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0. Introduction. It is well known that solutions to difference equations can behave

differently from those of their differential-equation analog [1], [6], but the following

presents a particularly weird instance of this fact.

Example 1. Let xn + l = xn - Af(sgn xn)]j\x„\, where M is a large positive constant and

sgn x = 1 if x > 0, sgnx = -1 otherwise. Solutions to this equation in continuous time,

x(t) = -M(sgn x(t))]j\x(t)\, show convergence to the origin from all initial positions. In

contrast, it doesn't matter how close the initial value x0 # 0 is to zero, succeeding iterates

xn oscillate away to great distances from the origin. For these initial values limn_00 \xn\ =

M2/4. At the same time, there are initial positions arbitrarily far from zero such that xn

lands on the origin in a finite number of steps! For example, if x0 = (3 j/5 )M2, then

= M2, x2 = x3 = ■ ■ ■ =0.

It takes only a small adjustment to bring the asymptotic behavior for both discrete and

continuous-time equations into harmony. Replace the large M with small e > 0. Hence,

Definition 1. Let the solution ^(e) to a difference equation be parametrized by e > 0.

We say the solution exhibits near-convergence to zero if

lim lim | Xn(e) \ = 0. (1)
f^° n —*oo

This paper deals with the problem of near-convergence for systems of difference

equations which are under perturbation. Our systems will be general enough to model a

number of interesting situations.

Example 2. Take the simplest linear difference equation xn + l = (1 — £)*„, 0 < e < 1,

and perturb it: xn+1 = (1 — e)xn + esin n. Such a perturbation is critical in the sense that

it can be made arbitrarily small by taking e small, but this has the effect of diminishing

the attractive force of the origin. When e = 0 there is no perturbation and no convergence
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to zero either. We ask if solutions xn show near-convergence in the sense of (1), and the

answer is that they do, from all initial positions. This is easy to show by elementary

methods. A seemingly innocent modification destroys the property. Let yn+1 = (1 - e)yn

+ esin/w. The trajectories yn can be made to travel arbitrarily far from the origin, no

matter how small e becomes, by multiplying sin /n by a large constant M > 0. We prove

this fact in the Appendix using the basic interpolation method introduced in (10) below.

Example 3. Perturb the simplest equation randomly: ua+1 = (1 - e)un + e£„, where

= 1 if a fair coin-toss shows "heads" on the «th toss, £„ = -1 if it shows "tails". We

ask about near-convergence of solutions un and the answer again is that it is destroyed.

Because we are unable to describe the paths of £„ analytically a theory must be developed

to explain this breakdown.

Remark. The three perturbations in Examples 2 and 3 all have something in common,

namely a negligible long-run average value:

1 " 1 " l "

- X s'n ji - E sinv7' ~ £ £/
n , n , v n , J

/=1 ./ = 1 j= 1

0

as n —> oo, the last limit with probability one (the strong law of large numbers). Yet, only

the first perturbation, sin n, preserves near-convergence. Why?

1. Difference equations under perturbation. One reason why difference equations model

certain situations more accurately than differential equations is that decision-making,

which takes discrete time, may be needed to determine the adjustment Xn + 1 - Xn = hXn.

Moreover, there are occasions when not only the direction, but also the speed or intensity

of adjustment is the subject of policy. Armed nuclear opponents, for example, think not

only about building up force or cutting back, but also about restraining or intensifying

their intended reactions. They also think about the unpredictable behavior of their rivals,

hence the unspecified perturbations. For use of the term "speed of adjustment" (in the

sense of coefficient e in Examples 1-3) in the context of a dynamic Cournot duopoly

model, see [4, p. 227], Additional remarks on the modelling and simulation aspects appear

in the Appendix.

In this paper we study the system of difference equations, with perturbation term

Xn + i = X„ + E„(G„(X„) + %(X„)), n = 0,1,..., (2)

where Gn: RA —> R\ G„(0) = 0, and En = Diag(e},, e^,..., e£) is the diagonal matrix of

adjustment speeds eJn > 0, j = 1,..., k.

Remark. Equation (2) is just as general as the nonlinear equation Xn + l = Xn +

EnFn(Xn,<t>n) with perturbation To transform this into (2), let Gn(■) = FJ-,0),

% = Fn(X,M-F„(Xn.O).
Notational convention. 0{x) always signals a numerical value satisfying |0(x)| < M\x\

for a sufficiently large constant M independent of x.

Before adapting the classical definition of stability to (2), some remarks on the

coefficients e/r Now they are free to vary over time. However, we know from the

Introduction that interesting stability results will be impossible unless they are kept small.
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This is accomplished by assuming, henceforth, that |e/, — e| = 0(e2) for all j and n. This

amount of variability may seem marginal, still, we feel it's worth knowing how far eJn can

be from known, small £ > 0.

Definition 2. We say that the zero solution (of (2), without the perturbation) is uniformly

stable under perturbation if, given any 17 > 0, there exist 6(17) > 0 and £*(y) > 0 suffi-

ciently small so that |X,J < S and 0 < e < e* imply |.Y„(e)| < y for all n > n0. | • |

denotes the Euclidean norm.

Our goal is to develop, and interpret, necessary and sufficient conditions on the

perturbations for stability in system (2) in the sense of Definition 2. Of course, problems

of stability in difference equations and problems of how an otherwise stable system reacts

to perturbation are not new. LaSalle [7] has an extensive bibliography. Liapunov methods,

which we use, have been used before [3], [5]. However, the type of perturbation we

consider is new. In the past, stability criteria, say for the differential equation x = f(t,x)

+ h(t, x), have required that h(t, x) be small in x. But our perturbations ^fl(Xn) depend

on the solutions Xn and are potentially big. The only way to dampen their impact is to

take e small, simultaneously reducing the "traction" of the origin. The possible destabi-

lizing effect was mentioned in Example 2.

Lemma 1, below, introduces criterion (3), which will become the necessary and'

sufficient condition we seek. The purpose of the lemma is to help interpret the meaning of

(3) in terms of the ergodic and boundedness properties of {£„}J°=0.

Lemma 1. Let be a sequence of elements in a normed linear space. Suppose that

for any 77 > 0 there is a sufficiently large c(tj) > 0 so that, for all w, « > 0,

1-1

tj|n — m | < c(?)). (3)

Then, the averages satisfy

and

lim ( sup — *
"■*<*> I n> 0 N + 1

n + N

I
j = n

0, (4)

sup || £ J c 00. (5)
/)> 0

Moreover, (4)-(5) implies (3).

Proof. ((3) => (4)—(5)). Divide both sides of (3) by |n — m\ taken large enough so that

c(tj)/|« — m | < t). This implies (4). Then, set n = m + 1 to get (5).

((4)-(5) =» (3)). If, given 17 > 0, sup„>01|£„|| < B(t])< 00 and (4) holds, then, with

sufficiently large N(r)) we have

n + /•

E
/=«

which is equivalent to (3).

<7j(r+l)-l-/?(Ar+l), n, r ^ 0,
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There are many examples of such sequences {£„ }*=0, but first we show that (3) follows

easily as a necessary condition for stability in (2).

Theorem 1. Suppose that {(/„(-)}"=o is equicontinuous at the origin and that the zero

solution of (2) is stable in the sense of Definition 2. Then, for any -q > 0, there exist

8(tj) > 0 and £*(?])> 0 such that \Xn \ < 8 and 0 < e < e* imply

a l

E *,
j = m

— 7]\n — m | < 17/e, 0 (6)

Proof. First we estimate the size of ej^J. Let AXn = Xn + 1 - Xn. With respect to a

typical vector component (lower-case letters), (2) implies

e„>h, = - e„g„(X„), so eJ^J <|AjcJ + ejg„(*„)|.

Writing \en — e| = 0(e2) in the form £(1 — Me) < £„ < e(l + Me) gives

e(l - Me)\\pn\ < |Ajc„| + e(l + Me)\gn(Xn) |.

With e* small enough to satisfy Me* < 1/2,

e|^„|< 2|Ax„|+ 3e|^„( |.

Our first estimate is:

e\%\< 2k\AXn\+ 3ek\G„(X„)\. (7)

Summing up in (2),

6 E Gj(Xj) + e"e + E (Ej - *I){Gj(Xj) + ¥,),
j= m j =m j= m

n — 1

E %
j = m

n - 1 // - 1

<I*J + I*J+*E !g,U,)1+ E M62(|Gy(Xy)! + |^.|). (8)
j = m j — m

Stability in the sense of Definition 2 means that given any rj > 0, there is a 6(17 ) > 0 such

that for all sufficiently small e > 0, i.e., less than £*(rj), |XnJ < 8 implies Xt\ < rj/2,

|AJV>| < t), and \Gj( X-)\ < r/ for j > «0, the last following from the equicontinuity. Using

this, Me* < 1 /2, and (7) in (8) gives

a 1

E < rj + Tjfjl + — (3k + 1) + 2Mk^\n — m|, n0 < m, n.

To complete the proof, let arbitrary t] > 0 be given. Choose rj and its accompanying 8

and e* so that (1 + \(3k + 1) + 2 Mk )rj tj. We have

n- 1

E
/ = m

< rj + 7)e\n — m |, (9)

which is equivalent to (6).
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Example 4. Any sequence {£ }°10 whose partial sums are uniformly bounded,

like £ = a(sin j) + b(cos j) or £ ■ = (—1)7 satisfies (3) with || • || the Euclidean norm.

Let E£ denote the expected (average) value of a random variable £ and ||£|| = /E|£|2.

All sequences of random variables, orthogonal and bounded in the (L2) sense that

E£j<;A = 0, / + k, and sup„E|£„|2 < oo, satisfy (3) with this norm. An example is the

coin-tossing sequence of Example 3. The orthogonality condition can be weakened, but

the choice of norm is critical. The coin-tossing random variables do not satisfy (3) if we

use absolute value instead of the L2 norm and require that (3) holds along almost every

sample path. This is due to the almost certain occurrence of arbitrarily long head

(tail)-runs which destroy the uniform smallness of the averages [2, p. 42], ruling out (4). A

deterministic sequence which imitates this long head-tail run property is sinv^. The

long-run average value of siny'n is zero, but its increasingly slow oscillations prevent the

uniformity property implied by (4). A remark on this follows.

Remark. We have answered the question posed in the remark following Example 3.

Evidently, the "random" fluctuations of sinw, n = 0,1,..., satisfy a stronger law of

averages, (4)-(6), than the one obeyed by a tossed coin or the increasingly lazy swings of

sin/w . This law of averages is necessary for stability. In the next section we show that it is

also sufficient.

2. Necessary and sufficient condition for stability. Now we show that (6) is sufficient for

stability in (2) in the sense of Definition 2. Some regularity conditions on {G„(-)}^=o are

required, one of which, (A2) below, builds in stability in the absence of perturbation.

These are:

(Al) Uniform Lipschitz equicontinuity of {G„(')}^-o 011 R*. with Lipschitz constant

L > 0, |G„(X) - Gn(Y)| < L\X- Y|, X, Y e R*, n = 0,1 

(A2) A condition using the classical Liapunov function jXj2/2, (Gn(X), X) < -p|^|2

+ ax\X\ + a2, XeRk, n = 0,1,..., where p > 0 and a2 > 0 are constants.

(Al) and (A2) can be weakened considerably, but with addition of distracting and

inessential detail in the proof of Theorem 2, below. We could use

(Bl) Generalized Lipschitz continuity \G„(X) — Gn(Y)\ < L(\X — FI + IX— y|ff),

0 < 0 < 1.

(B2) \X\2/1 is replaced by a quadratic form, or a function that may be approximated

by a quadratic form.

For simplicity we stay with (Al) and (A2).

Our method is to embed (2) in a differential equation which features additional

perturbations due to the embedding. There are a number of reasons for taking this

approach. For one thing, integration by parts, which we will use repeatedly, still seems

more familiar and automatic than summation by parts. There is a similar contrast between

the exponential integrating factor and its discrete analog. More importantly, as e -> 0 in

(2) (recall our running assumption that |e/, - e| = 0(e2)) the AXn = Xn+l - Xn are

looking more and more like the infinitesimal adjustments of a differential equation. Our

difference equations are literally evolving into a differential equation and we want to bring

this evolution to the surface in the proof of Theorem 2. Our interpolation method gives

maximum flexibility. Readers who are interested in differential equations will see that the
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analog of (6) in continuous time, (22), is sufficient for stability in the differential equation

(11) below, without perturbations p} and p2.

Let [/] denote the greatest integer not greater than t. Define the piecewise constant

interpolations

X(t) = X{l], *(/) = *[„, G(t,-)SG[(](-), t>0, (10a)

and piecewise linear interpolation

X(t) = (t - n)Xn +1 +(« + 1 — t)X„, «</<« + 1. (10b)

System (2) becomes

X(t) = eG(t,X) + e<i'+pl+p2, t # n, (11)

where px = (£[f] — eI)(G(t, X) + ^) and p2 = e(G(t, X) - G{t, X)). It is useful to

consider the sources and orders of magnitude of errors p1 and p2. Error px originates

from our interest in seeing how much eJn can fluctuate, and the matrix £[f] - el has higher

order 0(e2) terms along its diagonal. Error p2 arises because we are approximating a

piecewise constant path with a piecewise linear one. It looks ready for the Lipschitz

condition and an estimate on \X{t) — X(t)\ which verifies p2 is also 0(e2).

Lemma 2. For sufficiently small e* > 0 and all 0 < £ < e*, the piecewise constant and

linear interpolations satisfy

| j(0|<2|*(/)|+4e|^(0|, (12)

| X(t) - *(/)!< 3e(£|^(0I + |^(0|)- '>0. (13)

Proof. Write eJn < e(l + Me) and let e* = min(l/(2A/), 1/(4L)) where L is the

Lipschitz constant of (A1).

| Jl^l^i + l X-X\

<|A"|+ e(l + Me)(\G{t, X)| + |^|) (14)

<1^1+ 2£(L|^| + |^|). (15)

Solving for | X\ in (15). using the fact that 1 — 2eL > 1 /2, gives (12).

The second expression on the r.h.s. of (14) is a bound for | X — X\. Working with that,

\X -Z|4 |e(L|^| + |f |) < h{2L\X\ + (4eL + 1)|9|)

gives (13). ■

It will turn out that errors pl and p2 are trivial, to be dispensed with almost

immediately in the proof of Theorem 2 below. The real object of interest is the differential

equation X = eG(/, A1) + t # «.

Our basic technical device is an integral inequality in the spirit of Gronwall's Lemma

(in fact, it is a true generalization, but we won't pursue that point). Although the proof of

Lemma 3 is almost trivial, (16), below, serves as an effective accounting device in the

proof of Theorem 2.
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Lemma 3. Let my, j = 1,2, ...,r, denote finite measures on [?0, oo), and let / be a

nonnegative function integrable on finite intervals with respect to every my . Suppose that

i r

f{t) < a + /? £ f f'(s) dmYj + e £ f f(s) dm , /0 < (16)
j = 1 ;o ' j = I +1 'o

where a, /? > 0 are constants and 0 < q < 1/2. If the my [/0, oo) are uniformly finite for

all multi-index values yr and e > 0 can be taken sufficiently small, then

sup/0) = 0(a + /}). (17)

Proof. We use the well-known inequality xy < cxp + }yq for x, y > 0, c > 1, q > 2,

and j + \ = 1 in (16) with x = 1, y = f q = 1 /g;. As a result

I
c

f(t) ^ a + /3clB + ^ £ ('f(s)dm +e £ f'f(s)dmy, t0^t,
C.J, ' . , . , J r

7=i 'o y-/+i

/(0< , (19)

where wy [/0, oo) < Z? < oo for all y . The integrability condition on / and (16) imply that

/ is bounded on finite intervals. Let arbitrary T > t0 be given.

f(t) < a + ficlB +{— + e]>'B sup /(/)• (18)
^ c ' to^tsiT

Choose e sufficiently small and c sufficiently large (c > 1 is arbitrary) so that (f + I)/\B

< 1. Taking the supremum on the l.h.s. of (18) over t in [?0, T] and consolidating terms

gives

pc/B

1 - rB(e + £) '

Since T is arbitrary, (17) follows from (19). ■

Remark. In our actual use of Lemma 3 we will be able to take I arbitrarily small. Since

c can be fixed arbitrarily large, it is assured that 0(a + /?) in (17) is independent of e.

Theorem 2. Let (Al) and (A2) hold. Suppose that for any rj > 0 there exist §(?]) > 0 and

e*(t]) > 0 such that \X„J < 8 and 0 < e < e* imply (6). Then (i) if al = a2 = 0 the zero

solution of (2) is stable in the sense of Definition 2, otherwise (ii) solutions of (2) remain

bounded as n —> oo.

Proof. To avoid an overly technical appearance, we first outline the simple strategy.

Differential equation (11) will be used to build an inequality of the form (16) with

V(t) = \X(t)\2/2 playing the role of / there. Even though (11) is not defined on the

integers, standard theorems in analysis (e.g., use of the right-handed derivative) allow us to

treat (11) as a conventional ODE. Since the ability of Xn to move away from the origin is

measured by V(t), we will monitor the size of all contributions to a and fi in (16)—(17)

and verify that they can be held arbitrarily small. Thus, solutions Xn which "start close,

stay close" to the origin, and that is stability.

Starting with (11), using Schwarz's inequality on the terms involving />,, p2,

V(t) = (X,X)£ e(X,G{t, JO) + e<*,*> + | X\ \ />, \ + | X\ \ p21, t + n.

V+ 2peK< 1*1 1/7,1 +\X\\p2\ + e<*,^>
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follows from (A2) with a1 = a2 = 0 (we begin the proof of (i)). It was claimed earlier that

Pi, p2 would give the least amount of trouble and we show this now.

Using our assumptions that \eJ„ — e| = 0(e2), e|^| < tj(1 + e) ((6), with n — m + 1),

and Lemma 2 gives IA'KI/jJ + |/?2|) = e(C>(t))/K + O(e)V). Since e can become arbi-

trarily small, we set p = 1/2 without loss of generality and obtain

V+ eF< e(0(t])/V + 0(e)V + (X,V)). (20)

Integrate across (20) using the integrating factor exp(e/), / > /0 = «0, to get

y{t) < F(?0)exp(-£(? - t0)) + 0( v) f ]jV(s) dmyi + 0(e) J' V(s) dmyi
l0 ro

(X,*)dmyi, (21)
i:

where dmyi denotes the Riemann-Stieltjes differential eexp(~e(t — s))ds. The two

parameters of the multi-index y = (e, 0 are e > 0 and t > t0. For every y-value we have

myi[a, oo) = f[a < 1. Thus the dmyr abbreviated by dm in the sequel, are a

family of uniformly finite measures on [r0, oo). Now suppose that the last integral on the

r.h.s. of (21) were missing. In that case, we would be looking at an inequality precisely of

the form (16) with a = K(/0), /? = O(rj), and e = 0(e). Let rj > 0 of Definition 2 be

given. Accordingly, choose Tj(rj), 8, and e* so that the r.h.s. of (17) is less than rj2/2. The

implication is stability in the sense of Definition 2.

The rest of the proof consists of decomposing the last integral in (21), and here is where

Lemma 3 pays dividends. More integrals will appear on the r.h.s. of (21) as we work with

the last integral. Each time we encounter a new one, we verify that the numerical

coefficient which multiplies it contributes an arbitrarily small amount to a or yS in (16),

that is, 0(7}). The stability will follow just as it did at the end of the last paragraph, from

(17).

To begin the decomposition, consider a typical term in the inner product, IQ =

// x(s)ij/(s) dm. Integrate by parts, with v(s) = -//^(t) dr, u(s) = x(5)eexp(~£(r — 5)).

Henceforth, let C(s, t) denote Js'\f(T)dr. We get /0 = /, + /2 + /3, where

A = •*('()) exp(-e(/ - t0))eC(t0,t),

h =

j x(s)eC(s, t) dm,
f0

/ x(s)C(s, t) dm.
J'o

In working with /,, /2, /3 we always use the following rule. When e|C(i,/)l appears,

bound it above with the interpolated expression of (9)—(6):

e|C(j, /) | = e /" ip(s)ds < rj(l + e(t — s)), j </. (22)
I ,v

Similarly, write

e|^| ^ 2tj ((9), with n = m + 1) (23)

since we may as well take e* < 1.
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Consider /1. Using (22) and the maximum value of the function ye~ v (1 /e),

IA I <|*(f0)|(l + i/e)v-

Since x(t0) = xn is bounded, Ix = 0( 17). Henceforth we use the notation Ix = 0(t]) -> a

to signal that, in this case, Ix is contributing to or being incorporated in a in (16). The

contribution is of order 0(y).

Consider I2.

\h\ < / \x(s)\t](\ + e(t - s)) dm ̂  \f2y J Jv(s) dmyi + v/2tj j' <JV(s) dmyi,
'0 '0 '0

(24)

where a new measure dmyi = e(t - s) dm = e2(t - s)exp(-e(7 - s))ds appears on the

r.h.s. of (24). A routine calculation shows that not just this measure, but all such measures

defined recursively by dmy = e(t — s)dmy are uniformly finite in y = (e, t), assigning

no greater "length" than (n - 1)! to any subinterval of [f0, 00). We meet dmy3 at the very

end of the proof. I2 = 0(t]) -> /? in (16).

Consider /3 = /,' (£(i]f(i, A') + e[s]\p(s))C(s, t) dm. Break this up into two integrals

/4 + /5 with

h /' A")C(j, t) dm.
tc\

In I4 we can certainly use (22), with 2tj, on e(i|C(.s, t) (recall that £[s] < e(l + Me)) and

the Lipschitz condition on g, followed by (12) to get

\h\ < j L(4\X\ + 8e|^|)77(1 + e(t — s))dm.

8eZ.|| is bounded by (23); therefore

|/4I < 17)(/' (j + fV)dmyx + /' 0 + \[V)dmy
' '0 '0

In our notation, /4 = 0( r/) -* a, in (16).

Consider I5 = Jf e[s]^(s)C(s, t) dm. We show that I5 contributes an even smaller

0(ri2) to a in (16). /5 requires the final decomposition into I6 + /7 with

h = /' (c[s]~ e)$(s)C(sj)dm.
'0

Since |e(v] — e| < Me2, we can write

|/6| < f Me\xp(s)\e\C(s,t)\dm
<0

and use (22), (23) to bound |/6| above by 0(if)( /,' dmY| + f/ dmyJ. By the finiteness of

these measures, /6 = 0(tj2) -> a in (16).

As last integral

'7 = j e\p(s)C(s,t) dm.
U\



450 DEAN S. CLARK

Integrate /7 by parts with v(s) = - \C2(s. t), u(s) = e2exp(-e(/ - s)) to get

h = -|exp(-e(r - r0))(eC(r0,0)2 + \ f (sC(sj))2 dm.
h)

A final use of (22) on (eC(s, t))2, along with the boundedness of the function y2e~ ' and

measures dmy^ = e(/ — s)dm , gives /7 = 0(t]2) —> a in (16).

The decomposition of I0 = // x(s)\f(s) dm, a typical element in the inner product

expansion of the last integral in (21), is complete. There are only a finite number of such

elements, hence, the magnitudes of a and /? in completed inequality (21)—(16), with V

playing the role of /, are: a = V(t0) + O(tj), ft = 0(t]). Let arbitrary rj > 0 of Defini-

tion 2 be given. The supt> V(t) = supn> |X„\2/2 is bounded by the r.h.s. of (17):

0(V(t0) + v)- With a last check of (19) and the Remark after Lemma 3, take rj, S, and e*

small enough to make this r.h.s. less than t)2/2. This proves (i).

Fortunately, the proof of (ii) is immediate. Reintroducing nonzero al, a2 simply adds

£0(1)(/F + 1) to the r.h.s. of (20). After having done all of the above, we would still be

left with the expression /H = /,' 0(\)(\[V 4- 1) dm contributing 0(1) to both a and (3 in

(16). The bound on V(t) obtained from (17) is finite, but it is no longer necessarily small.

The proof of Theorem 2 is complete. ■

Finally, we turn to the analog of asymptotic stability, the near-convergence of Defini-

tion 1. This happens if the condition on the perturbations is independent of

Theorem 3. Let the conditions of Theorem 2 hold without any requirement that 8 exist, in

other words, 8 = +oc. If al = a2 = 0, then lim lim |e)| = 0 for all initial values
f^° n —* co

X»«

Proof. All notation is from the proof of Theorem 2. There, we established inequality

(16) for V(t) in the form

V(t) < K(?0)exp(-e(r - /„)) + 0(rj)(l + J 4v dmyi + J 4V dmy\
\ lo h) '

+ O(e)J Vdmyi (25)
'o

and, via Lemma 3, an upper bound for V. Now that (6) is independent of the initial value,

fix Xn arbitrarily and obtain, as in Theorem 2, sup(;s, V(t) < O(V(t0) + 17). Substitute

this upper bound for V in the r.h.s. of (25), relaxing it further. Take the lim sup as t -» 00

across both sides of (25) to get lim,^^ V(t) < 0(r) + e). Since -q and e are arbitrarily

small, this implies lim lim |A"„(e)| = 0. ■
f^° n —*oo

3. Appendix. System (2) applies whenever k decision-makers are adjusting production

levels A"„, with uncertainty about each other's reactions embodied in the perturbations.

Degrees of "restraint" in these reactions are possible via the adjustment speeds. What is

the interaction of perturbation and restraint on the stability of equilibrium? What sort of

randomness can deflect best-intended actions further and further from equilibrium? We
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found that the randomness of coin-tossing is impossible to damp out, but that does not

mean that the Xn move far from equilibrium, only that it is impossible to hold Xn

arbitrarily close. Here we give an example to show that excursions arbitrarily far from the

origin can occur under perturbations which obey the law of large numbers, regardless of

small e > 0 (however, see the computer simulations which follow).

Consider the difference equation of Example 2

yn+i = (1 - £)yn + esiny«\ (26)

Adapting interpolation notation (10) to (26) gives

y(t) = -ey(t) + esin/r + e(y{t) - y(t)) + e(sin/[7] - siny7),

and integrating,

y(t) =j(r)exp(-e(? - t)) + J sin/? dm + J (y(s) - y(s)) dm

j (sinyfi'] - sin{s^dm, t < t,

where dm = eexp(-e(/ - s))ds. Integrate //(sin /s)ee" ds by parts with u = sin\[s, v =

e " to get

v( /) = y( r)exp(-£( t - t)) + I sin/F - (sW7)exp(-e(/- r)) - f cos^ dm I
\ t 2 E]/s I

+ f (y(s) — y(s)) dm + f |siny[.v] — sin/^j dm, t <(27)
T T

Iterating | v„ + 1| < (1 - e)| v„| + £ gives the bound \yn\ < |j0| + 1. The mean value theo-

rem implies |sint [i ] - sin/s | < l/(2y [.s ]). We also have |y(s) - j(s)| < e(|j(5)| +

|siny [5- ] |). In (27), these and the finiteness of the measures m yield

|y(t) - siny7| < (|^0| + 2)exp(-e(r - r)) + J— (1 + 1/e) + e(|y0| + 2).
2vt — 1

(28)

The r.h.s. of (28) can be made arbitrarily small for sufficiently large t as follows. Let

arbitrary i) > 0 be given. Fix e > 0 sufficiently small so that e( | v01 + 2) < -q/3. Now

choose t > 0 sufficiently large so that (1 + 1/e)/2/t - 1 < tj/3. Finally, take T > 0

sufficiently large so that t > T implies (| v0| + 2)exp(-e(? - r)) < tj/3.

The fact that lim£^0lim(^oc |y(t) — sin\/7| = 0 means that, regardless of small e and

initial position, the trajectories of yn are becoming like those of sin\/« , moving persistently

away from equilibrium. These excursions can be made as wide as one likes by replacing

siny^ by A/sin/n in (26) and the above arguments, large M > 0.

In practical simulations, one observes behavior different from that emphasized in the

preceding example. The figures below show the results of computer experiments in which

we examine the trajectories of (2) with constant En = E = Diag(£1,e2) for decreasing

values of e', and Gn(x, y) = G(x, v) = (~.lx + Ay, ,6x - .5j')- The unperturbed system
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is asymptotically stable in this case. For random disturbances we used % =

(RND'r RND,;) where RND denotes the values supplied by a random number generator

on the IBM-PC. In each of the figures -5 < RND/, =$5, i = 1,2, and the initial data

(jc0, >'()) = (20, -30). COUNTER denotes the number of iterations carried out. We ended

these after becoming satisfied that the displayed orbit had settled into an unchanging

configuration. The figures also show the final few (x, y)-values before termination.

x = ,727865

y = -.3841

,x- = .6551346

y = -.4117122

x = 4.715395E - 02

y = -.5174399

x = -1.856975E-02

y = -.7922201

a* = - .7785012

y = - .9529757

COUNTER = 8967

x = 4.398515E-02

y = - .5809622

x = -3.554484E-02

y = -.7374908

x = -1.003393E-02

y = -.7869129

a = 7.545322E-02

y = - .8664408

COUNTER = 8582

#

30—y

Fig. 1. e1 = .15. e2 = .10

38—y

Fig. 2. f' = .02, e2 = .04
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y

* = 6.215917E-02

V = -8.589236E-02

-v = 7.691615E-02

y = -8.653238E-02

x = 3.699594E-02

y = -4.062678E-02

COUNTER = 8107

30—5C

Fig. 3. e1 = .009, e2 = .01

The figures seem to show the near-convergence defined in (1). This is not surprising

because, in the mean-square (L2) sense explained in Example 4, that is what is happening.

The inequalities developed in the text remain valid in the L2 norm, and the behavior of

the PC's random number generator evidently approximates condition (4) in mean-square.

The excursions away from the origin seem to become smaller and smaller as e -» 0 and the

" runs of bad luck" required to obtain truly large displacements from equilibrium are too

long to be observed.
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