
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLV, NUMBER 3

OCTOBER 1987, PAGES 471-480

COMPLETE SOLUTIONS OF A COUPLED SYSTEM

OF PARTIAL DIFFERENTIAL EQUATIONS

ARISING IN THERMOELASTICITY *

By

D. S. CHANDRASEKHARAIAH

Bangalore University, Bangalore-560001. India

Abstract. Three general, complete solutions of a coupled hyperbolic or hyperbolic-

parabolic system of two second-order linear partial differential equations are presented.

The system includes among its particular cases the governing field equations of the

conventional as well as generalized thermoelasticity theories. The solutions obtained are

analogous to the Lame, Papkovitch, and Galerkin solutions in classical elasticity. The

interrelationships among the solutions are also exhibited. Some solutions obtained in

earlier works are deduced as special cases of the unified solutions obtained here.

1. Introduction. Suppose is a regular region in the Euclidean three-space and J7" is a

time interval. Consider the following system of partial differential equations defined over

S> x 3~\

(1.1)

c2V 2 - — ju +(1 - c2)vdivu -^1 + a-^ )v0 + F = 0,

e^(divu) = 0.

Here c, a, /8, y, and e are real constants such that

0 < c < 1, a > 0, jS>0, y>0, e > 0 (1.2)

and F and h are known functions (of the independent variables x e 3> and t e The

usual vector notation is adopted.

Evidently, if e # 0 then u and 6 are coupled together. Further, if /? > 0, the system (1.1)

is of (full) hyperbolic type; otherwise it is of (mixed) hyperbolic-parabolic type. If e = 0,

then u and 6 become uncoupled; in this case, the first equation in the system is hyperbolic

and the second one is parabolic or hyperbolic according as /? = 0 or /3 > 0.
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Systems of the type (1.1) arise in thermoelasticity. In fact, if u is regarded as a

dimensionless displacement and 6 as a dimensionless temperature and if appropriate

physical meanings are attached to the constants c,a,)8, y, and e, the system (1.1)

represents the field equations (in dimensionless form) of different models of the linear

dynamical theory of homogeneous and isotropic thermoelasticity for different sets of

values of the constants a, yS, and y; actually, the case

(i) <*>£> 0, y = 0 (1.3)

corresponds to the Green-Lindsay model [1,2, 3], the case

(ii) a = 0, jS = y>0 (1-4)

corresponds to the Lord-Shulman model [4,5] and the case

(iii) a = ft = y = 0 (1.5)

corresponds to the conventional model [6,7, 8] of the theory. The field equations of all

these three models of thermoelasticity may therefore be studied, in a unified way, by

studying the system (1.1).

It may be pertinent to mention that in the Green-Lindsay and Lord-Shulman models,

the system (1.1) is fully hyperbolic and (consequently) predicts a finite spread of

propagation for thermoelastic disturbance, admitting the so-called "second sound" phe-

nomenon. In the conventional model the system is of hyperbolic-parabolic type and

consequently predicts an infinite spread of propagation, which is not realistic from a strict

physical point of view. For a review of the relevant literature, see [9].

The object of this paper is to present three general, complete solutions of the coupled

system of Eqs. (1.1). Each of these solutions is obtained in terms of a vector function and

a scalar function obeying an uncoupled system of partial differential equations. In the first

solution (presented in Sec. 2) the vector function obeys a second-order equation while the

scalar function obeys a fourth-order equation. The same is the case with the second

solution (presented in Sec. 3). In the last solution (presented in Sec. 4) the vector function

obeys a sixth-order equation while the scalar function obeys a fourth-order equation.

These solutions are, respectively, analogous to the Lame, Papkovitch, and Galerkin

solutions in classical elasticity [10, 11], The corresponding solutions valid in the three

models of thermoelasticity, as determined by inequalities (1.3)-(1.5), emerge as particular

cases. The connection among the solutions is also exhibited (in Sec. 5). The Lame-type

solution has also been used to uncouple the system (1.1) into a sixth-order equation for u

and a fourth-order equation for 9.

For convenience, we rewrite the system (1.1) as follows:

L^u,#) + F = 0,

l2(m)+(i + y^U = o. (1'6)
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Here

L](u. #) = D2u + a2vdivu - jl + a-^ jv0, (1.7)

L2(0, u) = D30 - e^Jl + y^Jdivu, (1.8)

with

D-, = c2v2 —~,
a?2

°>=(L9)

and

a1 = 1 - c .

We also require the following operators:

9/-

+ + (L10»

It may be verified that the following identities hold:

Dx - D2 = a2v2,

D5 — Djj 2 = D2 D3, (1.11)

«Jo'-o.°4-eo4(i+4)(i+4

Throughout our analysis it is assumed that all functions entering the discussion are

continuous/differentiable in 3> X ST up to the required order and that the differential

operators are commutative.

2. Lame-type solution. Suppose </> is an arbitrary scalar field and x|/ is an arbitrary vector

field satisfying the equations

Ds<t> = DJ~[l + (2.1)

D2* = g, (2.2)

and put

9
1 + a )(+ curl vj^).

6 = Drf-f.
Here / and g are defined by

(2.3)

F= _(1 + al)(v/+curlg). (2.4)
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(Note that this type of representation of F is admissible in view of the Helmholtz

resolution of a vector field.)

Substituting the expressions (2.3) into the right-hand sides of (1.7) and (1.8) and using

(1.11) we obtain

L.M) = (l + a^)[D2(curl + ) + V/], (2.5)

L2(0,u) = Ds<j>- DJ. (2.6)

In view of Eqs. (2.1), (2.2), and (2.4), the system of Eqs. (1.6) is readily satisfied.

Thus, if (p and vp are arbitrary fields obeying Eqs. (2.1) and (2.2), then the system (2.3) is

a solution of Eqs. (1.1). It may be noted that the functions </> and appearing in this

solution are analogous to the Lame potentials in classical elasticity [11].

We now show that this general solution is complete as well.

Suppose (u, 8} is an arbitrary solution of the system (1.1). Then we have

D2 u + a2vdivu 4- F0 = 0, (2-7)

3
ett- divu — h

31
= 0, (2.8)

where

F0=-(l +a^)V0 + F

= -(l + a^)[v(/+0) + curlg] (2.9)

on using (2.4). Equation (2.7) is analogous to the Navier's equation of classical elas-

todynamics [11, p. 232]. Following the method employed in [11, p. 234] it is straightfor-

ward to show that u, which obeys (2.7), has a representation of the form

u = |l + a-^j(v<|> + curl \(/) (2.10)

where <j> and \|/ meet the equations

Dl4>=f+8, (2.11)

DA = 8- (2.12)

Substituting for u and 6 from Eqs. (2.10) and (2.11) in Eq. (2.8) and using the identities

(1.11), we find that <j> is governed by the equation

D^ = D,f-[\ + y^Jh. (2.13)

Equations (2.13) and (2.12) are identical with Eqs. (2.1) and (2.2). Thus every solution

{u, 6} of the system of Eqs. (1.1) admits a representation of the form (2.3), where <f> and ^

obey Eqs. (2.1) and (2.2). In other words, the solution described by Eqs. (2.1)—(2.4) is

complete.

It may be noted that in the context of conventional thermoelasticity, a solution of the

type (2.3) has been obtained by Deresiewicz [12] and by Zorski [13]; the completeness of

this solution is presented in [8].
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Uncoupling of the system. The solution described by Eqs. (2.1)-(2.4) may be utilized to

decouple completely the system of Eqs. (1.1); we proceed as follows.

Eliminating <f> from Eqs. (2.1) and (2.3)2 and using (2.4) and (1.10)3, we obtain the

following equation that contains 6 as the only unknown function:

D56 + |1 + y 9
dt

Together with (2.4) and (2.10), Eq. (2.13) yields

0
Eg^divF + D1h = 0. (2.14)

P5divu + Z)3divF+(l + a|:)(l + y^-Jv2A = 0. (2.15)

From Eqs. (2.13)—(2.15), we note that in the absence of F and h, the functions <j>, 6, and

divu satisfy one and the same equation: DSF = 0.

With the aid of Eqs. (2.14) and (2.15) and expressions (1.10), Eq. (1.6)1 reduces to the

following equation which contains u as the only unknown function:

D,Dm - V AtdivF - (1 4- a^-( 1(1 + y-fa \(D2h) + D5 F = 0. (2.16)

The coupled system of equations (1.1) has thus been decoupled into two independent

Eqs. (2.14) and (2.16). Note that while each of the equations in the coupled system (1.1) is

of order two, in the uncoupled system (2.14), (2.16), the equation governing 6 is of order

four and the equation governing u is of order six. The counterparts of Eqs. (2.14) and

(2.16) in conventional thermoelasticity are presented in [8].

3. Papkovitch-type solution. Suppose Q is an arbitrary vector field and w is an arbitrary

scalar field satisfying the equations

1 + a^)fl2a = -F, (3.1)

£>5(« + r • Q) = -(l + y^ jh — Z)4divfi, (3-2)

and put

1+ffl )[v(w + r- Q) + fi],
3'/L ' J (3.3)

8 — a2divS2 + Z)j(co + ri2).

Substituting expressions (3.3) into the right-hand sides of (1.7) and (1.8) and using the

identities (1.11), we obtain

L1(u,«)=(l+a^)z)2fl, (3.4)

L2(9, u) = Di(u + r ■ 12) + Z)4divfi. (3.5)

In view of Eqs. (3.1) and (3.2), the system of equations (1.6) is readily satisfied.

Thus, if S2 and « are arbitrary fields obeying Eqs. (3.1) and (3.2) then the system (3.3) is

a solution of the system of Eqs. (1.1). It may be noted that the functions S2 and co appearing

in this solution are analogous to the Papkovitch potentials in classical elasticity [10,11].
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We now show that this general solution is complete as well.

Suppose {u, 6} is an arbitrary solution of the system (1.1). In view of the Helmholtz

representation of a vector field, there exist a scalar field p and a vector field q such that

u = Vp + curlq. (3.6)

We introduce two fields £2 and « through the equations

3 \
1 + a-gy jS2 = curlq + Vw0, (3.7)

1 + "Ir)"= p ~ w° ~ I1 + ah )'r'

Dxp-\l+ a^-\0\{Q,t- R/c)

where w0 is defined by

  ~ ^R~^~ dv■ (3'9)
AlTC J3> K

Here P and Q are points of 3> and R is the distance from P to Q, and integration is

carried out with respect to Q.

Using the theory of retarded potentials [14], it may be verified that «0 satisfies the

equation

/>2«0 = Z>ljP - (l +cc~y. (3.10)

Substituting for p and curlq from Eqs. (3.8) and (3.7) in (3.6) and using (1.11), we

obtain

u = |l + a j[v(w + r- S2) + S2]. (3.11)

Together with Eqs. (3.7) and (3.8), Eq. (3.10) yields

1 + a — J[# — (crdivfi + Dj(« + r- £2)}]=0. (3.12)

For a = 0, this equation gives

9 = crdivfi + ^(w + r • S2). (3.13)

For a + 0, (3.12) implies (3.13) provided

\0 - {a2divfi + £>i(w + r • ̂ )}](=0 = 0. (3-14)

Therefore if we assume that the initial condition (3.14) holds when a # 0, then (3.12)

implies (3.13) in all the relevant cases.

Equations (3.11) and (3.13) are identical with the system (3.3) and therefore yield

expressions (3.4) and (3.5). Since {u,6} is a solution of the system (1.6), it follows that £2

and co satisfy Eqs. (3.1) and (3.2).

Thus, every solution {u, 9} of the system (1.6) admits a representation of the form (3.3),

where £2 and w obey Eqs. (3.1) and (3.2); in the case when a ¥= 0, the initial condition

(3.14) is also required to hold. Thus, under the assumptions made, the solution of the

system (1.1) as described by Eqs. (3.1)—(3.3) is complete.
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Solutions analogous to (3.3) do exist in the literature on conventional thermoelasticity.

For example, Sternberg and McDowell [15] have obtained a solution of the type (3.3) in

the steady-state case; see also [16]. Biot [6] has obtained a similar solution in the

quasi-static case; Verruijt [17] has deduced the completeness of this solution.

4. Galerkin-type solution. Suppose G is an arbitrary vector field and H is an arbitrary

scalar field satisfying the equations

Z)2D5G=-F, (4.1)

DsH = -(\+y^)h, (4.2)

and put

u = V 1 + o^7 )H - £>4divG
dt

+ DSG,

(4.3)

9 = DXH + eD2jt\\ + y^divG).

Substituting expressions (4.3) into right-hand sides of (1.7) and (1.8) and using the identity

(l.ll)j, we find that

L1(u,0) = D2D5 G, (4.4)

L2(0,u) = D5H. (4.5)

In view of Eqs. (4.1) and (4.2), the system of equations (1.6) is readily satisfied.

Thus, if G and H are arbitrary fields governed by Eqs. (4.1) and (4.2), the system (4.3) is

a solution of the system of equations (1.1). It may be noted that the function G appearing in

this solution is analogous to the Galerkin vector in classical elasticity [10,11].

We now show that this general solution is complete as well.

Suppose {u, 6} is an arbitrary solution of the system (1.1). In view of the Helmholtz

representation, there exist a scalar field p and a vector field q such that Eq. (3.6) holds.

We introduce the fields G and H through the equations

G = Vp0 + curlq0, (4.6)

1 + a^H = p - D2D3p0, (4.7)

where p0 and q0 are such that

D5D2pQ = DlP-[l+a%-\6, (4.8)
31,

£>5q0 = q. (4.9)

We note that the existence of functions pQ and q0 as solutions of Eqs. (4.8) and (4.9) is

guaranteed by the Cauchy-Kowalewski theorem.

From Eqs. (4.6) and (4.9) we have

div G = V 2p0, (4.10)

Z)5 G = D^Pq + curlq. (4.11)
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Substituting for p and curlq from Eqs. (4.7) and (4.11) in Eq. (3.6) and taking note of

(4.10), (1.10), and (1.11), we obtain

u = V 1 + a I:\H - Z)4divG D5 G. (4.12)
31

Together with Eqs. (4.7) and (4.10) as well as (1.10) and (1.11), Eq. (4.8) gives

9
1 + a .a? -{D^ + eD,- 1 + YgjKdivG) 0. (4.13)

For a = 0, this equation gives

-{D.H + eD^ l + Ygj)(divG)

« = D1// + eZ)2^(l+Y^)(divG). (4.14)

For a ¥= 0, (4.13) implies (4.14) provided

= 0. (4.15)
t=o

Therefore, if we assume that the initial condition (4.15) holds when a =£ 0, then (4.13)

implies (4.14) in all relevant cases.

Equations (4.12) and (4.14) are identical with the system (4.3) and therefore yield Eqs.

(4.4) and (4.5). Since (u, 6} is a solution of the system (1.6), it follows that G and H meet

Eqs. (4.1) and (4.2).

Thus, every solution {u, 6} of the system (1.6) admits a representation of the form (4.3),

where G and H obey Eqs. (4.1) and (4.2); in the case when a + 0, the initial condition

(4.15) is also required to hold. Thus, under the assumptions made, the solution of the

system (1.1) as described by Eqs. (4.1)-(4.3) is complete.

In the context of conventional thermoelasticity, a solution of the type (4.3) is given in

[18] (without completeness); references to earlier works on such solutions may be found in

[8, 18].

5. Connection among the solutions. A connection among the solutions (2.3), (3.3), and

(4.3) may be established easily if the functions <J>, \p, w, and H, G are related through

the equations

where <p0 is given by

and

£2 = curl v]/ + V4>0,

« = </> — <f>0—(r-Q),

f(Q,t- R/c)

(5.1)

*0(^.0--T^/ /{QJrR/C)^ (5.2)
Aire J3i K

1 +a^)0 = Z>5C,

1 + a j(H — co - r • ) = D4div G.

(5.3)
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It is straightforward to verify that if we substitute for <f> and from relations (5.1) in

Eqs. (2.1)—(2.3), taking note of Eqs. (1.11) and (2.4) and the fact that D2<j>0 = /, we obtain

Eqs. (3.1)—(3.3). Similarly, if we substitute for w and from relations (5.3), taking note of

Eqs. (1.11) and assuming homogeneous initial conditions, we obtain Eqs. (4.1)—(4.3).

Other interrelationships among the solutions also follow from relations (5.1)—(5.3).

6. Closing remarks. The solution (2.3) determines u and 6 in terms of the functions <j>

and satisfying two uncoupled Eqs. (2.1) and (2.2) which are of order four and two,

respectively. The solution (4.3) determines u and 6 in terms of G and H satisfying two

uncoupled Eqs. (4.1) and (4.2) which are of order six and four, respectively. The solution

(3.3) determines u and 6 in terms of £2 and co satisfying Eqs. (3.1) and (3.2) which are of

order two and four, respectively. Note that, unlike the other two cases, equations

governing and « are not completely uncoupled. In this case, Eq. (3.1) is to be solved

first to determine and then (after knowing 12) Eq. (3.2) is to be solved for w. Every

(solvable) problem governed by the coupled system (1.1) may therefore be solved by

employing Eqs. (2.1)—(2.2), (3.1)—(3.2), or (4.1)—(4.2).

In obtaining the solutions (2.3), (3.3), and (4.3), no restrictions have been imposed on

the parameters c, a, /?, y, and e. As such, these solutions are valid for a broad class of

problems governed by equations of the type (1.1). If restrictions (1.3), (1.4), or (1.5) are

imposed, the solutions correspond to those valid in the Green-Lindsay model, the

Lord-Shulman model, or the conventional model (respectively) of thermoelasticity. Coun-

terparts of the uncoupled Eqs. (2.14) and (2.16) in the three models of thermoelasticity

may also be deduced similarly. It may be mentioned that in the contexts of the

Lord-Shulman and the Green-Lindsay models of thermoelasticity, solutions of the types

(3.3) and (4.3) and equations of the types (2.14) and (2.16) have not been obtained earlier.

Solution of the type (3.3) is not found in the literature on conventional dynamic

thermoelasticity also.

In view of the "Sternberg criteria" [11, pp. 236, 237], it may be remarked that the

Lame-type solution is generally more useful than the other two solutions in applications.

But, in the treatment of specific problems (such as those considered in [15, 18]), the

Papkovitch-type as well as the Galerkin-type solutions might exhibit certain advantages.
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