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Abstract. The method of matched asymptotic expansions is used to describe the finite

deformation of thin shells of revolution with a small circular hole at the apex. The loading

is assumed to be a rotationally symmetric, smoothly varying normal pressure. The

mathematical problem is of singular perturbation type characterized by a boundary layer

region at the inner edge of the small hole. The analytical results are compared with

numerical approximations, and formulas for the stress concentration factors at the hole

are presented.

1. Introduction. In the field of linear and nonlinear elasticity of thin structures, many

important problems whose solutions are of considerable complexity can be analyzed by

boundary layer methods. This involves a small parameter 8, which is usually related to the

ratio of the shell thickness h to a shell length L such as the radius of a spherical shell. In

the present paper, we discuss nonlinear shell problems where the small parameter e is the

ratio of the radius of a small hole at the apex of a shell of revolution to the radius of the

outer edge of the shell. Accordingly, we find that the boundary layer structure is quite

different from the one encountered in problems where the small parameter is given by

8 = h/L.
Suppose a shell of revolution is subjected to a rotationally symmetric, smoothly varying

normal pressure, so that the solution, without the hole, would generally be slowly varying

throughout the shell, except possibly near the outer edge (depending on the type of edge

support). However, with a small hole at the apex, assumed free of radial edge traction and

bending moment, the stress will generally change sharply near the hole, while away from

the hole one would expect the solution to be close to the solution without a hole. This
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behavior is indeed confirmed by numerical solutions of the nonlinear shell equations,

which are increasingly difficult and costly to obtain as e becomes small.

We shall analyze this problem by singular perturbation techniques, which yield asymp-

totic solutions for small e with little computing effort. In fact, the only nonlinear

boundary value problem which must be solved numerically is the corresponding problem

without the hole.

In a previous paper [1], the simpler problem of a flat circular elastic membrane with a

small hole at the center was solved by a similar asymptotic analysis. In the case of bending

of a thin circular plate of thickness /;, one might expect the behavior of the membrane

stresses near a small hole to be similar to that found for the limit case of a membrane

(h —> 0). However, it will be seen that this is true only for the leading order term of the

radial stress. The solution behavior near the hole is more complicated in plates and shells

because of the presence of terms e"' log"e, m and n integers, in the asymptotic expansion,

which do not appear in the membrane problem. Apart from the paper just quoted, the

possibility of an asymptotic analysis of nonlinear shell problems involving small holes

does not seem to have been noted in previous work.

It was observed in [1] that the present problems are different from the layer problems

for membranes and shells. The boundary layer here is associated with the singular

behavior of the solution at the inner edge when e = 0. There is no reduction of order of

the differential equations in the limit case e = 0 in our problem.

2. Formulation of the problem. The asymptotic integration technique to be described

applies to axisymmetric finite deformation of general thin shells of revolution with a small

circular hole at the apex, provided the corresponding shell without a hole has a horizontal

tangent at the apex. The basic equations under the assumption of small strain were

formulated by Reissner in [2], In order to explain the asymptotic integration technique in

the simplest setting, and to exhibit the essential structure of the inner and outer solution, it

will be sufficient to restrict our analysis to a shallow spherical shell, retaining only

quadratic nonlinear terms in the basic equations. The extension to arbitrary shells of

revolution and large rotation will then be seen to be quite straightforward, as long as

buckling is excluded. This point will be discussed in the last section.

Consider a shallow spherical shell with a hole at the apex, subject to a normal surface

load p(r). The central circular hole of radius r: is assumed to be free of traction and

moment; that is, both the stress resultant Nr and the bending moment Mr vanish at

r = rr At the outer edge r = a various boundary conditions may be prescribed, such as

clamped or simply supported edge conditions, or a radial tension and/or a radial

moment. The basic equations given in [2] may be reduced to a set of two coupled

second-order nonlinear differential equations relating to each other a dimensionless

midsurface slope / and a dimensionless radial stress resultant g. They can be written in

the form [3]

Lf = ~ix2g + fg + 2yR(x,e), x = r/a,

Lg = M2/ - \f2, Ly := y" +(3/x)y\ (2.1)
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where

r = 2«T, rn2 = 12(1 - i>2), y = !7^p0' R(x<e) = —;J tp(t)dt,
i xls [I X f

p0 = max I p(r) |, p(r) = p0p(x), |^(x)|<l,
10,"]

h is the shell thickness, E is Young's modulus, v is Poisson's ratio, and H is the height of

the shell center (apex) above a horizontal plane through the edge.

The boundary conditions at the hole r = r, are

e/'(<0 +(1 + v)f(e) = 0, g(e) = 0, t = rx/a. (2.2)

At a clamped outer edge r = a, we have

/(1) = 0, g'(l)+(l-")g(l) = 0. (2.3)

For a simply supported edge the boundary conditions are

/'(1)+(1 + «-)/(!) = 0, g'(l)+(l-")g(l) = 0. (2.4)

The condition on / may be replaced by /'(1) + (1 + v)f(\) = mr if a radial moment is

prescribed; similarly, one has g(l) = nr if a radial traction is applied at the edge r = a. In

the case of uniform load p = const, we have p = 1 and therefore

e2
R(x,e)= 1-—. (2.5)

JC

We remark that in the corresponding shell problem without hole the conditions (2.2) are

absent. In this case we have (2.1) with R(x, 0), (2.3) or (2.4), and the regularity (symmetry)

conditions

/'(0) = 0, g'(0) = 0. (2.6)

The existence of solutions of this boundary value problem has been proved by Wagner [4]

for arbitrary y and jit, if p(x) is piecewise continuous in [0,1], On the other hand, no

existence or uniqueness results are known to the authors for the boundary value problem

(2.1)-(2.3) (or (2.4)) for e > 0, which is considered in this paper. Henceforth we shall refer

to this problem as the annular shell problem, briefly problem A.

For small e, numerical solutions of problem A show that f(x) and g(x) rise from their

values at * = e to significantly larger values within a layer of order e, with steep gradients

in the layer, but varying slowly in the remaining part of the x-interval except for possible

boundary layers at the outer edge x = 1. The latter will not concern us here. In fact,

outside the layer the solutions of problem A for sufficiently small e are close to the

solution of the problem without a hole, subject to the same loading and outer edge

conditions. The solution behavior near x = e is apparently due to the form of R(x, e). For

instance, if R is given by (2.5), R rises from 0 to 1 - e in the interval [e, /e], outside of

which R = 0(1). Clearly, numerical solutions of problem A become increasingly difficult

and costly for decreasing values of e, because a large number of mesh points are needed in

any discrete approximation to / and g in order to cope with the large gradients in the

boundary layer. Our asymptotic analysis deals with this situation in a very simple way.
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It will be seen that the main features of the boundary layer solution can be derived by

studying in some detail the case of a flat annular plate ju = 0, subjected to a uniform load,

so that R = 1 - (e/x)2. Furthermore, we shall consider the clamped edge boundary

conditions (2.3). The extension to more general cases will be discussed in the last section.

3. An exactly solvable linear problem. In order to find the correct form of the inner and

outer expansions and to see the nature of their interrelation, we treat a simple model

problem which will show the essential features of the asymptotic solution for problem A.

The problem to be considered is

y" + ~y' = 2y(l - —t), J>(e) = 0, J>(1) = 1, (3.1)
x2

C2 , Y „2 , -,„21 1

JC

which has the exact solution

y(x) = C1 + + 4*2 + - logJC

c, - . - „ - T(I + it=) - 1 -1 + OW), C2- e=(l -

(3.2)

In the limit case e = 0, we have xy" 4- 3y' = 2yx, y(0) = 0, >>(1) = 1. However, the limit

of the exact solution for s -» 0 is

y(x)= 1 +(y/4)(.v2- 1), (3.3)

which does not satisfy j(0) = 0, except in the special case y = 4. Thus, in general, we have

a boundary layer at x = £. The behavior of the solution in the boundary layer near x = e

is analyzed by the stretching transformation s = (x/e) — 1, transforming (3.1) into a

differential equation for K(i'):= y(e( 1 + ^)), with 7(0) = 0. Assuming an inner solution

y(s, e) = Y0(s) + e2yj(i) + • ■ ■ , one easily finds

+Y(s,e) = C0h(s) + e2(C1h{s) - ———- + ~(1 + i)2 + y ]r - log(l + s) )
I 4(1 + sY 4 ~ 1)

(3.4)

where h(s) =1 — {s + l)"2 and C0, Cx are constants to be determined by matching

F(s, e) with an outer solution y(x, e) = y0(x) + e^^x) + ■ • • . Substituting that expan-

sion into (3.1), and yx can be computed, satisfying >'0(1) = 1, jt( 1) = 0. The result is

1 n\ , i , y t..2 , S-l J 1j(jc,e) = C^ — - lj + 1 + ^-(x2 - 1) + e2|D^ — - lj - ylog.r| + • • ■ . (3.5)

The inner and outer solutions (3.4) and (3.5) are now matched by the intermediate

variable method [5]. We set jc = T)5(e) with § —> 0 and e/8 -> 0 as e -> 0 and express

Y(s,e) and y(x,e) in terms of 17. Inspection shows that all terms can be matched by

setting C = 0, C0 = 1 - y/4, D = -C0, and Cx = 1 — 3y/4, except the term ye2 loge

(terms involving log?) and terms of order 0(82) and 0(e2logS) cancel). This term, which



THIN SHELLS OF REVOLUTION WITH A SMALL HOLE 405

comes from can be matched if we modify the inner expansion by including a term

(e2 loge)y(j), which yields 7(5) = Ch(s). Setting C +y = 0 will then cancel the term in

question. In this way, all terms in (3.4) and (3.5) match, except terms of order e^/S2 and

(e4/<52 )log e, which can be shown to match with higher-order terms not displayed in the

above formulas.

Inserting Y(s) and the constants C, D, and C;, found by the above matching, into (3.4)

and (3.5) and returning to the original variable jc, it is seen that y(x, e) = y(s, e) up to

terms of order 0(e4) and that y(x, e) is identical with the exact solution (3.2) up to 0(e4)

terms, when c1 and c2 are expanded in powers of e2. Furthermore, we observe that there

should be no term of order £2loge in the outer solution, because this would give rise to a

term c(l - x"2)e2loge in y(x, e), which would not match with the inner solution, as

there is no term of order (e2/S2)loge in Y(s, e). On the other hand, there will be a term of

order e4loge in the outer expansion, as can be seen from the term c2/x2 of the exact

solution.

4. The inner solution. We now return to problem A. Introducing the stretching

transformation s = (x/e) - 1, the differential equations (2.1) for F(s):= /(e(l + s)),

G(s):= g(e(l + i)) become

F + —^—F= e2{ FG + 2y
1 + s

1- 1
(1 +sf

G + t^-G=-\e2F2, (4.1)

where we have set ju = 0 and R = 1 — (e/x)2, the dot denoting d/ds. The boundary

conditions (2.2) at the hole transform into

F(0) +(1 + v)F(O) = 0, G(0) = 0. (4.2)

We find that the correct inner asymptotic expansion is of the same form as in the linear

model problem of Sec. 3. Therefore, we have for Z := (F, G),

Z(s, e) = Z0(s) + e2(logf)Zj(£) + e2Z2(s) + e4(loge)'Z3(i)

+ e4(loge)Z4(i) + e4Z5(s) + ■ ■ ■ . (4.3)

Substitution of (4.3) into (4.1) and (4.2) yields

KFo :== 4 j + s^o = KG0 = KF1 = KGX = 0,

KF2 = F0G0 + 2y|l - J, KG2 = -\f2, ■ ■ ■ , (4.4)

^(0) +(1 + v)Fj(0) = Gy(0) = 0, j = 0,1,2,.... (4.5)

Thus we obtain

F0(s) = Bo[ho(s) ~ 1^7)' Go(s) = coho(s)> h0(s):= \

Fl(s) = 51(/!o(.)-r^7), Gl(s)=Clh0(s). (4.6)

(1+,)2
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The constants B0, C0 and Bu Cl are to be found by matching F(s), G(s) with an outer

expansion of /, g. Next the solution of the (inhomogeneous) equations for F2, G2 is

determined. We find, up to constants of integration B2, C2,

F2(s) = B2^h0(s) - J—) + Po+ Pihi(s) +P2hAs)' (4-7)

G2(s) = C2h0(s) +p3hl(s) +p4h2(s) +p5h3(s) - \{ p4 + p5), (4.8)

where (4.5) has been used for j = 2, and where

hx{s)

h2{s)

= (1 +sj - 1/(1 + s)2,

= i(l + sf + \ - log( 1 + 5),

h3(s):= Kl + ^)2 + 1 - 2log(l + s)  —-[1+ log(l + s)], (4.9)
(1 +s)2

Pi y j + VB^ p2 2 ■, Pi
B0

2(1 + v)

1 i P1 + 3d-,

Pa = j _|_ v Bo' Ps = ~4-®0' Po = 2(1 + j») _ Pi + Pi)-

We observe a significant difference between F2, G2 and the corresponding terms of order

0(e2) in the solution for the annular membrane problem [1]: there are no logarithmic

terms in the latter problem. In fact, it is precisely these terms that force us to include

terms of order £2loge in the inner expansion, as explained in the previous section.

Similarly, log2(l + s) terms in F5(s) and G5(s) give rise to the terms of orders e4log2e

and e4 loge in (4.3).

It should be noted that the inner solution does not decay exponentially. However, all

algebraically decaying terms can be matched.

5. The outer solution. Recalling the remarks at the end of Sec. 3 concerning the model

problem, we assume an outer solution for z = (/, g), valid away from the boundary layer,

in the form

z(x, e) = Zq(x) + s2zl(x) + e4(log£)z2(x) + e4z3(x) + • • • . (5.1)

Substitution of (5.1) into (2.1) yields for the first few terms of the series, recalling that we

take ju = 0 and R = 1 - (e/x)2,

Lf0=f0g0 + 2y, Lg0=-\J2, (5.2)

U\ -/o£i - £o/i = "(2A2b. l8i +fo8i = 0 (5-3)

Lf2 = Lg2 = 0, (5.4)

Lh - fogi ~ g0/3 = fi8u + /0/3 = ~ifi- (5-5)

All functions fk, gk must satisfy the boundary conditions (2.3). Equations (5.2) and (2.3)

describe the circular plate problem (without hole), clamped at the edge x = 1, provided

the boundary conditions at x = 0 turn out to be (2.6). On physical grounds, we should
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certainly expect this, as the effect of a small hole on the stress distribution should be a

local one. In the limit case of a membrane this has been verified in [1]. Anticipating the

same situation for the plate problem, the nonlinear boundary value problem for f0(;t),

g0(x) can then be solved numerically. As the solution is slowly varying for x e [0,1], at

least for moderately large values of y, there are no numerical difficulties getting a

sufficiently accurate solution f0, g0 by any standard computer software such as COLSYS

[6],
In the remaining part of this section, we construct the solution f^x), g:(x) satisfying

(5.3) and (2.3). This solution is singular at x = 0, but the appropriate type of singularity is

not difficult to find, as f1 and g! must match with the inner solution in an overlap

domain.

A particular solution of (5.3) should be of the form ,4j(x)logx + A2(x), where A^x)

are regular at x = 0, and hence can be written as power series in the form L™anx2n.

Calculating a few coefficients indicates that a particular solution yp, zp of (5.3) should be

sought by the ansatz

yP(*) = -y(logx)[l + ix^x)] - yx2_p2(x),

zp(x) = h^2(logx)zx(x) + yx 2z2(x), (5.6)

where y( and z, are analytic in [0,1], satisfying

X(0)= fc'(0) = ztfo) = z£(0) = 0. (5.7)

Substituting (5.6) into (5.3), we get

8 8
Lih = ~;go(x) + 8o(x)yi -fo(x)h> Lih = ~7/o(*) +fo(x)yi> (5-8)

x X"

Lih = -L2h + go(x)h -fo(x)z2> ^^2= -L2zl + f0(x)y2, (5.9)

where

„ 7 , 8 , 1 / , 3
Liy:-y +-y +-y, L,,

Regularity at x = 0 requires that (>>! — g0)/x2 and (z1 - f0)/x2 in (5.8) are bounded in

[0,1], which implies y^O) = go(0), z1(0) = /0(0). In (5.9), the terms (8/x2)y2 and (8/x2)z2

must cancel the terms -{'i/4x2)y1 and -(3/4x2)z1, respectively. Hence, we have the

initial conditions

.Pi(0) = <5o(0)> 5i(0)=/o(0), y2(0) = -^go(O), (5.10)

z2(0) = — m/o(0)'

in addition to (5.7). The linear initial value problem (5.8), (5.9), (5.7), and (5.10) for yr, zL,

y2, z2 is easily solved numerically by standard computer software. Alternatively, it may be

solved exactly by power series, but we omit writing down the recurrence relations. The

latter approach assumes that /0(x), g0(x) have also been computed in terms of power

series. Note that ylt z1 may be obtained from (5.8) without reference to y2, z2.

We proceed to construct the general solution yh, zh of the homogeneous equations

obtained from (5.3) by dropping the term -2y/x2. This solution will basically have the

same form as y , z except that, as in (3.5), additional terms of order 1/x2 are needed in
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order to match with the inner solution. Thus we seek yh(x), zh(x) by superposition

(5.H)
y*h(x)J i=l,\z,(x)),

where the functions yi and z, are of the form

y = A(x) log* + ~ + C(x), z = B(x) logx + + D(x). (5-12)
X X

Two of the constants c, are to be determined from the boundary conditions at x = 1, the

remaining two in the matching process. The functions A,B,C,D are assumed to be

analytic in [0,1], From the symmetry of the differential equations we again have

A'( 0) = B'( 0) = C'(0) = D'{ 0) = 0. (5.13)

Substitution of (5.12) into the homogeneous equations of (5.3) gives

LA = g0(x) A + f0(x)B, LB = ~f0{x)A, (5.14)

LC = go(x)C +fo(x)D - + -^[ag0(x) + fifo(x)],

LD= -f0{x)C-2\^ + ^-\--f0(x). (5.15)
* x21 x2J

For reasons of regularity of the right-hand sides of (5.15) at jc = 0, we must stipulate

lim (-2A(x) + ag0(x) + Pf0(x)) = 0, lim (-2B(x) - af0(x)) = 0,
x—>0 x —* 0

which determines a and /? as follows:

« = -T-L*(0), ft — ~ [^(0)/o(0) + 5(0)go(0)], (5.16)
/o(°) (/0(0))2

if /0(0) ¥= 0. A solution basis {y^x), Zj(x)), i = 1,..., 4, is obtained from (5.13)-(5.16) by

choosing (/4(0), 5(0), C(0), £>(0)) to be the standard unit base vectors e, of R4, that is,

e, =(1,0,0,0), — e4 = (0,0,0,1). We shall denote the solutions of these four linear

initial value problems by A^x), D,(x), with corresponding values a,, /?,, i = 1,2, 3,4.

From (5.16) we have

2 I 0 0 2g0(0)
al 0, Pi , , , a2 — —$2 ~

/o(0)' ' " (/0(0))2' (5.17)

»3 = ft = «4 = At = °-

Furthermore, we have Aj(x) = B^x) = 0 for j = 3 and j = 4, which implies, together

with (5.17),

C3{x) = A1(x), D3(x) = B1(x), C4(x) = A2(x), D4(x) = B2(x),

which amounts to a substantial reduction in the calculations. Imposing the boundary

condition (2.3) on fl = yp + yh and g1 = zp + zh yields

C3J3O) + cAy4{\) = yy2(l) - cj^l) - cy2(0),

c3(Mz3)( 1) + c4(Mz4)( 1) = -{Mz )(1) - c1(Mz1)(l) - c2(Mz2)( 1),
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where

yJ{\) = aJ + Cj{\), Zj{\) = pj +

(Mz)(x) = z'(x) +(1 - v)z(x), z'j( 1) = Bj{ 1) - + Dj( 1).

The constants cv c2 will be determined in the next section. Once they are known, the

outer solution can be completed by solving (5.18) for c3 and c4.

6. Matching of inner and outer solutions. As in Sec. 3, we introduce an intermediate

variable tj = x/8(e), where ij = 0(1), 5(e) —► 0, and e/S(e) -* 0 as e -» 0. The inner and

outer solutions will now be matched in a common domain of validity. As the method was

described in Sec. 3, we shall not carry out the procedure here in detail. Replacing x by

in the outer solution and Taylor expanding the regular functions /0, g0, y,, z,-, etc. at the

origin, we obtain

f{x, e) = /o(0) + 5n/0'(0) + V/o"(0) + ■ • •

+ e2{Yln(5r))[-l - ISVj^O) - T^VK't0) - ■ ■ • ]

- y52r/2j)2(0) - bS V_y2"(0) - • • • }

4

-e2(

i = 1

(Iog5rj)(y4,.(0) + i52772^;'(0) + •••)+■
S2V2

+ C,(0) + i5VC,"(0)+ •••]} + ■•• (6.If)

and a similar expression (6.1g) for g(x, e). Next substitute 5 + 1 = 8t]/e into

/•(«,«)\ lrJ*>) 2| ,1'iWK i/Ml
C(s,e)j ' ge'\Gl(s)J 'g2(j)

+ •••. (6.2)

As the formulas for F0(s),..., G2(i) are given explicitly in (4.6)-(4.9), we do not rewrite

them here in terms of tj. Equating the terms of order unity, 5, 52, e2/<52, etc. in (6.1) and

(6.2), we find, in succession

0(1): /o(0) = *o^f go(0) = Co, (6.3)

O(S): fo(0) - 0, go(0) = 0, (6.4)

0(<52): /o"(0) = i(pl + p2), go(°) = 2Pi + HPa +Ps)> (6-5)

0(e2/S2): E c,a, = - —j—c2 = -B0, (6.6)
/=i /ovuJ

E = -—tt^/oC0)^ + Sol0)^) = -c0,
(/o(0))

4

0(e2logS): -y + E c,^,(0) = -y + c1 = -p1 - lp2, (6.7)
/= 1

4

E c,B,{0) = c2 = -p4 - 2p5,
/=1
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<9(e2): (logTj)

4

-y + £ c,/1,(0)
/=1

+ Ef,c,(o)
/ = 1

= B2j^\ + Pi{\~ logv) +P20- - 2log!}) + p0, (6.8)

(logrj) L c,5,(0)
/=!

+ £ c,A(o)
/ = 1

= C2 + pJ[J~ l0§ ̂ 7) + Ps(l - 2 log 7) ) -|(^4 +^5).

0( e2 loge): Pl + 2p2 + Bl j- = 0, p4 + 2ps + Q = 0. (6.9)

The coefficients Z?0, C0 are determined from /0, g0 by (6.3), while (6.4) confirms

conditions (2.6) for /0(x), g0(x). From (6.6) the coefficients cv c2 are determined; the

result is

" -7TTS«C° " " ^«(0)I7iT'

(6.10)

With this, c3 and c4 can be calculated from (5.19). At this stage, f0(x), g0(x)' ^o(J)>

G0(s) and fr(x), gx(x) are completely determined. The constants B2, C2 can now be

found from (6.8) provided all terms involving log 17 cancel. From (6.8), (6.10), and (3.9) we

find indeed

-Y + Cj = -y - y-^50C0 = —pj - 2p2,

1 - 1
c2 = 2 °7TT = ~Pa ~ P5,

which, at the same time, verifies (6.7). Hence we find from (6.8)

(6.11)

b2 = y^;[po +pi + \pi-c2 = f4+(x) frf- (6-12)

The constants B1, Cx are now determined from (6.9) as

B! = + v) + vB0C0\, Q = \ j+\Bv = (613)

It remains to show that (6.5) is satisfied. From (5.2), (3.9), and (2.6) we have, in the limit

jc -» 0,

4/0"(0) = /o(0)go(0) + 2y = B0C()~ + 2y = 2(Pl+ p2),

4go'(0) = -^/o(0)2 = -\(b0^\)2 = 8^3 + 2 (p4+ p5).

This completes the discussion of the matching relations (6.3) to (6.9). (The reader may

wish to write down the inner and outer expansions in detail and convince himself that all

terms have been matched up to the order given above.) In order to match terms of order
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e4, (e4/S2)loge, etc. in the expressions for F2(s) and G2(s). the calculation of higher-order

terms in the asymptotic expansions of both /, g and F, G must be continued beyond the

point carried out in this paper.

7. Stress concentration factors. Some quantities of particular interest in applications are

the stress resultant and bending moment concentration factors at the hole r = rr Let Nr 0

and Mr0 denote the stress resultant and moment, respectively, at the apex r = 0 of the

shell, referring to solutions of the problem without a hole under the same load conditions.

In the present context of a uniformly loaded clamped annular plate, Nr0(= Neo) and

Mr0(= Me 0) simply derive from the solution f0(x), g0(x) and hence are given by g0(0)

and (1 + v)f0(0), respectively, apart from scale factors. The stress and moment concentra-

tion factors are now defined by

SN = Ne(r,)/Ne, o, SM = Me{r,)/Mefl. (7.1)

For sufficiently small e we may use the inner asymptotic expansion (4.3), valid in a layer

of order 0(e) near x = e. Taking the expressions for Ne and Me

Ng = wJgM + xg'(x)], Me = co2[(l + v)f(x) + vxf'(x)],

given in [3], with certain constants co,, we obtain

= = gi0) ^o(0) + £2(log£)^i(°) + ^a(0) +••■]<

+ 62F2(0)+ •••].

Inserting the appropriate expressions from the inner solution and simplifying, we get

fin v 5 1
Sn(e) = 2{\ + ^(e2loge)^ffvT + 7^

CqV+1 Cq
r Bll 3 3 + r

2 2 \ 8 2(1 + v f
+

(7.2)

Sv(e) = 2^1 +(£2loge)|^^ - C,— 1 Vc 1U6C/ T _ „ \ Bq 0 i _j_

B2-Hy +B0cJ3
4 \ 0 u\ 2 1 + v

+ ■■■). (7.3)

The leading term of the stress factor SN is the same as that derived for the annular

membrane in [1], Note that the limits of both SN and SM for e -» 0 are independent of v

and y. The above formulas supply explicit correction terms for small e. In remarkable

contrast to the annular membrane, the dominant 0{e2 loge) part of these correction terms

depends only on the solution /0, g0 for the plate problem without a hole. It is only in the

0(e2) terms that the solution /x, gx is needed (as c3, c4 enter into the calculation of B2,

C2). In the case of a membrane, a rigorous proof for lim e_0SN(e) = 2 has been obtained

in [7]. We have not attempted to extend the method of [7] to the present problem.
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The validity of the asymptotic results obtained in this paper is limited to moderately

large values of y. From (7.2) and (7.3), this statement can be made more precise.

Following [8] we set 8 := y~1/3, I = $f(x), J = 82g(x)\ then Eqs. (5.2) can be written as

82LI = IJ + 2, L/=-|/2.

The limit case 8 -» 0 is the circular membrane problem, for which 1J + 2 = 0, whence

I(x) and J(x) are of order 0(1). This will also be true for sufficiently small 8, where a

bending boundary layer is found at x = 1 (see [8]). We conclude that / = 0(y1/3) and

g = 0(y2/3) for large y. In view of (6.3) this means B0 = 0(y1/3), C() = 0(y2/3); thus

the factors of the e2loge terms in (7.2) and (7.3) are y/B{) = 0(y2/3) and B(2/C0 = 0(1),

respectively. Flence, the second term in (7.3) is a relatively small correction term only if we

require y and e to satisfy

y2/3£2loge = (e/S)~loge 1, (7.4)

while it is sufficient to require e2 loge «: 1 in (7.2). In other words, for fixed y (no matter

how large) our results are valid for sufficiently small values of e, where the layer solution

G(s) is much more accurate than F(s) (see Table 3). Since (7.4) is based on 8 «: 1, it may

be overly restrictive. As a numerical solution for f0(x), g0(x), for given y, is a necessary

first step in our analysis, the quantity y2/3 in (7.4) may be replaced by the more precise

term y//o(0) in (7.3), and in this way it can be checked a priori whether (y//o(0))e2 loge is

small enough for the asymptotic results to be sufficiently accurate for both / and g.

8. Discussion of results and generalizations. The asymptotic solution is now compared

with exact (high accuracy) numerical solutions of problem A, obtained by the general

boundary value problem solver COLSYS [6], We take two representative values of y and

e, y = 102 and 103, e = 10"1 and 10"2. The inner and outer solutions are calculated up to

and including terms of order 0(e2), according to Sec. 4-6 (v = 1/3). Table 1 compares

the numerical solution f(x) with the leading term asymptotic solutions /„(x), F0(s) and

the more accurate asymptotic solutions which include terms of order 0(e2), with e = 0.1.

Tables 2, 3, and 4 compare the exact solutions f(x), g(x) with the 0(e2) asymptotic

Table 1. Comparison of numerical solution f(x), for y= 100, f = 0.1, with leading term (ft, F0) and

corrected to 0(e2) outer and inner asymptotic solutions.

y = 102 Numerical Outer solution Inner solution

= 0.1 fix) fo(x) /o + ('f\ Fa(s) F„ + f2 logcF, + e2F2

x

.10

.15

.20

.25

.3

.4

.5

.6

.8
1.0

-31.373
-19.785

-15.788

-13.951

-12.921

-11.689

-10.688

-9.525
-5.991

0.

-12.214

-12.148

-12.053

-11.923

-11.754

-11.272

-10.544

-9.488
-6.011

0.

-33.430

-20.434

-16.045

-14.061

-12.966

-11.688

-10.676

-9.511

-5.984

0.

-36.793
-23.166

-18.397

-16.189

-14.990

-13.798

-13.246

-31.753
-20.032

-16.014

-14.207

-13.244

-12.246

-11.650
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Table 2. Comparison between numerical and asymptotic solutions for / andg, y = 100, e = 0.01.

y = 10"
e = 0.01

Numerical soltuion

f 8
Outer solution

/ £

Inner solution

F G

x

.01

.02

.03

.04

.05

.1

.2

.4

.6

.8
1.0

-36.6187

-18.3107
-14.9218

-13.7354

-13.1848

-12.4254

-12.0926

-11.2765

-9.4885

-6.0109

0.

0.
9.8171

11.6256

12.2513
12.5341

12.8464

12.6574

11.6146

10.0639
8.4106
7.1541

-36.7190

-18.3333
-14.9312

-13.7405
-13.1881

-12.4264

-12.0934

-11.2782

-9.4911

-6.0131

0.

0.0583
9.8340

11.6360

12.2596
12.5416

12.8529
12.6637

11.6206
10.0694

8.4154

7.1582

-36.6197

-18.3112
-14.9222

-13.7358
-13.1853

-12.4268

0.
9.8220

11.6313

12.2571

12.5399

12.8517

Table 3. Same as in Table 2 except that y = 1000, e = 0.1.

y = 103
e = 0.1

Numerical solution

f g
Outer solution

/ g

Inner solution

F G

x

.10

.15

.20

.25

.3

.4

.5

.6

.8
1.0

-50.588

-32.231

-26.634

-24.630
-23.905
-23.738
-24.020

-24.140

-20.888

0.

0.
51.501

68.656

75.953
79.335

81.182

80.001

77.155
68.304

58.752

-50.073

-31.165

-25.990

-24.271

-23.705

-23.670

-23.993
-24.128

-20.885

0.

3.220

52.599
69.140

76,195

79.466

81.224

80.014

77.159

68.302

58.751

(-87.709)

(-55.857)
(-46.319)

(-43.350)
(-42.879)

(-44.647)

0.
50.995

67.358

73.918

76.650

77.453

Table 4. Same as in Table 2 except that y = 1000, e = 0.01.

y = 10'
e = 0.01

Numerical solution

/ 8

Outer solution

/ g

Inner solution

F G

x

.01

.02

.03

.04

.05

.1

.2

.4

.6

.8
1.0

-65.779

-32.914

-26.867

-24.779
-23.831

-22.674

-22.643

-23.379

-23.948

-20.776

0.

0.

69.167

81.945

86.394
88.431

90.934

90.659

86.924

80.109
70.399

60.509

-65.954

-32.605

-26.486

-24.375
-23.419

-22.252

-22.225

-23.025
-23.900

-21.368

0.

1.905

70.962

83.724

88.168
90.204

92.713

92.473

88.877

82.251

72.592
62.458

-64.518

-32.283

-26.356
-24.312
-23.386

-22.276

0.
70.493

83.516

88.049
90.125

92.676
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Table 5. Stress concentration factors: comparison between numerical and asymptotic solutions (maximal error

is about 2%, excluding the value SM for y = 103, e = 0.1).

y = 102, £ = 0.1 y = 102, e = 0.01 y = 10'\ f = 0.1 y = 103, e = 0.01

2.1951

1.7054

2.00780

1.99052
2.0423
1.5105

2.0029

1.9641

Asymptotic SN

solution Su

2.2529
1.7261

2.00783
1.99051

2.0449

(2.6189)

2.0029

1.9644

solutions for y = 102 and y = 103. It is seen that the asymptotic results increase in

accuracy as e becomes smaller. The agreement for y = 100, e = 0.01 is impressive. But

even for e = 0.1 there is remarkably good agreement between the asymptotic and the

numerical solution for y = 100. In the case y = 1000, e = 0.1 the inequality (7.4) is not

satisfied as y/|/o(0)| = 45.4, implying that the inner solution F(s) should not be used.

This is borne out by the numbers for F(x) in Table 3, which shows that C(5) as well as

the outer solution is still a good approximation. Table 5 shows the stress concentration

factors discussed in Sec. 7. Again, the case y = 103, e = 0.1 shows a large discrepancy

between numerical and asymptotic solutions, as to be expected from the preceding

remarks.

The results are also displayed in Figs. 1-5. We note that the outer solution is very close

to the exact solution in most cases where the asymptotic solution applies, even inside part

of the boundary layer. For e = 0.1, y = 100, the contribution of the various terms of the

inner solution is displayed in Fig. 2, where, in terms of 5, Z* = = Z0 +

(fi2log e)Zv

-30-

Fig. 1. Numerical solution with y = 100. e = 0.1.
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10-

-10

-20-

-30 J

Fig. 2. Outer solution with y = 100, e = 0.1.

Fig. 3. Inner solution with y = 100, e = 0.1.

We next discuss briefly the modifications necessary for including spherical shells in the

analysis. The terms -/a2g and ju2/ in (2.1) imply the following changes in (4.4):

KF2 = F0G0 +(2y — C0n2)h0(s), KG2 = -\fo2 + p.2B0(h0(s) - j-^).

Hence the only change in F2(s) given by (4.7) is that y in the coefficient pY must be

replaced by y - iQju2. Similarly, the coefficients p3, p4 in G2(s) given by (4.8) change as
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follows:

Pi = -
B0

1 + £(l + ,)
.2

P4 ~ 1 + » + 2B0
2(1 + v)

There is no change in the functions F0, G0 and Fj, G1. It is easy to see that inclusion of

the terms ~^2f, ju2g in the outer solution will only modify the regular parts of fx, gx, that

is, v,, z- in (5.6), and At, B(, C,, D, in (5.11)—(5.16). The nature of the singularities (logx

and jc~2) remains unchanged, implying some algebraic changes in the equations

-80-

80

40

-40-

-80

Fig. 4. Numerical solution with y — 1000, e = 0.01.

90lxl

g ix)

Fig. 5. Outer solution with y = 1000, e = 0.01.
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(6.3)-(6.13) resulting from the matching process. The limits of the stress concentration

factors as e —> 0 are the same, but inclusion of the shell curvature will modify the

correction terms of order e2logg in (7.2) and (7.3). Therefore, the 0(y2/3) coefficient in

(7.4) will also contain jir. But for any fixed y and ja2, the results will be valid for

sufficiently small values of e provided a condition like (7.4) holds.

It is clear from [1] that extension of the results to nonuniform loads is straightforward.

The extension to finite rotation [2] will result in a different set of equations for the outer

solution f0, g0. As to the inner solution, it was shown in [1] that for the annular

membrane the finite rotation does not affect the solution up to and including 0(e2) terms.

This situation carries over to problem A for finite rotations. Thus the layer solution

obtained in Sec. 3 can be matched with an appropriate outer solution that accounts for the

nonquadratic nonlinear terms of the basic equations. Similarly, it should be evident by

now that an extension to arbitrary nonshallow shells of revolution will not introduce any

essential novel features in the aymptotic analysis. On the other hand, the extension to

nonsymmetric deformations appears to be nontrivial, as it involves a set of partial

differential equations. Consequently, there will in general be a nonsymmetric stress

distribution near the hole. Furthermore, we have excluded buckling from the analysis for

ju > 0 (symmetric snap buckling or asymmetric bifurcation buckling). This leads to an

interesting new problem: given the buckling load for a shell without a hole, can the

buckling load for the same structure with a small hole be calculated by a simple

asymptotic analysis? We hope to return to this problem in a future paper.
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