical value of V. We will show how to choose a weight
function w such that the manifold V,, = V, (P,) bounds a subregion of the region of
asymptotic stability of the origin and wholly contains the region V = V(P,) (see, in
particular, [2]).

We assume that f € C’(-o0, ), and that f vanishes only at x = 0 and at some
xo > 0. We assume further that 0 < f'(x) <m <1 < b for all x, that xf(x)> 0 and
£/(0) > 0, and that

lim f(x)=1L, and lim f(x)=1L,,

X — 00

where L, and L, are finite.
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Withw = 1 and a = 1 we have

2y x by?
V—7+7+f(x)y+zy+/(; f(u)du+7.

and withw = 1 + Bx? we have

2 2
V, =51+ Bx) + 5 (1+ Bx?) +(1 + Bx)f(x)y

+zy(1 + Bx?) +fx (1 + Bu?)f(u)du+ %2(1 + Bx?).
0

We summarize several facts concerning V and V,, and omit the computational details.
(1) V and V,, are locally positive definite.
(i1) For B sufficiently small and positive and for B = 0, the points (x,0,0) and (0, 0, 0)
are the only finite critical points of V.
(iii) For all B > 0, V,, has no infinite critical points, which follows from the fact that
there is no sequence { X, } in R such that

av,
|X,| > o and a—;(X,,)—»O asn - oo (1 <i<3).

(iv) From the above and [6], it follows that for B small and positive
V(x,y,z) = V(x,,0,0) (2.4)
and
V.(x,y,z)=V,(x,,0,0) (2.5)

form closed 2 manifolds containing the origin, both of which lie in a subset of the region
of asymptotic stability of the origin.

We now show that the region (2.5) wholly contains (2.4) and that for B sufficiently
small and positive, VW < 0 inside (2.5).

We first verify the latter. It may be shown that

V,=z%(xyB +(1 + Bx?)(1 — b))
+y2(xyB + 2xf(x)B + 2xzB + xybB + [ f'(x) — 1][1 + Bx?]).

Since the region (2.5) is compact, it follows that for B sufficiently small, V., < 0 inside this

region. ‘
To verify that (2.5) contains (2.4), we solve for z in terms of x and y. For the surface
(2.5), we have that
X0 X .
Z=—y121/2 fO (1+Bu2)f(u)d“_#_f(x)y_ f()(l +Bu2)f(u)du /2’

1 + Bx? 1+ Bx?

(2.6)
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and for (2.4) we have that

o . 2 1/2
—yizw[f () = | f(u)du—'%—f(x)y}

N
Il

Ly W 1/2[[ F()[b = f(u )]du——( (X))

. 1/2
—/0' F()[b — f(w)] du} . (27)

If we set the quantity in square brackets in (2.7) equal to zero, it may be seen that this is a
closed curve bounding the domain of z in (2.7). The projection of this curve on the x axis
is the interval [x,, x,], where x; is the unique negative value such that

[ 7a)(b = () du = [ ()b = () du
0 . 0

To prove our assertion, it suffices to prove that the quantity in square brackets in (2.6)
exceeds the quantity in square brackets in (2.7). This reduces to proving that

f:o uzf(u)duszv/jof(u)du, X, < x < X
If we put | |
G(x) = f W’f(u) du — xzfjof(u)du
and note that | |
G'(x)= —2x/x0f(u)du, X, < x < X,
the inequality (which is strict in (x,, ‘xo)) follows at once.
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