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STABILIZATION OF LINEAR SYSTEMS

BY TIME-DELAY FEEDBACK CONTROLS*

By

JIONGMIN YONG

Purdue University

Abstract. The notion of r-stabilizability of linear autonomous systems is introduced. If

the system [ A, B] is completely controllable and the spectrum of A is contained in the left

half of the complex plane then the system is r-stabilizable for any r > 0. Finally, a

one-dimensional case is discussed.

1. Introduction. We consider the following system

x(t) = Ax(t) + Bu(t), (l.l)

where A is an (n X n)-matrix, B is an (77 X ra)-matrix, x eR", m e Rm, and / £ R.

(Throughout this paper, all the matrices and vectors are real.) It is well known that (see

[11], for example) if [A, B] is completely controllable, then for any set A =

{Xj, A2,..., \n} c C, with the property that

A* = {\1,X2,...,X„} = A, (1.2)

there exists an (m X n )-matrix K such that

a(A + BK) = A. (1.3)

4
Here, a(A + BK) denotes the spectrum of A + BK. In particular, if we let A c C = {X

g C | Re A < 0}, then, under the following feedback control,

u{t) = Kx(t), (1.4)

the system (1.1) is asymptotically stable.

A feedback control of the form (1.4) is not quite realistic because we usually have time

delays. Thus, instead of (1.4) we should consider a feedback control of the form

u{t) - Kx(t - r), (1.5)
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where r > 0 is a time lag. By substituting (1.5) into (1.1) we get

x(t) = Ax(t) + BKx(t - r). (1.6)

By [10], we know that, if we choose K such that the system

x(t) = (A + BK)x(t) (1.7)

is asymptotically stable, then for sufficiently small r > 0, (1.6) is also asymptotically

stable. On the other hand, in [5] it was proved that if the system

x(t) = Ax(t) + A0x(t — r) (1-8)

is asymptotically stable for all r > 0, then

a(A) cC . (1.9)

Thus, if (1.9) is not satisfied, or equivalently, if the system

x(t) = Ax(t) (110)

is not asymptotically stable, then for any given K, the system (1.6) can not be asymptoti-

cally stable for all r > 0. Hence, a natural question can be asked. For any given r > 0,

does there exist a K such that (1.6) is asymptotically stable? This is the question we will

study in this paper.

2. Preliminaries. For any entire function H{z), we let

jr(H)=jr(H(-))= (z e C\H(z) = 0}. (2.1)

We denote a system of form (1.8) by [A, A0, r\ We define

p{\\ A, A0\ r) = det(XI — A — A0e~rX). (2.2)

Definition 2.1. Let r > 0 and [A, B] be given. System [A, B] is said to be /'-stabilizable if

there exists a K such that [A, BK\ r] is asymptotically stable.

It is well known that (see [3]) system [A, A0\ r] is asymptotically stable if and only if

jr{p(-\A,A0\r))QC-. (2.3)

Let us observe the following:

p(\', A, A0\ r) = det( A/ — A — A(je~rX)

= — det((rA)/ - rA - rA0e~(rX))

= y,p(rX\rA,rA0\\). (2.4)

Thus, (2.3) is equivalent to the following:

^V(p(-, rA. rA0\ 1)) c C-. (2.5)

Hence, we get

Proposition 2.2. Let r > 0, [A, B] be given. Then, [A, B] is r-stabilizable if and only if

[rA, B] is 1-stabilizable.
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This proposition shows that we only need to consider the case that r = 1. Now, for

r = 1, we have

p(A;^Jo;l) = P(A) + 0(AKA

= e-x[e\P(A) + 0(A)] =exH(\), (2.6)

where degP = «, deg£) < « — 1, and P(A) has the form

P( A) = A" + . (2.7)

It is clear that

jr{H)=jr(p(.-A,A0\ 1)). (2.8)

Definition 2.3. An entire function //(A) is said to be stable if

jr(H) cC". (2.9)

Thus, from (2.8), we know that system [A, A0; 1] is asymptotically stable if and only if

H(A) defined by (2.6) is stable.

We now quote some basic results, which we will use in the sequel, about the stability of

some elementary transcendental functions.

Let /i(z,()bea polynomial of the form

h(z,t) = P(z)t + Q(z), (2.10)

where P(z), Q(z) are polynomials, degP = n, deg<2 < « — 1, and P has the form (2.7).

Let

H(z) = h(z,ez). (2.11)

Then, for z = iy, y e R, we have real-valued functions F(y) and G(y), such that

H(iy) = F(y) + iG(y). (2.12)

Then, we have the following theorem due to Pontryagin [9], (See also [1] and [4].)

Theorem 2.4. If H(z) is stable, then all the zeros of F(y) and G(y) are real and

alternating. Moreover,

G'(y)F(y)-G(y)F'(y)>0 (2.13)

for all jeR. Conversely, H(z) is stable if one of the following holds.

(a) All the zeros of F(y) and G(y) are real and alternating and (2.13) holds for at least

one point y.

(b) All the zeros of F(y) are real, and for each zero y = y0,

F'(yo)G(yo)<0. (2.14)

(c) All the zeros of G(y) are real, and for each zero y = y0,

G'(y0)F(y0) > 0. (2.15)

To close this section, we make the following simple remark.

Remark 2.5. Since H(z) is entire and takes real values on the real-axis, by the Schwarz

Reflection Principle, we know that F(y) is an even function and G(y) is an odd function.
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3. Fundamental lemmas. We are going to prove two fundamental results in this section.

These results will play a crucial role in proving our main result.

In this section, we always assume that H(z) is of the form (2.11) and that F( y) and

G(y) are defined by (2.12).

Lemma 3.1. Suppose H(z) is stable. Then, there exists a c e R such that

Hx(z) = zH(z) + c (3.1)

is stable.

Proof. Since H(z) is stable, by Remark 2.5, we have

0 + 7/(0) = F(0) + iG{0) = F(0). (3.2)

Thus, without loss of generality, we assume F(0) > 0. By (3.1), we have

H1(iy) = iy(F(y) + iG(y)) + c

= l-yG{y) + c] + iyF(y)

= F1(y) + iGl(y), (3.3)

where

F\(y) = c-yG(y)

Gi(y) =yf(y)-

Since H(z) is stable, by Theorem 2.4, we know that all the zeros of F(y) are real. Thus, all

the zeros of Gr(y) are real.

Now, we choose c e R such that

0 < c < 2 inf{|y<)G(Jo) 11 F() = 0}. (3.5)

Note that the right-hand side of (3.5) is positive because it is easy to see that

inf | H(iy) \ > 0. (3.6)
yeR

By choosing such a c, we have

g;(0)f1(0) = f(0)c>0. (3.7)

Also, for any y0 e jV( F), we have

G{(y0)Fl(y0) = (F(y0) + y0F'(y0))(c - G(y0)y0)

= yoF'(yo)(c - y<fi(yo))

> -yoF'{y0)G(y0)-\cy0F'{yQ)\

> -yoF'{yQ)G{y0) - j\y0G(y0) -^'(^o)!

= -bZF'(y0)G(y0)>o. (3.8)

Here, we have used (2.13). Since it is clear that

yr(G1) = ^r(F)u{0}, (3.9)

it follows from (c) of Theorem 2.4 that FIx{z) is stable. □
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From the proof, we see that c is explicitly determined by the following:

j F(0)c > 0,

[ |c| < ml{\y0G(y0)\\y0^jr(F)}.

Lemma 3.2. Suppose H(z) is stable. Then, for any a > 0, there exist 6, c e R, such that

Hji2) = (^2 + q2)H(z) + bz + c (3.11)

is stable.

Proof. From (3.11), we have

H2(,y) = (a2 - y2)H(iy) + biy + c

= (a2 - y2)(F(y) + iG(y)) + byi + c

= [{a2 - y2)F(y) + c\ + i [{a2 - y2)G{y) + by]

= F2(y) + iG2(y), (3.12)

where

j F2(z) = (a2 - y2)F{y) + c

\ G2(z) = (a2 - y2)G(y) + by.

Now, we have, by the stability of H(z), that

0 *H{ ia ) = F(a) + iG(a). (3.14)

Thus, we have two cases.

Case I. F(a) ¥= 0. Then, we take

'c = 0

bF(a) > 0

(3.13)

\b\< iinf{ ^ ^ |g(y0)ll>'o^^(^)| =«i.

(3.15)

By an argument similar to that used in the proof of Lemma 3.1, we have > 0. It is clear

that

jr{F2)=jr{F) U{±a}. (3.16)

Thus, all zeros of F2 are real. Observe that

Fj'(y)G2(y) = {(a2 - y2)F\y) - 2yF{y)} [(a2 -y2)G(y) + by}. (3.17)

Hence, we have, by (3.15), that

F2(a)G2(a) = —2aF(a) ■ ba = —2a2bF(a) < 0. (3-18)

By Remark 2.5, F(y) is an even function. Thus,

F2(— a)G2( — a) = -2a2bF(-a) = -2a2bF(a) < 0. (3.19)



382 JIONGMIN YONG

Now, for any y0 e jV(F), we have

F^yo)G2{yQ) = (a1 - y2)F'(y0)\{a2 - y2)G{y0) + by0]

< -(a2 - v02)2|F'(v0)(7(>'o)| + IHI|f'(>'o)| |(«2 — V02) |

< -12{a2-y02)2\F'(y0)G(y0)\<0. (3.20)

Here, we have used (2.13). Thus, by Theorem 2.4, part (b), we get the stability of H2(z).

Case II. G(a) + 0. Then, we take

fb = 0,

cG{a) < 0,

kl < i inf{|- y] | |/"(_v0)|l y0 G = si-

(3.21)

An argument similar to that used above gives S2 > 0. In this case, we have

Jf(G2) =JT(G) U{±a}. (3.22)

We have

F2(a)G'2{a) = c{-2aG(a)) = -2acG(a) > 0. (3.23)

Since G(y) is an odd function (by Remark 2.5), we also have

F2( — a)G'2(— a) = 2acG(-a) = -2acG(a) > 0. (3.24)

Now, for any y0 e ^V(G), by (3.21) and (2.15), we have

^2(^0)^2(^0) = [{a2 - y())F(yo) + c]{a2 - y$)G'(y0)

> (fl2 - yoYF(yo)G'( V0) -|c(a: - yo)G'(y0)\

> l(a2 - y02)2F(y0)G'(y0) > 0. (3.25)

Thus, by Theorem 2.4, part (c), H2(z) is stable. □

4. Stabilization.

4.1. Single-input case. Suppose we are given a single-input system [A,b] which is

completely controllable. Then, it is well known that (cf. [11]) we have the following

canonical representation:

0 1 *
0

A =

0 1
a n -a, ••• ~a

b =

n-lj

0

(4.1)

Theorem 4.1. Suppose [A, b] is completely controllable, and

a(/f)cC~UC° = {AeC|ReA<0}. (4.2)

Then, for any r > 0, [A, b] is r-stabilizable.
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Proof. We first prove that [A, b] is 1-stabilizable. We let

k = (-k0,-kl,...,-k„_1)T<=R\ (4.3)

Then we have, by assuming (4.1), that

p(\-A,bkT;l) = det(AI - A - bkTe~x)

= A" + a^A""1 + • • • +a0 + e~x(kn_{ A"-1 + • • • +k(l)

= e~A{eA( A" + «„^iA"^1 + • • • +<j0) + (kn_ XA" 1 + ■ • • + kQ)).

(4.4)

By (4.2), we can assume that

A" + + ••• + a0 = A'P,(A)P2(A), (4.5)

where / > 0 and

^Ci)cC-. {AeC|ReA<0}

JV{ P2) c C°\{0} = {A e C\{0} | Re A = 0}.

We claim that there exists a polynomial, 01, with real coefficients and deg£>i < /, such

that

H(X)=X'ex + 0j(A) (4.7)

is stable. If I — 0, we take 0t(A) = 0. If / > 0, consider ex which is of the form (2.11) and

is stable. By Lemma 3.1, there exists a cx e R, such that Xex + c1 is stable. Again there

exists a c2 e R such that

X(Xex + Cj) + c2 = X2ex + cl A + c2 (4.8)

is stable. By induction, our claim follows. Now, by applying Lemma 3.2, and using a

similar argument as above, we can find a polynomial Q2(X) with real coefficients and

with deg£?2 < degPj, such that P2(X)H(X) + Q2(X) is stable. The polynomial Q defined

by

Q(\) = Q1(\)P2{\) + Q2(\) (49)

then has real coefficients, and satisfies

deg£> < maxfdeg^j + deg P2, deg(?2}

= deg0! + deg/*-, < / + deg.P2. (4.10)

If we let the vector kT = (k0,.... k„_ t) in R" be defined by

k„_x A""J+ + k0 = P1(\)Q(\), (4.11)

we have

p{X\ A,bkT\\) = e~x{exX'Pl(X)P2(X) + Pl(X)Q{\)}

= e-V1(A){exA'P2(A) + Qx(X) P2(X) + 02(A)}

= e-'P.i A){[A'eA + 01(A)]i>2(A) + 0,(A)}

= e-xP1(X){P2(X)H(\) + Q2(\)}, (4.12)
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which is stable. Thus, we have proved that [A, b] is 1-stabilizable. Now, for any r > 0, we

know that [rA,b] is still completely controllable and also we have

o(M)cC"UC°. (4.13)

Thus, by the above proof, we know that [rA, b] is 1-stabilizable. Thus, by Proposition 2.2,

[^4, Z>] is r-stabilizable. □

4.2. Multi-input case. Now, we consider a multi-input system [A, B] which is completely

controllable. Then, by p. 44 of [11], we have the following representation.

'A

A,

where, for 1 < j < I,

B =

1 ̂ 11 ^12 ' ' ' ^1/ * '

b22 ■■■ b2l *

(4.14)

A, bn *
' I nXn \ 11 In X m,

aj

1 0 1

0

0 1

-aJ0 -a{ ~aJ„ 2 ~aJ x

bjj =

'0^

, (4.15)

\ ' J
■ I nj X nj

and * represents the entries in which we are not interested. It is clear that in this case, we

must have m > /. Now, we let

where

i i-
kT11

K

Then, we have

Mi
A + BK =

kT22

*=(q) (4A6)

k-: e R" , 1<;</. (4.17)

A:r
kii

1 h kT h kT ■ ■ ■ h kT"llKn 12 22 wl/a//

^2

+
^22^22 ' ' ' ^llkJl

h kT
°UKU /

(4.18)

Thus, we get

/

p(\\A,BK-,r)= Wp{\\ A^bjjk^r), (4.19)
7 = 1

and we have the following result.
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Theorem 4.2. Suppose [A, B] is completely controllable and

o(A) c C~U C°. (4.20)

Then, for any r > 0, [A, B] is r-stabilizable.

Proof. By (4.15), we see that [Ar bjj] is completely controllable for each 1 <_/'</. Also,

we have that

o(Aj) C o(A) C C~U C°, (4.21)

Thus, by Theorem 4.1, for any r > 0, we can find kjj, such that p{\\ Aj, bjjkJj, r) is

stable for 1 < j < /. Hence, by (4.19), we get the r-stabilizability of [A, B], □

5. One-dimensional case. In this section, we consider a one-dimensional system

x(t) = ax(t) + u(t), (5.1)

where a e R. By Proposition 2.2, we know that (5.1) is r-stabilizable for r > 0, if and only

if for some k e R

x{t) = rax(t) + kx(t — l) (5.2)

is asymptotically stable. It is easy to see that

p(\\ra,k\\) = X — ra — e~xk

= e~x[ex(A — ra) — k], (5.3)

Let us cite the following theorem due to Hayes.

Theorem 5.1 ([6]). All the roots of

zez — pez — q = 0 (5-4)

have negative real parts (where, p, q e R) iff

(a) p < 1,

(b) p < ~q < >]al + p2
where, for p = 0, ax = v/2\ and for p ¥= 0, 0 < ax < it, ax = p tan av

As a consequence of Hayes' Theorem, we have

Theorem 5.2. System (5.1) is r-stabilizable iff

ra < 1. (5-5)

Proof. We know that system (5.1) is r-stabilizable if and only if for some k e R (see

(5-3)),

ex(X - ra) - k = 0 (5.6)

has no roots in C + U C°. Then, we take p to be ra and we can find k = q satisfying (b) of

Theorem 5.1. Hence our theorem follows. □

Moreover, for system (5.1), we have the following:

Theorem 5.3. Suppose k e R, r > 0, such that [a, k\ r] is asymptotically stable. Then, for

any r e [0, r], [a, k\ r] is also asymptotically stable.



386 JIONGMIN YONG

Remark 5.4. This theorem says that if k can be used to r-stabilize system (5.1), then it

also can be used to r-stabilize (5.1), for any r e [0, r].

Proof of Theorem 5.3. In our case, by Theorem 5.1, we have

ra < 1

ra < -rk < ja2 + r2a2,

where, for a = 0, al = it/2; for a + 0, 0 < al < it, ax = ra tan ax. Then, we have

a + k < 0. (5.8)

This implies that [a, k; 0] is asymptotically stable. Now, we consider r e (0, r}. It is clear

that (see (5.7))

I ra < 1
I ra < -rk

are always true. Thus, we only need to show that

(5.9)

— rk< y«i + r2a2 , (5.10)

where, for a = 0, ax = tt/2; for a + 0, 0 < ay < it, = ra tan av

Case 1. a = 0.

Then, we have ax = al = tt/2, and thus (5.10) is equivalent to

-rk<j. (5.11)

This is true because by (5.7) and r e (0, r], we have

77 77

2r < 2>

, 77 77 / _ _ \

(5-12)

Thus, our theorem is true for this case.

Case 2. a =£ 0.

In order to have (5.10), it suffices to have

<5-»»

i.e.,

a\ /

r r

or, equivalently, by the definitions of a{ and aj,

tan2aj < tan2a,. (5.15)

(1) a > 0. We consider the function h(s) defined implicitly by

h(s) = s tan h(s), 0 < 5 < 1, 0 < h(s) < y. (5.16)

Since

h'(s) = tan h(s) + s sec2h(s) ■ h'(s)

= tan h(s) 4 , sec2h(s) ■ h'(s)
tan h (s)

- tanh(s) + 2h}*) , ■ h'(s), (5.17)
sin 2h (5)
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thus

h'(s) = tan h(s) l _ 2h(s)
sin 2 h(s)

1

<0, 0 < 5 < 1, 0 < h(s) < J, (5.18)

i.e., h(s) is decreasing. Thus

0 < al = h(ra) < h(ra) = ax<^r. (5.19)

Hence, (5.15) follows.

(2) a < 0. We consider the function h(s) defined implicitly by

h(s) = s tan h(s), — oo < 5 < 0, y < h(s) < ■n. (5.20)

We have

1 -h'(s) = tan h(s)

tan h(s) < I

ra < ra, we have

2 h(s) < o, — oo<5<0, ^ < h(s) < w, (5.21)
sin 2 h(s)

since tan/;(.s) < 0, sin2h(s) < 0 for tt/2 < h(s) < it. Thus, h{s) is decreasing. Noting

77 > aj = h(ra) > h(ra) = ax > y- (5-22)

Since tan x is increasing and negative for x e (77/2,77), we get (5.15). Hence our theorem

is proved. □

6. Some remarks. First of all, from the previous sections, we can easily prove the

following result.

Theorem 6.1. Suppose [ A, B] is completely controllable, and

o(A) c C~U C° u{a}, (6.1)

where a > 0, and the Jordan blocks of A corresponding to a are of order 1. Then, for any

r > 0, with ra < 1, the system [A, B] is r-stabilizable.

Secondly, we should note that Theorem 5.3 is not true in general for the higher-dimen-

sional case. To see this, we have the following.

Theorem 6.2. Let a > 0. Then, there exists a c e R such that

ex(A2 + a2) + c (6.2)

is stable iff

sin a # 0. (6.3)

The proof is just a modification of that of Lemma 3.2.

Now, we consider a two-dimensional system with

* = { °, 1). *-(?) (6-4)
-a2 0/' \1

and sin a ¥= 0, a > 77. Then, we have c e R such that (6.2) is stable. Thus, if we take

*-( oC), (6-5)
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then we have

p(\~, A, bkT\\) = [ex(A2 + a2) + c\e~x, (6-6)

which is stable. Thus, [A, bkT\ 1] is asymptotically stable. However, if we take

0 < r = — < 1, (6.7)
a

then sin(ra) = 0. Thus, by Theorem 6.2,

p(X\ A,bkT\ r) = e~Xr(\2 + a2) + c

e~Xr

r2
{ e(Ar) [(rX)2 +(ra)2] + r2c| (6.8)

can not be stable; i.e., [A, bkT\ r] is not asymptotically stable.

Finally, let us suggest some natural questions to be solved.

(1) From the discussion of the one-dimensional case (Theorem 5.2), it seems true that a

completely controllable system [A, B] is r-stabilizable iff

r • sup{Re\| A e a(y4)} < 1. (6.9)

(2) Under what conditions on A does Theorem 5.3 remain true for the system [A, B]?
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