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1. Introduction. In 1963, Walter Leighton published a paper [7] in which he provided

Liapunov functions for general classes of second- and third-order differential equations.

In a subsequent paper [3], the current author and Walter Leighton considered Liapunov

functions for second-order systems that were more general than those given in Leighton's

1963 paper. Further, this latter paper gave a class of weighted Liapunov functions for

certain second-order systems. Further work utilizing weighted Liapunov functions for

second-order equations was published by the current author in [1] and by S. Duchich and

the current author in [2], A separate paper by A. Skidmore [8] extended Leighton's 1963

work on third-order equations to fourth-order equations, but no "weighting" was consid-

ered in either paper.

The purpose of this paper is to extend Leighton's work (in [7]) on third-order systems

by providing a class of weighted Liapunov functions for an equation

x + <j>(x, x,x) = 0

and the associated system

x=y, y = z, z =-<j>(x, y,z). (1.1)

This system is a bit more general than third-order systems considered by Leighton in

[7], Moreover, for third-order systems considered by Leighton in [7], our weight functions

Vw (w = weight) reduce to those given by Leighton when w = 1. In turn, as pointed out

by Leighton in [7], his Liapunov functions are "sharp" in that they provide stability

criteria in linear cases when the Routh-Hurwitz condition holds. Thus our class of

functions provides breadth and sensitivity.

* Received June 4. 1986.
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2. A class of Liapunov functions. We assume here that <f> is of class C" in an open set

containing the origin and that the origin is an isolated critical point of (1.1).

We will consider weight functions w{x,y,z) which are of class C" neighboring the

origin and are positive in a deleted neighborhood of the origin.

For such a function w and a constant a, we define

Vw(x,y,z)= f vw(x,0,v)dv+ f w(x, u,0)<p(x, «,0) du
Jo Jo

+ a| zyw(x,y,0) + J w(t, 0,0)<f>(/, 0,0) dt

+ jT u[w(x, u,0)<j>z(x, u, 0) + w_ (x, w,0)(#)(x, «,0)] .

If w = 1 and if <f>(x, y, z) = z\p(x, y) + 8(x, y), then this reduces to the function

considered by Leighton in [7].

In the sequel it will be convenient to define

A(x, y) = w(x, y,0)(f>(x, y,0)

and

B(x, y) = yw(x, y,0)<j>z(x, y,0) + yw,(x, y, 0)<f>(x, y, 0).

To compute Vw we first compute the various first partial derivatives. We obtain

dVw r- r.v
= / vwx(x, 0, v) du + / (Ax(x,u) + aBx(x,u)) du

ox Jo ' J o

+ aw{x, 0,0)^(^,0,0) + azywx(x, y,0),

3Kh,
= A(x, y) + aw(x, y,0)z + azywv(x, y, 0) + aB(x, y),

dK,
-~L = zw(x,0, z) + ayw(x, >>,0).

We then have

Vw = y( uwx(x, 0, u) du + y f (Ax(x,u) + aBx(x,u))du
Jo Jo

+ aij'w(.x,0,0)<£(.x,0,0) + azy2wx(x, y,0)

+ z[w(.x;,j\0)<£(x,j',0) + aw( x, y,0)z + azywy( x, y, 0) + aB(x, j;)]

-<j>(x, y, z)[zm'(x,0, z) + ayw(x, >\0)]

1 rv
y2 f (Ax(x,u) + aBx(x,u)) du + z2 faw(x, y, 0) + aywv(x, y, 0)1

yJ o J

+ zy[aB^Xy \ vwx(x,0,v)dv + 0^(^,^,0)1

+ zw(x, y,0)(j)(x, y,0) + ayw(x,0,0)<f>(x,0,0)

-z(f>(x, y, z)w(x,0, z) — ayw(x, y,0)<j>(x, y, z)

= Cy2 + Dzy + Ez2, (2.1)
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where C, D, and E are given by

1 rv
C = - / [Ax{x, u) + 0iBx(x, u) - A (x,u)) du,

y Jo

D = aB^X' y) + - f (zwx(x, 0, v) - aw(x, >>,0) <#>.(*, y, v)) dv
y z Jo

1 f-v
+ <xywx{x, y,0) + <p(x, y,z)- / w (x,u,v)du,

y Jo

E = aw(x, _v,0) + aywv(x, y,0) — — f ^j^-(x, y,v) dv.
Z Jq OZ

We obtain the following result.

Theorem 1. If there exists a weight function w and a constant a such that VH, is positive

definite neighboring the origin and such that E < 0 and D2 - 4EC < 0, then the origin is

an asymptotically stable critical point of (1.1) and Vw is a Liapunov function for (1.1).

Here we assume that <p and w satisfy the regularity conditions given at the beginning of

Sec. 2. Further, the theorem allows us to conclude asymptotic stability since the set Vw = 0

is the x axis, which is an invariant set (see [4]).

Example 1. We let w = 1 and find sufficient conditions for the asymptotic stability of

the origin. If <f>(x, y, z) = z\p(x, y) + 0(x, y), these conditions agree with those given in

[7].
We first find conditions which insure that Vw (w = 1) will be locally positive definite.

Consider the matrix

(a,j) =

It is easily shown that

32Fw

dxjdxj
1 < / < 3, 1 < 3.

«<t>° 4>° 0

<t>° 4>° + a<p° adet(a,;)° =

0 a 1

where the superscript denotes evaluation at the origin. If we assume that

<*,? > a, $ > 0, $ > 0 (2.2)

and let a = (<#>°)(<#>°)_1, then the principal minors of the above determinant will be

positive and hence V will be locally positive definite.

The discriminant D2 - 4EC of (2.1) evaluated at the origin is given by

(D2 - 4EC)° = (-4EC)° = -4(« - <#>z°)(<#>° - $),

which will be negative neighboring the origin if < cf>°. Since E° = a - <$, it follows

Vw(w = 1) ■

(tfxtfr1).
that Vw(w = 1) is a Liapunov function for (1.1) if (2.2) holds and if < <f>°r (here
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If the above conditions hold and <£ contains higher-order terms in z, Vw (w = 1) is a

Liapunov function. For instance, Vw is a Liapunov function when cf>(x, y, z) = 4z + z3 +

x + 2y. Such cases weren't considered by Leighton in [7],

Now assume that w is any weight function satisfying the regularity conditions given at

the beginning of Sec. 2. Further, assume that vv° > 0 and that (2.2) holds and that

(pP < <jP. It can be shown that

det
_a2vl_
dxfixj

awy> wyx o

w°4>° w°<t>y + aw°<$ aw°

0 aw° w°

Also,

(D2 ~ 4EC)° = -4(aw° - - w°<t>°).

We obtain the following result, which in certain cases provides a large class of Liapunov

functions for (1.1).

Theorem 2. Let w0 > 0 and assume that <f> satisfies (2.2) and that <#>° < <j>°. Then Vw is a

Liapunov function for the system (1.1), where a = (<f>°)(<£°)_1.

In some earlier papers (see [1], [2], [3]) concerning second-order systems, particular

attention was given to considering estimates of regions of asymptotic stability obtained

from Vw by varying the weight function w. For certain weight functions and certain

second-order systems, one obtains better estimates than with the single estimate provided

by Vw with w = 1. In certain cases (see [1], [2]) optimal estimates over certain subclasses of

weight functions may be found.

The following example illustrates that some of these methods carry over to the

third-order case.

Example 2. In the following example we consider a system (see [5, p. 228])

x=y, y = z, z =-y - bz - f(x). (2.3)

Under appropriate conditions, the equation V = V( P0) will be an estimate of the region of

asymptotic stability, where V is the function above with w = 1 for the system (2.3) and

V(P0) is the smallest positive critical value of V. We will show how to choose a weight

function w such that the manifold Vw = VW(P0) bounds a subregion of the region of

asymptotic stability of the origin and wholly contains the region V = V(P0) (see, in

particular, [2]).

We assume that / e C'(-oo, oo), and that / vanishes only at jc = 0 and at some

x0 > 0. We assume further that 0 < f'(x) < m < 1 < b for all x, that xf(x) > 0 and

/'(0) > 0, and that

lim /(x) = L, and lim f(x) = L2,
x —* cc

where Lx and L2 are finite.

» -OO
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With w = 1 and a = 1 we have

,2 ,,2

v= y + y +f(x)y + zy + J f(u) du +
by2

2

and with w = 1 + Bx we have

. 2

Kv = y(l + j ^ + + ^ + Bx2y(x)y

+ zy( 1 + Bx2) + f (1 + Bu2)f(u)du + (1 + Bx2).
J o 2

We summarize several facts concerning F and FH, and omit the computational details.

(i) F and are locally positive definite.

(ii) For B sufficiently small and positive and for B = 0, the points (x0,0,0) and (0,0,0)

are the only finite critical points of Vw.

(iii) For all B ^ 0, Vw has no infinite critical points, which follows from the fact that

there is no sequence { Xn} in R3 such that

3F
| Xn | -» oo and "g^r(^n) ® as « -» oo (1 < 'i < 3).

(iv) From the above and [6], it follows that for B small and positive

V(x, y,z) = V(x0,0,0) (2.4)

and

Vjx,y,z)= Vjxo,0,0) (2.5)

form closed 2 manifolds containing the origin, both of which lie in a subset of the region

of asymptotic stability of the origin.

We now show that the region (2.5) wholly contains (2.4) and that for B sufficiently

small and positive, Vw < 0 inside (2.5).

We first verify the latter. It may be shown that

Vw = z2(xyB+(\ + Bx2){\ -b))

+y2(xyB + 2xf(x)B + 2xzB + xybB + [ f'(x) — l] [1 + Bx2\).

Since the region (2.5) is compact, it follows that for B sufficiently small, Vw 0 inside this
i

region.

To verify that (2.5) contains (2.4), we solve for z in terms of x and y. For the surface

(2.5), we have that

.i/J/oM1 + Bu2)f(u)du y2b rl , /0V(1 + Bu2)f(u) du~\1/2
z =-y ± 2 ^  r~r~^ —)\x)y 

1 +Bx2 1 ' 1 + Bx2

(2.6)
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and for (2.4) we have that

by2
Z = -y ± 21/2 f " f(u)du - f f(u) du - ~-~f(x)y

Jr\ L

1/2

= -y± Jo ° f{u)[b -/'(«)] du - y

/ /(")[*>-/'(")]

1/2

• (2.7)

If we set the quantity in square brackets in (2.7) equal to zero, it may be seen that this is a

closed curve bounding the domain of z in (2.7). The projection of this curve on the x axis

is the interval [jc15 jc0], where xx is the unique negative value such that

f ° f(u)(b ~ /'(")) du = f ' f(u)(b - f'(u))du.
J0 •'n

To prove our assertion, it suffices to prove that the quantity in square brackets in (2.6)

exceeds the quantity in square brackets in (2.7). This reduces to proving that

J u2f(u)du^x2j f(u)du,

If we put

and note that

G(x) = J u2f(u)du-x2J f(u) du

G'(x) = -2x ( f(u)du,
X

the inequality (which is strict in (x1; x0)) follows at once.
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