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Abstract. The dynamic stress intensity factor history for a half plane crack in an

otherwise unbounded elastic body, with the crack faces subjected to a traction distribution

consisting of a pair of point loads that move in a direction perpendicular to the crack

edge, is considered. The exact expression for the mode I stress intensity factor as a

function of time for any point along the crack edge is obtained by extending a procedure

recently introduced by Freund [1], The method of solution is based on integral transform

methods and the theory of analytic functions of a complex variable. Some features of the

solution are discussed and graphical results for various point load speeds are presented.

1. Introduction. A general procedure has been introduced by Freund [1] for de-

termining the stress intensity factor histories for a class of three-dimensional elas-

todynamic crack problems. As an illustration of the procedure, Freund studied a half

plane crack in an otherwise unbounded elastic solid, with the crack faces subjected to a

pair of line loads that are suddenly applied along a line perpendicular to the crack front.

Because the approach is novel, its range of applicability has not yet been established.

Here, the extension of the procedure to situations with moving loads on the crack faces is

considered. This distribution consists of a pair of point loads that suddenly begins to act

at the edge of the crack and moves at a constant velocity along the crack faces in a

direction perpendicular to the crack edge. The corresponding two-dimensional problem

was studied by Ang [2], A three-dimensional problem that is related to the one in this

paper is that of a point load traveling on the surface of an elastic half space. This problem

was analyzed by Gakenheimer and Miklowitz [3], who considered all point load speeds,

i.e., subsonic, transonic, and supersonic. For the purposes of this paper, attention is

restricted to subsonic point load speeds; that is, the speed is less than the characteristic

Rayleigh wave speed of the material. The analysis for higher speeds offers no added

mathematical difficulty.
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In Sec. 2, the general formulation of the boundary value problem is presented for the

three-dimensional crack face tractions resulting in mode I deformation. Section 3 de-

scribes the general approach to solving the problem by means of transform methods. In

Sec. 4, the formal solution to the particular traction distribution is obtained by means of

the Wiener-Hopf decomposition method. In Sec. 5 the dynamic stress intensity factor

history is extracted by making use of the asymptotic properties of transforms, the

Cagniard-deHoop method, and the convolution theorem for transforms. A discussion of

the results is given in Sec. 6.

2. General formulation. In vector notation the Navier equation governing the dis-

placement vector u for an isotropic elastic solid is written as

ii = cfV(V • u) - cjv X(v X u), (2.1)

where cx and cs are the dilatational and shear wave speeds, respectively. In terms of the

Lame constants A and jui and the mass density p, the wave speeds are given by

c\ = (X + 2fi)/p, cj = ix/p. (2.2)

It is also useful to introduce the dilatational and shear slownesses a and b, where

a = l/c1 and b = \/cs. Furthermore, the Rayleigh wave speed of the elastic material is

denoted by cr and its corresponding slowness by r.

A standard approach when solving (2.1) is to introduce the displacement potentials cp

and through the Helmholtz decomposition of the displacement vector, i.e.,

u = V<P + V X 4/, v • \|/ = 0. (2.3)

The scalar potential <p is called the dilatational potential and the vector potential is the

shear potential. The divergence free requirement on the shear potential is necessary in

order to make the decomposition unique. The advantage of this decomposition is that the

potentials <p and satisfy the uncoupled wave equations

q> = cfv2(p, 4< = c;v2\p. (2.4)

The linear differential equations (2.4) have the added advantage of lending themselves to

standard integral transform methods. The two potentials are coupled through the boundary

conditions that characterize the problem to be described.

Consider the elastic body containing a half plane crack depicted in Fig. 1. A right-handed

rectangular coordinate system is introduced such that the z-axis coincides with the crack

front, and the half plane crack occupies the region y = 0, x < 0. Attention is restricted to

applied tractions of the form 7j, = +o_(x, z, t) on y = +0, where a_> 0 corresponds to a

tensile traction. All other components of the imposed traction are zero. The function a_ is

prescribed for * < 0 and is extended so that a_= 0 in the half range x > 0. The minus

subscript is used to denote a function that is nonvanishing in the range x < 0. Likewise,

the plus subscript will be used to label functions that are nonzero in the half range x > 0

but are identically zero for x < 0. This notation is useful in problems like this one, where

the transforms of these "half functions" turn out to be analytic functions of the transform

parameter in lower (minus) and upper (plus) half planes.
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Fig. 1. Geometrical configuration of the elastic solid.

Due to the symmetry of the geometry and the applied traction, the displacement fields

satisfy the following conditions:

ux(x,-y,z,t) = ux(x, y,z,t),

uy(x,-y, z,t) = -uv(x, y, z,t), (2.5)

uz(x,-y,z,t) = u2(x, y, z, t).

Thus attention can be restricted to the upper half space y > 0. Furthermore, properties

(2.5) imply the axv(x, 0, z,/) and ov:(x, 0, 2, t) vanish for all z and t and that uv(x, 0, z,t)

= u_(x, z, t) where u_ represents the unknown y component of the displacement on the

crack faces for x < 0 and u_ = 0 in the half range x > 0. Hence, the complete set of

boundary conditions to be satisfied by the stress field is

alv.(x,0, z,t) = a_(x, z,t) + a + (x, z, t),

axy(x,0,z,t) = 0,

ayz(x,0, z, t) = 0, (2.6)

uv(x,0, z, t) = u_(x, z,t),

for -oo < x, z < oo and 0 < t. The function a + represents the unknown normal compo-

nent of stress a on i > 0, and a + = 0 for x < 0.

The initial conditions are that the material is stress-free and at rest for t < 0. These are

expressed in terms of the displacement potentials by

<p(x,j',z,0) = d,<p(x, y,z,0) = 0, \p(x,y,z,0) = dt^(x, y,z,0) = 0 (2.7)

for y > 0. Likewise, the boundary conditions (2.6) can be replaced by their corresponding

representations in terms of <p and v[/.
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3. Transforms. In order to solve the problem described by the partial differential

equations (2.4), the initial conditions (2.7), and the boundary conditions (2.6), use is made

of Laplace and Fourier transforms. First, the one-sided Laplace transform is applied to

the differential equations and the boundary conditions, and the initial conditions are

imposed. This Laplace transform in time has the transform parameter .? and is denoted by

a superposed hat. For a function q>(x, y,z,t) this transform is given by

00

<p(x, y,z,t)e~sldt. (3.1)
o

For the time being, s is taken to be real and large enough to be on the right of the abscissa

of convergence of the integral. The dependence on z and x is then suppressed by applying

a pair of two-sided Fourier transforms. These transforms have the transform parameters

ils and i£s, respectively. They are denoted, respectively, by the uppercase symbol for the

function with a superposed hat and the uppercase symbol itself, to wit,

1 /*°°
= -= \ q>(x, y,z,s)e'Hz dz,

~°° (3.2)

1 r°° -v >
$(£,.)>,£, *) = -7= / $(x,y,£,s)e"(xdx.

v2t7 j-oo

The introduction of the s parameter into the kernel of the transforms (3.2) is for algebraic

convenience; it takes care of a change of variables that would otherwise be needed at a

later point in the analysis.

Due to the wave propagation character of the solution, the strip of analyticity of the

Fourier transforms can be anticipated. Suppose that the applied tractions are such that 0_

vanishes for \z\> z0. Then, at any given time t, the region of causality is confined to

\z\ < z0 + tcy Thus by considering the elementary wave field <p = H[t + (z + z0)a] +

H[t - (z - z0)a], where H{•) is Heaviside's unit function, and applying to it the Laplace

transform, one obtains

$ = 0(e~s(I'l-'o)*) as |z 11 oo. (3.3)

This, in turn, implies that the Fourier transform <!> converges for the strip |Im(f)| < a.

Thus <f) defines an analytic function of £ in the strip of convergence. Consequently, one

can analytically continue <I> to values of f that are not contained in the strip of

convergence. At this point in the analysis it is convenient to restrict £ to this strip. The

identity property of analytic functions [4] allows one to restrict f to the portion of the

imaginary axis in the interval -a < Im(f) < a, Re(£) = 0. The idea is to perform the

Wiener-Hopf factorization in the £ plane only, keeping f confined to the strip of

analyticity of 4>. At a later point in the analysis it will be essential to analytically extend

functions of J away from the interval on the imaginary axis and outside the strip.

The domain of convergence of the Fourier transform in x can also be anticipated.

Suppose that the applied tractions are such that along the crack faces a_ is nonzero for

indefinitely large values of x in the negative direction. Then, in this region the integral 4>

will converge provided that Im(£) < 0. On the other hand, by definition the applied

tractions do not extend along the positive x direction, and thus the region of causality
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does not extend beyond a certain cylindrical wave front ahead of the crack front. To be

precise, for x > 0, the front is centered at the j-axis and, at any given time t, has a radius

z0 + (x2 + z2)1/2. Thus, by considering the elementary wave field <p — H(t — (z0

+ yjx2 + z2 )a) and applying to it the transforms (3.1) and (3.2) it is found that the final

integral converges if (Im(£)}2 — s2 < a2. Therefore the Fourier integral 0 defines an

analytic function in the strip - y£2 + a2 < Im(£) < 0 in the £-plane, with f restricted to

-a < Im(f) < a, Re(f) = 0.

The class of problems which is accessible by the solution procedure outlined in the

Introduction is one in which o_(x, z,t) is restricted to having a triple transform which has

the separable form

y- T r 6_(x,z,s)ei^*+^dzdx = -4s_(£,0, (3.4)
z7r •'-00 •'-00 s

where m is a real number and 2_(£, f) does not depend on 5. The reason for this will be

more apparent in Sec. 5. The requirement (3.4) makes it possible to perform the final

inversion of the dynamic stress intensity factor by means of the convolution formula for

Laplace transforms.

The application of the transforms (3.1) and (3.2) to the partial differential equations

(2.4) reduces them to ordinary differential equations,

2<j> aZyj,

—- - 52a2<D = 0 and ?-=- - s2/?2* = 0, (3.5)
dy d y2

where

a = aU,£) = ^2 + e + a2, 0 = fitf, |) = + £2 + b2, (3.6)

and a = 1 /c1, b = l/cs are the dilatational and shear slownesses introduced after (2.2).

The complex £-plane is cut along \Ja2 + f2 < |Im(£)| < co, Re(£) = 0 and /&2 + f2 <

|Im(£)| < oo, Re(£) = 0 so that Re(a) > 0 and Re(/?) > 0 in the cut plane for each

admissible value of With the £-plane cut in this fashion, equations of the type (3.5) have

the solutions, bounded as y —» oo to preclude waves coming in from remote regions,

$ = MU) „y y = eu,ng-^ (3 7)
sm+2 ' sm+2 '

where 0= {2?(€,f), C(U), £(€,0}-
Transforming the condition V • ^ = 0 yields

£B - i/3C + £D = 0. (3.8)

It is also necessary to transform the boundary conditions (2.6), which will yield four more

equations. They are

(b2 + ie + 2$2)A + 2itfB - 2WD = /T1(2_+ 2+),

2i$aA -KB-WC+{p2 + e)D = 0,

2i$aA -{p2 + $2)B + i^C + ED = 0, (3.9)

-aA - i$B + /££> = U_.
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In reducing the equations to this form, use is made of the fact that Ac,-2 = n(b2 - 2a2).

Furthermore, we have defined U_ and 2 + as

+ 1 r 00 r CO „

—r—/ / U_(x,z,s)e"{t'+Mdzdx,
277 •'-oo

2 + U,0 = ~ r r a_(x,z,s)ei^x+^dzdx. (3.10)
2w J-00J-oo

The parameter 5 is absent, by construction, from the five equations (3.8) and (3.9). There

are six unknown parameters, four constants of integration A, B,C, D, and two sectionally

analytic funtions U_ and 2+; but only five equations to relate them. One can solve for the

four constants of integration in terms of the two unknown sectionally analytic functions.

The result is

^($,0 = «_1(l -2fi2b-2)U_(U),

£($,0 = -2/^"2t/(£,r),

C(|,O = 0, (3.11)

D(U) = 2 iZb-2U_(M).

Substituting for these functions into the first equation of (3.9), we obtain one equation

relating the two unknown functions,

-~£-R{M)U_(U) = + 2 + (€,0. (3-12)
b a

where

R(t,n = [b2 + i{e + r2)]2 - 4(e + z2)au,Mu,n- (3.13)
This is the modified Rayleigh wave function; that is, it corresponds to the standard

Rayleigh wave function, R(z), when ? = 0. It is a well-established fact [5] that the

standard Rayleigh wave function, in a properly cut z-plane, has only two zeros, R( ±ir)

= 0, whre r = \/cr. Thus, the modified Rayleigh wave function in the properly cut

complex £-plane has only the two zeros $ = ± ir, where r = \/f2 + r2 .

Equation (3.12) is a standard Wiener-Hopf equation, and the essence of the

Wiener-Hopf method is to solve for the two unknown sectionally analytic funtions U_ and

2+ from a single equation (3.12). According to Noble [6], the approach to be followed in

Sec. 4 is actually due to Jones. Since 2+ is analytic in the half plane Im(£) > - 2 + a2,

and U_ is analytic in the half plane Im(£) < 0, (3.12) holds in the strip -z'/f2 + a2 < £ < 0.

Furthermore, f is restricted to the interval -a < lm(0 < a, Re(f) = 0, so for a fixed

value of f (3.12) can be solved by factorization in the £-plane alone.

4. Formal solution. At this point it is necessary to introduce the particular applied

traction distribution. The present work is concerned with a pair of point loads that

suddenly begins to act at the edge of the crack x = y = z = 0 and moves in the negative Jt

direction, i.e., perpendicular to the crack edge, at a contant velocity v. Thus, we assume

that

a_(x, z,t) = -P8(z)S(x + vt), 0 < v < cr, (4.1)

where S(-) is Dirac's delta function. The amplitude P has physical dimensions of force

and P 0 corresponds to <n traction ttint tends to sep^rste the crcick fsces.



THREE-DIMENSIONAL STRESS INTENSITY FACTOR 367

Figures 2,3, and 4 indicate the leading wave fronts that result from the application of

the tractions (4.1). These wave fronts have been obtained by extrapolation from experi-

ence with two-dimensional problems in hyperbolic partial differential equations rather

than by solving for the displacement potentials. The wave fronts include spherical

dilatational and shear wave fronts centered at the origin of coordinates (Fig. 2). There are

also two sets of head waves that form cones with vertices where the spherical dilatational

front meets the z-axis, and extend to circles of tangency with the spherical shear wave

front. The traces of these cones which extend to the crack faces, as well as ahead of the

crack edge, are shown in Fig. 2. Furthermore, there are conical head waves that intersect

the dilatational wave fronts on the surfaces y = ±0 for x < 0 and extend to circles of

tangency with the spherical shear wave fronts (Figs. 3 and 4). The head waves arise since

the dilatational waves alone cannot satisfy the traction free boundary conditions that exist

at the crack faces.

Transforming (4.1) with (3.1) and (3.2), it is found that m = 1 and that

*-<«> = (4-2>

where c = l/v is the point load slowness. Substituting for 2_(£, f) in (3.12), one obtains

the Wiener-Hopf equation that corresponds to the problem with traction loading (4.1),

-£-R(U)U_(U) = ^rr—7 + 2 + <4-3)b2a 2t7d (J - ic)

Only some of the steps involved in the factorization of (4.3) in the £-plane will be shown

below. To begin, let a2 = £2 + a2 and note that a is some constant in the interval (0, a)

since f is being held fixed in the interval (-ia, ia). The function a can be factorized as

<*(£;£) = (£2 + a2)1/2 = [(£ + m)1/2] + [(£ - ia)l/1\ . (4.4)

Conical

headwave

Dilatational

wavefront

snear
wavefront

Fig. 2. Traces in the x - z plane of the wave fronts resulting from

the application of the tractions (4.1).
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Conical

headwave

Dilatational

wavefront

Shear

wavefront

Fig. 3. Traces in the y - z plane of the wave fronts resulting from

the application of the tractions (4.1).

r
Conical -

headwave

Di latational

wavefront

Shear

wavefront
Fig. 4. Traces in the x - y plane of the wave fronts resulting from

the application of the tractions (4.1).

The semicolon is used to emphasize the fact that f is being held fixed and its influence in

the factorization procedure is only parametric in nature. The plus (minus) subscript is

used to denote functions that are analytic in the upper (lower) half plane Im(£) > -a( < 0).

In order to make further progress one must factorize the Rayleigh wave function

R(£', £)• For this purpose it is most convenient to express R(H\ f) in terms of a function

with neither zeros nor poles and whose limiting value as |£|T oo is unity ([6], pp. 13-15).

Such a function is easily constructed from the asymptotic properties of the Rayleigh wave
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function and knowledge of its roots. Specifically, one must make use of the results that

«U;f) = 2£2(62 - a2) + 0(1) as|£|Too (4.5)

and /?(£;£) has two symmetric roots £ = ±ir, where r = yp + r2, as discussed at the

end of Sec. 3. The function needed is easily seen to be

(4'6)
K[r + r)

where k = 2(b2 - a2). The function S has the required properties of being nonvanishing

in the finite £-plane and being asymptotic to unity for large values of £. It may be shown

that S(£; f) can be factorized as S+(£; f)S_(£; f)> where

S,(i.f) = exp l-f
1 fb
- ' tan 1

4ti2]J(b2 - r)(y2 - a2)

(b2 — 2r)2)2

r\dr\

2 + + r ± £)

(4.7)

The functions .S' f (f) and S_(£; f) are analytic and nonzero in the half planes Im(£) > -a

and Im(£) < a.

After some straightforward manipulations, (4.3) can be rewritten as

V-G_(£;0
lP +2+(i;0

2uv(£ — ic)
G+U-n, (4.8)

where

G (£'?) = — — —  (4 9)

At this point the factorization is almost complete. It remains to remove the pole in

G+(& 0 at £ = ic. This is accomplished by observing that

GAn-,n
£ - ic

GM;n-G+(ic;0 + G+(ic; n
f - ic

(4.10)
£ - ic

Now the factorization is complete and relationship (4.8) may be rewritten as

jUK U-(!;'■,$) _ iP G + {ic\$)

b2 G_(£;f) 2™ | - ic

= [^^;f|~^+(lc;f)] + G + (|;r)2 + (£;n- (4-11)

The function on the left-hand side of (4.11) is analytic in the half plane Im(£) < 0. The

function on the right-hand side is analytic in the half plane Im(£) > -z'/f2 + a2. Since

(4.11) holds in the strip where the domains of analyticity of the two functions overlap, the

functions are each analytic continuations of the other. Together they define an entire

function £(|) ([6], p. 37). The function £(|) is to be determined from the behavior of the

functions U_, 2+, and G ± as |£|T oo.
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For the class of fracture mechanics problems described in Sec. 2, the normal stress a +

on the plane y — 0 is expected to have the asymptotic behavior

a + (x,z,t) ~ kj{t,z)/\l2-nx asxiO" (4.12)

where k,(t, z) is the dynamic stress intensity factor history at any point along the crack

front. This history will be determined explicitly in the next section. In light of (4.12),

a+(x, z,s) is also expected to be square root singular as x J,0+ for any z. This result can

be used in conjunction with the Abelian theorem regarding asymptotic behavior of

Fourier transforms [6] to determine the asymptotic properties of 2 + (£; f), namely,

lim i/2£/se",,r/42 + (£; f) = lim \[xo + (x,z,s). (4.13)
£ T oo x i 0 +

Since the right-hand side of (4.13) is equal, by (4.12), to a function parametric in 5 and

f, 2 + (£;f )= 0(£~1/2) as £|oo. Furthermore, u__ is expected to vanish as j>cT0~ and

|G +(£; 01 = 0(\i|"1/2) as |£|T oo. Therefore, both sides of (4.11) vanish as |||T oo. That is,

E(£) —> 0 as |£|Too. From the preceding discussion it follows that £(£) is a bounded

function in the entire £-plane. According to Liouville's theorem a bounded entire function

is a constant [4], and therefore £(£) must be identically zero, i.e., £(£) = 0. Equation

(4.11) can now be solved for and U_, which are found to be

P b2 G+(/c;f)G U;f)
u_(z-,n =

2 + tt;0 P

2iriv iuk | — ic

G+(/c;0
27riv (| - ic) c+u-,n

i (4.14)

This completes the formal solution of the problem. In theory, the exact solution to the

problem is found by taking the triple inverse transforms of (4.14).

5. Inversion. Unfortunately, an exact inversion of 2+ and U_ as given by (4.14) is

not evident. This section is concerned with the determination of the stress intensity factor

history, which is given by the asymptotic inversion of 2 + with respect to £. As mentioned

in Sec. 4, the asymptotic behavior of 2+(£;£) as |£|foo is intimately related to the

behavior of the double transform 2 + (x,f) of the normal stress a + (x,z,t) as .v J,0+. It

follows from (4.12) that the Laplace transform of the dynamic stress intensity facior

history k,(t, z) is simply

k,(s,z)= lim ]/2ttx6 + (x, z,s). (5.1)
x |0 +

Thus, the double transform of kr(t, z) is found from (4.13) and (4.14) to be

p   ]lc + (£2 + a2)l/"

K,(s,i;)= —yfir/s ~r —j . (5.2)
™ [c+U2 + r2)1/2]s + (/c,0

By construction, the function K,(s,^) is analytic on the strip -ia < f < ia. Since the

Wiener-Hopf factorization has been completed and the limiting process that resulted in

Kj(s^) has suppressed all dependence on the variable £, there is no longer any need to

restrict f to this strip. For the purposes of inverting this function it will be advantageous
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to extend the definition of the function to the entire £-plane. It is this extended function

which is referred to as the Fourier transform of k/(s,z). This function can be made

single-valued by cutting the f-plane along a < |Im(f)| < oo, Re(f) = 0 and along r <

|Im(f)| < oo, Re(£) = 0. This ensures that the square roots have positive real parts. The

function S + (/c, f) is analytic over the entire f-plane by virtue of a theorem pertaining to

analytic functions defined by integrals ([4], p. 92; [6], pp. 11-12).

The inverse Fourier transform of (5.2) is

kr(s, z) = —= r ' kI{s,$)e~isUd$, (5.3)
V 2 77 ■'-oo + ifo

where f0 is a real number between -a and a. It is hoped that the final Laplace inversion

of k,(s,z) can be done by means of the convolution formula. Therefore, it will be

advantageous to cast (5.3) in the form of a one-sided Laplace transform so that the

inversion can be performed by inspection. The required transformation can be achieved

by suitably deforming the Fourier inversion path into a branch line integral; this is a

trivial case of the Cagniard-deHoop technique. Consider the case of 2 > 0. For (5.3) to be

a convergent integral when z > 0, it is necessary that the inversion contour lie in the lower

half plane Im(f) < 0. Since the finite f-plane does not contain any singularities aside from

the branch points at f = + ia and f = + ir, the original inversion path can be deformed

into a new contour as depicted in Fig. 5. This new contour consists of two quarter circles

Tj and T2 in the lower half plane, and a branch line path running upward along the

left-hand side of the branch cut from -/oo up to the branch point at f = -ia, around the

t plane

Fig. 5. The complex f plane, showing the singularities of K, (s, f )

and the integration path for the evaluation of (5.3).
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branch point, and finally running down the right-hand side of the branch toward -zoo.

That the original integral in (5.3) is equivalent to the integral of the same argument along

the new path follows from Cauchy's integral theorem [4], The contribution of the integral

along the arcs at infinity and T2 as |f|T oo vanishes by Jordan's lemma [4], Thus (5.3)

reduces to a branch line integral. Exploiting the fact that Kr(s,-£) = K(s,£), where the

bar denotes complex conjugation, the branch line integral can be expressed, after an

elementary change of variables, as

J7. P f°°
k,(s,z) = z~ls~1/2s e~sv Im{ F( + 0 + z'tj/z)} di), (5.4)

7TV Jaz

where

\Jc +(f2 + a2)l/2

[c + (f2 + r2 )1/2] 5 + (zc, f)

In (5.4), F(£) is evaluated on the right-hand side of the branch cut. The ^-multiplied

Laplace transform in (5.4) can be expressed as the Laplace transform of a derivative, i.e.,

~k ,(s, z) = ^—~z~xs~l/2 J e~S7,-^lm{F( + 0 + i-q/z)} dy. (5.5)

There is no endpoint contribution from i) — az in (5.5), because F( + 0 + ia) is a real

quantity. The inversion of (5.5) is now obvious because k,(s, z) is seen to be the product

of two transforms. Therefore k,(t, z) is the convolution integral of the inverses of the two

transforms,

k'(t'z)^ ^lmiF( + 0 + in]J7=WH(t'az) {5'6)
]/t - Jz

for z > 0, and k,(t, -z) = k,{t, z). The expression for k, in (5.6) apparently cannot be

reduced further in terms of elementary functions. Some of the properties of the real

integral (5.6) along with an interpretation of the results are discussed in the next section.

6. Conclusion. Even though the dynamic stress intensity factor history (5.6) cannot

be evaluated in terms of elementary functions it can be evaluated numerically and some of

its salient features can be obtained analytically. Figures 6,7,8, and 9 show the results of

the numerical integration of the integral (5.6) for values of the ratio of the point load

velocity to the Rayleigh wave speed of 0.8, 0.6, 0.4, and 0.2 for a Poisson ratio of v = 0.3

(cj/cr = 2.02). The time scale has been nondimensionalized so that t = 1 corresponds to

the arrival of the dilatational wave at the observation position z along the crack front. The

dynamic stress intensity factor has been normalized by premultiplying (5.6) by P~1(irz)i/2.

Following the sudden application of the point loads, a point z along the crack edge is at

rest until the arrival of the dilatational front. This front is compressive in nature and the

crack faces respond to it by initially trying to close together. This is reflected by the stress

intensity factor being negative initially. The initial jump in the dynamic stress intensity
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Fig . 6. The normalized stress intensity factor k, (/, z) (irz)3/2/P

versus t/az for the case of c/r = 0.8.

Fig. 7. The normalized stress intensity factor k,(f, z)(wz)3// /P

versus i/az for the case of c/r = 0.6.
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Fig. 8. The normalized stress intensity factor k, (t, z)(■nz f/2/P

versus t/az for the case of c/r = 0.4.

l 1 1 1 1 r

4.0 5.0 6.0

Fig. 9. The normalized stress intensity factor k, (/, z)(ttz)3/~/P

versus t/az for the case of c/r = 0.2.
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factor, which can be seen in the graphs, is a verifiable feature of the solution of this

particular three-dimensional loading distribution. For the case of a pair of line loads

acting perpendicular to the crack edge, i.e., the convolution of the traction distribution

(4.1) for v = 0, Freund [1] found that the dynamic stress intensity factor started from zero

and gradually became negative. By taking the limit as t/z J, a+ in (5.6) the jump is found

to be

lim k,(t,z)(irz)3/2P~l = ^      (6.1)

'Ala* 4 [c+ Jr2- a2\s + (ic,0 + + ia)

The dynamic stress intensity factor becomes increasingly negative until the arrival of the

Rayleigh waves at t = 2.02, when it becomes logarithmically singular. Between t = 1 and

t = 2.02, k,(t, z) also exhibits a disturbance coinciding with the arrival of the shear front

at t = 1.88. This mild discontinuity in the slope of k,(t, z) is due to a change in the form

of the function S+ as the branch point located at the shear wave slowness is crossed. After

the passage of the Rayleigh waves the crack faces begin to open, and the stress intensity

factor increases until it reaches a maximum and thereafter decays very gradually toward

its limiting value k,(co, z) = 0.

This completes the analysis of the three-dimensional stress intensity factor history for

the case of a pair of moving point loads on the faces of a crack. The solution (5.6) to the

problem described by the traction distribution (4.1) is the fundamental solution to the

class of problems involving traction distributions moving perpendicular to the crack edge.

In this paper the range of applicability of the procedure introduced by Freund [1] has

been successfully extended to this class of problems. Other situations, such as moving

loads along a direction inclined to the crack edge, can be examined following the same

methodology used in this paper.
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