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1. Introduction. Let g be an odd C4-function with xg(x) > 0, xg"(x) ^ 0, for every

x ¥= 0, 1 < g'(0) < 4 < lim^^ g'(x) < 9. Loud [2] has proved that to each real number

E, there corresponds a unique solution x(t\ E) of the equation

x + g(x) = Ecost (1.1E)

which is 277-periodic, even and odd-harmonic, that is,

x(t + tt, E) = —x{t\E), / e R.

Let us consider the linear variational equation with respect to x(t; £),

y + g'(x{t\E))y = 0, (1.2E)

where a prime means derivative with respect to x, and denote by p(t; E), q(t\ E) its

solutions satisfying

p(0;E) = q(0-E) = 0,

p(0:E) = q(0;E)=\.

The hypotheses on g imply p is an even function of t and q is odd. According to Loud

[4], there are values E0, Ex> 0 of the parameter E such that

p(f;£.)-0, ,(f ;£,)-<>.
This means that p(t\ E0) is an even, 77-periodic, nontrivial solution of (1.2E0) and

q{t\ fj) is an odd, 77-periodic nontrivial solution of (l^Ej).

Under the hypothesis that q(-n/2\ £0) i= 0, and hence q(t; E0) is nonperiodic, which we

assume to hold throughout this paper, the existence of 277-periodic non-odd-harmonic

solutions of (1.1 E), near x(f, EQ) for E near E0, has been guaranteed in [4],
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In this work we prove the existence of such solutions when (1.1E) is perturbed by a

small damping term, ah(t)x, where a g R and h is a 27r-periodic continuous function

satisfying some generic conditions. The very important case h(t) = 1 does not satisfy

those generic conditions, and is solved separately. Following a device in [6], we show how

the bifurcation diagram in the parameter's space "passes through" the nongeneric case,

/?(/)= 1, varying the function h conveniently.

The hypothesis q(t\ E0) nonperiodic implies that the space of periodic solutions of

(1.2E0) is one-dimensional. Indeed these solutions are proportional to p(t\ £0). We

believe that the two-dimensional case <7(77/2; £0) = 0 is exceptional. We are not con-

cerned with the genericness of the condition q{t\ E0) nonperiodic, but it will be clear from

Sec. 4 below that an adaptation of a Loud's example [3] shows that it is not difficult to

obtain concrete situations where this hypothesis is satisfied.

We denote by & the Banach space of the 2w-periodic continuous functions /: R -> R

with the supremum norm | • |0, and by ^<2) the vector subspace of 8P of the C2-functions

with a C2 norm.

2. The nonautonomous perturbation. Suppose that E, a are real parameters, h G SP, g

satisfy all the hypotheses assumed in Sec. 1, and consider the equation

x + ah(t)x + g(x) = Ecost. (2.1)

The aim of this paper is to characterize the number of 277-periodic solutions of (2.1) which

are near x0 = x(-\ E0), for (£,a) near (£0,0). We make X = E - E0, y = x - x0, and

the problem reduces to the study of the existence of small 2w-periodic C2 solutions of the

equation

y + g'(x0)y = Acost - ahx0 - ahy - G(y) (2.2)

for small |A|, |a|, where

[G(j>)](0 = g(-*<>(') +>'(/)) - g(x0(r)) - g'(x0(t))y(t).

If y g ^(2). it follows that G( y) g & and G(y) = 0(|_v|2), as \y\ —> 0. Here we mean the

smallness of solutions in the sense of the ^(2) space.

Let P: ^a<21 ^(2) and Q: 2P -> @ be the projections given by

P<1> = <t>(0)p, <j>e0><2\ (2.3)

Q<P (c/ /></>)/>. c = />2j . (2.4)

Thus, it is a consequence of the Fredholm alternative (see [1], page 146, for instance) that

the equation

y + g'(x0)y=f (2.5)

with / G has a 2w-periodic solution if and only if Qf = 0. Furthermore, if Qf = 0,

there is a unique solution y =>'(/) £ ^"2) such that Py = 0, and it follows from the

Closed Graph Theorem that the linear operator K: f G (I — Q)2P —> y(f) G (7 — P)SP{1)

is continuous.
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Notice that if /e^, then K(I — Q)f is the only 277-periodic solution of the equation

y + g'(xQ)y = (I - Q)f (2.6)

which satisfies PK(I - Q)f = 0, that is, [K(I - (?)/](0) = 0; and that the general

277-periodic solution y of (2.6) is given by y = ap + K(I — Q)f, for some a e R.

We now apply the Liapunov-Schmidt reduction to the problem (2.2); that is, the

variable y is replaced by up + z in (2.2) and this equation is broken down into the

supplementary subspaces (I - Q)@> and Q@. Taking into account that Q(cos) = 0 it

follows that y is a 277-periodic solution of (2.2) if and only if y = up + z where the pair

(m, z), with u e R and z e (/ — P)&(2\ is a solution of the system of equations

z = K(I — <2)[Acos — ahx0 — auhp — ahz — G (up + z)\, (2.7)

0 = Q[ahx0 + auhp + ohz + G(up + z)\. (2.8)

Lemma 2.1. There exist neighborhoods of the origin, V c R3, U c (I - P)&>{2) such that,

for each (u, X, a) e K, Eq. (2.7) has a unique solution z = z*(w. A, a) e (/. Furthermore,

z*: {/ -» K is a C4 function and

z*(m,A,0) = /IjA + 2^2u2 + h.o.t. (2.9)

where /l, = A'cos, A2 = -K[g"(x0)p2} are even, 2w-periodic, and h.o.t. indicates terms

which are 0(|«|3 + |mX| + |A|2) as u, X -> 0.

Proof. Let

H:(I- P)0>{2) X R3 (I - P)0>&

given by

//(z.w,A,a) = z — K(I — (>)[ A cos — ohx0 — auhp — ahz — G(up + z)\,

z e (/ — P)fP2\ u, A,0 e R. Thus, H is of class C4, //(0,0,0,0) = 0, and D1H(0,0,0,0)

= /, the identity in ( / - P)£P{2\ where D1 is the derivative with respect to z. The

existence of U, V, z* follows from the Implicit Function Theorem. The expansion (2.9) is

accomplished by taking into account that z*(0,0,0) = 0 and

z*(u. A, 0) = A K(I — Q) cos + K(I — Q)\~ G(up -I- z*(«, A, 0))],

G(w) = jg"(x0)w2 + o(\w\3), as|w|->0, » 6 ^(2),

Q cos = £>[g"(-\-0)/>2] = 0.

The last condition follows from the fact that g"(x0)p2 is odd-harmonic. Since cos and

g"(x0)p2 are even functions, it follows finally that Kcos and K[g"(x0)p2] are even, and

the proof is complete.

Lemma 2.1 shows that Eq. (2.2) has a small solution y e ^>(2) if and only if

y = up + z*(u, A, a), where (w, A, a) satisfies the bifurcation equation

F( h, A, 0) = f p[ahx0 + auhp + ahz*( u,X,a) + G(up + z*(«,A.a))] = 0.
^ — n

(2.10)

F is a C4 function and can be rewritten as

F(u, A, a) = Bxu\ + B2u3 + B3o + h.o.t. (2.11)
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with

#1 = 4 r/2 P2(')g"(x0(t))bl(t)dt,
Jo

B, == 4 ry" P2(')g"(x0(t))b2(t)dt + ~ r" p4(t)g'"{x0(t)) di,
J0 3 Jo

where

bj{t) = \[Aj(t) - Aj{t + 77)], j = 1,2,

B,= f P(t)x0(t)h(t)dt;
- 77

and h.o.t. are terms of order

0(u4 + |w2A| + A2 + a2 +|hct| + |Aa|), as u,\,a —> 0.

Theorem 2.1. Suppose the hypotheses assumed in Sec. 1 are satisfied and BlB2B3 + 0.

Then, there exist neighborhoods Vx c ^(2) of x0, V2 c R2 of (£, a) = (Eo,0) and a cusp

C c V2 given by the equations

E = E0- 3(B2/B1)u2+ 0(|m|3),

0 = 2(B2/B3)u3 + o( | u |4)

as |m| —» 0, which divides K2 into two open, connected, disjoint sets Ox, 02 such that, for

(E,a) e Oj, Eq. (2.1) has a unique 277-periodic solution in V1; for (E,a) e 02, Eq. (2.1)

has precisely three solutions in Vx. For (E,a) e C, the equation has precisely two

solutions in Vx if a +■ 0, and a unique solution if a = 0.

Fig. 1
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Proof. The proof will be given for the case BlB2 < 0; the case BlB2> 0 is similar. As a

consequence of Lemma 2.1, the proof is reduced to examining the number of solutions of

(2.11), as (£, ct) varies in V2. If

v = BV3u, X1 = -B^^X, X2 = B3o,

then Eq. (2.11) becomes

G(v,Xl7X2) = v3 - v\x ~X2 + Gl(v,Xl,X2) = 0 (2.13)

where

G^v, X1,X2) — o( v4 + | | + Xj + X22 + | fX21 + |XjX21),

as v, Xj, X2 -* 0.

The bifurcation curve is determined by the multiple solutions of (2.13), that is, the

triples (v, Xj, X2) which are solutions of both (2.13) and the equation

= 3v2 - Xx + D1G1(v,\1,X2) = 0. (2.14)

Since the Jacobian matrix

0 -1D(G, DXG)

1 D3D,G( 0,0,0)

is nonsingular, the Implicit Function Theorem shows that (2.13) and (2.14) uniquely

define X1( X2 as functions of v, with

Xj = 3ir + 0( | f31), X2 = 2v3 + 0(v4)

as v -» 0. Returning to the original variables, we obtain the parametrization (2.12).

To show that the number of solutions of (2.13) effectively changes when the cusp is

crossed, it suffices to notice that D2G( v, Xv X2) + 0 and D3G(v, Xv X2) ¥= 0 on the

points of the cusp. This means that on the cusp, v = 0 is a quadratic singularity of

G(-, Xj, X2) and the values G(v, Xv X2) vary monotonically with X2. This completes the

proof.

As is pointed out in Loud [4], the numbers Bv B2 are generally nonzero. The case

BlB2 > 0 only changes the bifurcation diagram by a reflection on a vertical axis passing

through (i?o,0). One can see that condition B3 0 is a generic hypothesis in h in the

sense that { h e j^-nP^o ^ 0} is an °Pen dense set in Of great interest, however,

is the case h(t) = 1 for which the symmetry properties of p and x0 imply B3 = 0. We

examine this special case in the next section.

3. The autonomous perturbation. Consider the equation

x + g(.v) = Ecost — x. (3.1)

Repeating the above procedure and noticing that Q cos = Qx0 = Qp = 0, Eq. (3.1)

becomes equivalent to the system:

z — K{l — <2)[Xcos — 0*0 — oup — oz — G(up + z)\, (3.2)

0 = Q[oz + G(up + z)\, (3.3)

where z = x — x0 - up, u e R. Equation (3.2) can be "solved" for small \u\, |X|, |a| by a

function z = z*(u, X,a) which can be expanded as

z*(u,X,a) = AtX + jA2u2 + A3o + \A4a2 + A5ua + h.o.t.,
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where h.o.t. indicates terms of order

o[\u\ + A~ + |a | + | uA | + |u~a | + | ua21), as u, A, a -> 0.

The functions A{, A2 are given in Lemma 2.1;

A3 = - Kx0 is odd, 277-periodic, and odd-harmonic;

A4 = —K [2A3 + g"(x0)Aj] is even and 27r-periodic;

As = — K[p + g"(x0) pA3\ is odd and 77-periodic.

According to these facts, Eq. (3.1) has a solution x in 0>a) near x0 if and only if

.v = -Y0 + up + z*(u,X,a), where («, A, a) satisfies

F(w,A,a) = f /)[ai*(M,A,a) + G,(w/? + z*(w,A,cj))]=0. (3.4)
— 7T

Expanding G and z* as

G(w) = \g"{x0)w2 + \g'"{xQ)w3 + 0(| w |4)

z*(w, A, <r) = ^jA + \A2u2 + A3a 4- \A4o2 + A5uo

+ o( | m | + A2 + |<j | + | m2ct | + 11/a21)

as w, A, a -» 0, w -> 0 in 3P, Eq. (3.4) can be rewritten as

F(u,X,a) = fijwA + Z?2«3 + f pg"(x0){uoA3p + XoAxA3 + \a2A\
^ — -n

+ \o3A3 A 4 + 4ua2[pA4 + A3A5] + \u2o[2pA5 + A2A3]}

+ 6 f PS '" (*o) \iu2op2A3 + 3ao2pA3 + o3A3]
— 77

+ a f [Aj4j + ^u2A2 + oA3 + 202A4 + uaAs]
^ -7T

+ o[u4 + A2 + a4 4- | i/2A | + | ua \~ + | m3cj | + 11/a31 + |wAa| + |Act2|)

which, by virtue of the symmetries of the functions p, g"(x0), A -, j = 1 ,5, can be

simplified and denoted in a compact form, in such a way that we have the following.

Lemma 3.1. The function F has continuous derivatives up through order 4 and has the

expansion:

F(u,X,a) = Bxii A + B2u3 + B4ua2 + h.o.t.

where Bv B2 are given in Sec. 2,

B4= ( pW'(x<))(aaP + 2A3A5) + 2g"'(x0)Aj] + if pA5,
Jo Jo

and h.o.t. indicates terms of order

0[ u4 + A2 + a4 + | u2X I + | ua \" + \ u3o | + | mo 31 + | uXa | + | Aa21) as w, A, a -* 0.
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Now, we are able to state the final result for Eq. (3.1).

Theorem 3.1. Suppose that g satisfies all the hypotheses assumed in Sec. 1 and

BlB2B4 =£ 0. Then there are neighborhoods Wx c ^a(2), of .\r0, Jf2cR2of(£,o)=(E0,0),

and a quadratic curve T, given by

E=E0-(B,/Bl)o2+0{ |o|3)

as a —> 0. The curve T divides W2 into two open, connected, disjoint sets Ov 02 such that,

for (£", a) G Oj, Eq. (3.1) has a unique solution in Wx, and for (E, a) e 02, it has

precisely three solutions in Wv For (£, o) e F, Eq. (3.1) has precisely two solutions in Wx

if a =£ 0, and a unique solution if a = 0.

Proof. As before, we consider only the case BlB2 < 0. Fhe bifurcation equation (3.4) is

equivalent to:

H(v, Aj, A2) = t»3 — v\l + av\\ + H(v, \l5 X2) = 0 (3.5)

where

1/2
v = BY u, Xj = BlB21/iX, \2 = \B21/3B4\ a, a = sign B2B4,

H v, \ X + X\ + A4, + | y -\j | + (f\2) +|t'3A2| + |i'A1A2| + | Aj |

as v, Aj, A2 0.

Since H g C4, D{H(0,0,0) = 0, j = 0,1,2, and £>,3//(0,0,0) = 6, it follows from the

Implicit Function Fheorem that there exist r > 0 and a neighborhood W c R2 of (0,0)

such that for each (Alt A2) e W, there corresponds a unique

u = u(Xv X2) e (~r, r),

Fig. 2
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with

D12//(m(A1, X2), X1? X2) = 0, u <= C2.

Therefore, the function £>,//(•, Xl5 X2) has a minimum at m = m(Xl, X2). If

a(X1,X2) = DlH(u(\1,\2),\1,\2),

we have

Since

o;(Xj,Xi)— —Xj + flX*7 + O(X2 +|X\ |j, as X:, X, -> 0.

H(-r, 0,0) <0, H(r, 0,0) > 0, DlH(±r, 0,0) > 0,

by restricting further the diameter of W it follows from a continuity argument that

//(-#■, Xj,X2) < 0, H(r, Xj, X2) > 0, £>!//(±r, X,, X2) > 0

for (Xj, X2) e W. These relations imply that Eq. (3.5) has at least one solution u(Xj, X2)

e ( — r, r), for each (Xl5 X2) e W.

Let us define

Ay = {(Xx,X2) <E W: a(Xj,X2) > 0},

^2 = {(^M e H7: a(X,,X2) < 0}.

For (Xj, X2) e A{, it follows from the definition of u(Xy, X2) that //(•, Xj, X2) is a strictly

increasing function in the interval ( — r,r). Thus, Eq. (3.5) has a unique solution v in this

interval.

For (X[, X2) e A2, we have a(Xj, X2) < 0 and, therefore, DXH(-, Xj, X2) must vanish

precisely at two points ^(Xj, X2), y2(Xl5 X2) such that

— r < u^Xj, X2) < u(X1,X2) < u2(X1,X2) < r,

v, = -

v-, =

Xj — a\2

3 .

X,-flX 1/2

1/2
+ h.o.t.,

+ h.o.t..
3

h.o.t. = o[(|X, | + X22)1A] as Xj, X2 -» 0.

At the point u1(X1, X2), the function H(-,Xl,X1) assumes a local maximum value

/3j(X!, X2), and at i>2(Xj, X2), a local minimum value /?2(Xj, X2), so that if /3 = /S,/S2, then

y8(Xj, X2) > 0 implies that (3.5) has a unique solution; for /3(X1,X2)=0 there are

precisely two solutions, and for /?(Xj, X2) < 0, precisely three solutions.

Moreover, it is easy to see that

/?(X1,X2) = (4/27)(-X1 + «X2)3 + o[(|X1| + X22)3]

as X[, X2 —> 0, and that the equation fi(Xl,X2) = 0, returning to the original variables E,

a, describes the curve P. Notice that if X, = 0 (a = 0 in the original parameters) along

the curve F: /?(X,,X2) = 0, then X, must vanish so that (3.5) becomes v = 0 and,

therefore, the last assertion of the theorem is proved.
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The bifurcation curves—the cusp of Theorem 2.1 and the quadratic curve T of Theorem

3.1—suggest that, when the periodic function h moves along a path in the space 0*

passing through h{t) = 1, the cusp deforms and approximates I\ In the sequel, this

behavior is investigated.

We introduce a new parameter by considering the first-order term in the form

+ a2h(t)x, where h satisfies the condition 53 + 0. Therefore, the case Oj = 0 is the

situation of Theorem 2.1, and the case a2 = 0 is the situation of Theorem 3.1.

Consider the equation

x + g(x) = Ecost — (a1 + a2h(t)) x (3.6)

with E, Oj, a2 being real parameters, lie? and g as above. Repeating the procedure of

Sec. 2 one can reduce Eq. (3.6) to the bifurcation equation

F(u, X, CTj, a2) = ByitX + B2u3 + B3o2 + BAua\ + h.o.t. (3.7)

where u is the coordinate of the solution in the null space of the operator

y G ^(2) -> [y + g'{■x:o).v] e &>,

Bj, B2, B3, B4 are as previously defined, and h.o.t. indicates terms of order

i/4 + A2 + af + a2 + | u2Xj + | uol |" + | uaf j + | u3ax j + | u\al \ + | A a21 + j uo2 \

+ IctjOjI + | Act2 l), as u, X, dj, a2 -* 0.

Theorem 3.2. Suppose that g satisfies all the hypotheses of Sec. 1 and B1B2B3B4 =£ 0.

Then, there are neighborhoods V of (E,al,a2) = (£0,0,0), W of x0 e ^(2), and a surface

S c V given by

E- £0= -(1 /Bx)

, , IIB^B^ \1/3 ...
BAa(+ —P °2 + h.o.t. (3.8)

where h.o.t. means higher order terms in ax, a2, which divides V into two open, connected,

disjoint sets A, B such that for (£, ct1; <j2) g A, Eq. (3.6) has a unique solution in W\ for

(£, CTj,a2) e B, Eq. (3.6) has precisely three solutions in W and for (E,o1,o2) e S, Eq.

(3.6) has precisely two solutions in W if E + E0, and a unique solution when E = E0.

Proof. It is the same as that of Theorem 2.1, with obvious adjustments.

Figure 3 sketches the shape of surface S, for BlB2 < 0, B2B4 > 0. Notice that the

intersection of that surface with the plane aY = 0 is the cusp described in Theorem 2.1,

and the intersection with the plane a2 = 0 is the quadratic curve T of Theorem 3.1.

Theorem 3.2 shows how the cusp of Theorem 2.1 continuously transforms into the

parabolic curve of Theorem 3.1, as illustrated by the following analysis.

Let us rewrite Eq. (3.6), for Oj ¥= 0, as:

x + g(x) = Ecost — Oi(l + eh(t))x (3-9)

with e = a2/o\. We are concerned with studying (3.9) for small |e|.
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Fig. 3

According to Theorem 3.2, the bifurcation surface for (3.9) is given by

E— E0 = +[^^y t1/' + J. (3.10)

For a fixed e = c0, let

r(e0) = EV2

/ I T I V '/4

271B2B\|

4 \BV\ ^1^41

Equation (3.10) shows that, for |aj| > r(e0), we have

21B2B) \1/3 , . . , ,

—£0Ci <\B4\o~, (3.11)

and, for |ctj| < r(e0), the inequality (3.11) inverts so that, when 0[ is in the interval

( — r(e0), r(e0)) the curve should be seen as a cusp plus a "parabolic" perturbation, while

for 0, out of this interval, (3.10) describes a parabola plus a "cuspidal" perturbation.

Since a-(e0) -» 0, as e0 —> 0, it follows that we have a cusp for 0 < ct, < r(e0) which

deforms into a parabola in the limiting case e0 = 0.

Remark 1. Similar results can be obtained for E near E1 instead of E0. Moreover, the

Loud's existence theorem for the solution x(-,E) is stated in [4] under the following

weaker assumption on g.

There exists an integer n > 1 such that either

(2n — 1)" < g'(0) < An2 < lim g'(x) < (2n + l)2



PERIODIC SOLUTIONS OFx + g(x) = Ecost + oh(t)x 439

°i

Fig. 4

or

(In - 1)" < lim g'(x) < 4/22 < g'(0) < (2n + 1)".
A —> 00

All earlier results are also valid under this hypothesis. The proofs are merely adapta-

tions of those we have given.

Remark 2. Loud's results on the number of periodic solutions of (1.1) can be obtained

from Theorems 2.1 and 3.1 (or 3.2) by considering a = 0 (or Oj = a2 = 0).

4. An example. In this section we give an example for which all the hypotheses assumed

with respect to g are satisfied. Since these assumptions are open, it follows that any

function gl which is uniformly near the g of this example also satisfies the hypotheses.

This example is inspired by another one given in [3] where piecewise linear restoring

forces are allowed. The numerical computations were done with a PDP 11/45 computer.

Let v: R -> R be given by

v(t) = exp(| - t) 1(i—t) \ if|</<|,

and v(t) = 0, otherwise. Let us define the function g by

g(x) = \x + a f f v(s)dsdt if * > 0
Jo Jo

g(x) = -g(-*) if A- < 0

where

a = 4( I v(s) ds
/»(»).Jo
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We have immediately that the odd function g is of class Cx, and simple calculations

show that

xg(x) > 0, xg"(x) > 0, for X + 0, g'(0) = 9/4,

and

lim g'(.x) = 25/4.
X—* 00

Furthermore, it can be shown by means of more extensive numerical computations (using

Adams' methods—see [5], for example) that, for E = 9.152820, we have

p(ir/2) = 0, <7(V2) = -0.26018.

Therefore EQ = 9.152820 and E0 # Ev

The coefficients of the expansion (3.5) and (3.7) are given by

Bl = 0.356, B2 = 3.836, B4 = 10.367.

So, all of our hypotheses are true for this function g.
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