STABILIZATION OF LINEAR SYSTEMS BY TIME-DELAY FEEDBACK CONTROLS*

By
JIONGMIN YONG
Purdue University

Abstract

The notion of r-stabilizability of linear autonomous systems is introduced. If the system $[A, B]$ is completely controllable and the spectrum of A is contained in the left half of the complex plane then the system is r-stabilizable for any $r>0$. Finally, a one-dimensional case is discussed.

1. Introduction. We consider the following system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t), \tag{1.1}
\end{equation*}
$$

where A is an $(n \times n)$-matrix, B is an $(n \times m)$-matrix, $x \in \mathbf{R}^{n}, u \in \mathbf{R}^{m}$, and $t \in \mathbf{R}$. (Throughout this paper, all the matrices and vectors are real.) It is well known that (see [11], for example) if $[A, B]$ is completely controllable, then for any set $\Lambda=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\} \subset \mathbf{C}$, with the property that

$$
\begin{equation*}
\Lambda^{*} \stackrel{\Delta}{=}\left\{\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{n}\right\}=\Lambda \tag{1.2}
\end{equation*}
$$

there exists an $(m \times n)$-matrix K such that

$$
\begin{equation*}
\sigma(A+B K)=\Lambda \tag{1.3}
\end{equation*}
$$

Here, $\sigma(A+B K)$ denotes the spectrum of $A+B K$. In particular, if we let $\Lambda \subset \mathbf{C}^{-} \stackrel{\Delta}{=}\{\lambda$ $\in \mathbf{C} \mid \operatorname{Re} \lambda<0\}$, then, under the following feedback control,

$$
\begin{equation*}
u(t)=K x(t) \tag{1.4}
\end{equation*}
$$

the system (1.1) is asymptotically stable.
A feedback control of the form (1.4) is not quite realistic because we usually have time delays. Thus, instead of (1.4) we should consider a feedback control of the form

$$
\begin{equation*}
u(t)=K x(t-r) \tag{1.5}
\end{equation*}
$$

[^0]where $r>0$ is a time lag. By substituting (1.5) into (1.1) we get
\[

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B K x(t-r) . \tag{1.6}
\end{equation*}
$$

\]

By [10], we know that, if we choose K such that the system

$$
\begin{equation*}
\dot{x}(t)=(A+B K) x(t) \tag{1.7}
\end{equation*}
$$

is asymptotically stable, then for sufficiently small $r>0$, (1.6) is also asymptotically stable. On the other hand, in [5] it was proved that if the system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+A_{0} x(t-r) \tag{1.8}
\end{equation*}
$$

is asymptotically stable for all $r>0$, then

$$
\begin{equation*}
\sigma(A) \subseteq \mathbf{C}^{-} \tag{1.9}
\end{equation*}
$$

Thus, if (1.9) is not satisfied, or equivalently, if the system

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{1.10}
\end{equation*}
$$

is not asymptotically stable, then for any given K, the system (1.6) can not be asymptotically stable for all $r>0$. Hence, a natural question can be asked. For any given $r>0$, does there exist a K such that (1.6) is asymptotically stable? This is the question we will study in this paper.
2. Preliminaries. For any entire function $H(z)$, we let

$$
\begin{equation*}
\mathscr{N}(H) \equiv \mathscr{N}(H(\cdot)) \stackrel{\Delta}{=}\{z \in \mathbf{C} \mid H(z)=0\} \tag{2.1}
\end{equation*}
$$

We denote a system of form (1.8) by $\left[A, A_{0}, r\right]$. We define

$$
\begin{equation*}
p\left(\lambda ; A, A_{0} ; r\right)=\operatorname{det}\left(\lambda I-A-A_{0} e^{-r \lambda}\right) \tag{2.2}
\end{equation*}
$$

Definition 2.1. Let $r>0$ and $[A, B]$ be given. System $[A, B]$ is said to be r-stabilizable if there exists a K such that $[A, B K ; r]$ is asymptotically stable.

It is well known that (see [3]) system $\left[A, A_{0} ; r\right]$ is asymptotically stable if and only if

$$
\begin{equation*}
\mathscr{N}\left(p\left(\cdot ; A, A_{0} ; r\right)\right) \subseteq \mathbf{C}^{--} \tag{2.3}
\end{equation*}
$$

Let us observe the following:

$$
\begin{align*}
p\left(\lambda ; A, A_{0} ; r\right) & \equiv \operatorname{det}\left(\lambda I-A-A_{0} e^{-r \lambda}\right) \\
& =\frac{1}{r^{n}} \operatorname{det}\left((r \lambda) I-r A-r A_{0} e^{-(r \lambda)}\right) \\
& =\frac{1}{r^{n}} p\left(r \lambda ; r A, r A_{0} ; 1\right) \tag{2.4}
\end{align*}
$$

Thus, (2.3) is equivalent to the following:

$$
\begin{equation*}
\mathscr{N}\left(p\left(\cdot, r A, r_{f}^{\prime} \mathbf{i}_{,} ; 1\right)\right) \subseteq \mathbf{C}^{-} \tag{2.5}
\end{equation*}
$$

Hence, we get
Proposition 2.2. Let $r>0,[A, B]$ be given. Then, $[A, B]$ is r-stabilizable if and only if [$r A, B$] is 1-stabilizable.

This proposition shows that we only need to consider the case that $r=1$. Now, for $r=1$, we have

$$
\begin{align*}
p\left(\lambda ; A, A_{0} ; 1\right) & =P(\lambda)+Q(\lambda) e^{-\lambda} \\
& =e^{-\lambda}\left[e^{\lambda} P(\lambda)+Q(\lambda)\right] \equiv e^{-\lambda} H(\lambda), \tag{2.6}
\end{align*}
$$

where $\operatorname{deg} P=n, \operatorname{deg} Q \leqslant n-1$, and $P(\lambda)$ has the form

$$
\begin{equation*}
P(\lambda)=\lambda^{n}+\cdots . \tag{2.7}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\mathscr{N}(H)=\mathscr{N}\left(p\left(\cdot ; A, A_{0} ; 1\right)\right) \tag{2.8}
\end{equation*}
$$

Definition 2.3. An entire function $H(\lambda)$ is said to be stable if

$$
\begin{equation*}
\mathscr{N}(H) \subseteq \mathbf{C}^{-} . \tag{2.9}
\end{equation*}
$$

Thus, from (2.8), we know that system $\left[A, A_{0} ; 1\right]$ is asymptotically stable if and only if $H(\lambda)$ defined by (2.6) is stable.

We now quote some basic results, which we will use in the sequel, about the stability of some elementary transcendental functions.

Let $h(z, t)$ be a polynomial of the form

$$
\begin{equation*}
h(z, t)=P(z) t+Q(z), \tag{2.10}
\end{equation*}
$$

where $P(z), Q(z)$ are polynomials, $\operatorname{deg} P=n$, $\operatorname{deg} Q \leqslant n-1$, and P has the form (2.7). Let

$$
\begin{equation*}
H(z)=h\left(z, e^{z}\right) . \tag{2.11}
\end{equation*}
$$

Then, for $z=i y, y \in \mathbf{R}$, we have real-valued functions $F(y)$ and $G(y)$, such that

$$
\begin{equation*}
H(i y)=F(y)+i G(y) . \tag{2.12}
\end{equation*}
$$

Then, we have the following theorem due to Pontryagin [9]. (See also [1] and [4].)
Theorem 2.4. If $H(z)$ is stable, then all the zeros of $F(y)$ and $G(y)$ are real and alternating. Moreover,

$$
\begin{equation*}
G^{\prime}(y) F(y)-G(y) F^{\prime}(y)>0 \tag{2.13}
\end{equation*}
$$

for all $y \in \mathbf{R}$. Conversely, $H(z)$ is stable if one of the following holds.
(a) All the zeros of $F(y)$ and $G(y)$ are real and alternating and (2.13) holds for at least one point y.
(b) All the zeros of $F(y)$ are real, and for each zero $y=y_{0}$,

$$
\begin{equation*}
F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)<0 . \tag{2.14}
\end{equation*}
$$

(c) All the zeros of $G(y)$ are real, and for each zero $y=y_{0}$,

$$
\begin{equation*}
G^{\prime}\left(y_{0}\right) F\left(y_{0}\right)>0 . \tag{2.15}
\end{equation*}
$$

To close this section, we make the following simple remark.
Remark 2.5. Since $H(z)$ is entire and takes real values on the real-axis, by the Schwarz Reflection Principle, we know that $F(y)$ is an even function and $G(y)$ is an odd function.
3. Fundamental lemmas. We are going to prove two fundamental results in this section. These results will play a crucial role in proving our main result.

In this section, we always assume that $H(z)$ is of the form (2.11) and that $F(y)$ and $G(y)$ are defined by (2.12).
Lemma 3.1. Suppose $H(z)$ is stable. Then, there exists a $c \in \mathbf{R}$ such that

$$
\begin{equation*}
H_{1}(z) \stackrel{\Delta}{=} z H(z)+c \tag{3.1}
\end{equation*}
$$

is stable.
Proof. Since $H(z)$ is stable, by Remark 2.5, we have

$$
\begin{equation*}
0 \neq H(0)=F(0)+i G(0)=F(0) \tag{3.2}
\end{equation*}
$$

Thus, without loss of generality, we assume $F(0)>0$. By (3.1), we have

$$
\begin{align*}
H_{1}(i y) & =i y(F(y)+i G(y))+c \\
& =[-y G(y)+c]+i y F(y) \\
& =F_{1}(y)+i G_{1}(y), \tag{3.3}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
F_{1}(y)=c-y G(y) \tag{3.4}\\
G_{1}(y)=y F(y)
\end{array}\right.
$$

Since $H(z)$ is stable, by Theorem 2.4 , we know that all the zeros of $F(y)$ are real. Thus, all the zeros of $G_{1}(y)$ are real.

Now, we choose $c \in \mathbf{R}$ such that

$$
\begin{equation*}
0<c<\frac{1}{2} \inf \left\{\left|y_{0} G\left(y_{0}\right)\right| \mid F\left(y_{0}\right)=0\right\} . \tag{3.5}
\end{equation*}
$$

Note that the right-hand side of (3.5) is positive because it is easy to see that

$$
\begin{equation*}
\inf _{y \in \mathbf{R}}|H(i y)|>0 \tag{3.6}
\end{equation*}
$$

By choosing such a c, we have

$$
\begin{equation*}
G_{1}^{\prime}(0) F_{1}(0)=F(0) c>0 . \tag{3.7}
\end{equation*}
$$

Also, for any $y_{0} \in \mathscr{N}(F)$, we have

$$
\begin{align*}
G_{1}^{\prime}\left(y_{0}\right) F_{1}\left(y_{0}\right) & =\left(F\left(y_{0}\right)+y_{0} F^{\prime}\left(y_{0}\right)\right)\left(c-G\left(y_{0}\right) y_{0}\right) \\
& =y_{0} F^{\prime}\left(y_{0}\right)\left(c-y_{0} G\left(y_{0}\right)\right) \\
& \geqslant-y_{0}^{2} F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)-\left|c y_{0} F^{\prime}\left(y_{0}\right)\right| \\
& \geqslant-y_{0}^{2} F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)-\frac{1}{2}\left|y_{0} G\left(y_{0}\right) \cdot y_{0} F^{\prime}\left(y_{0}\right)\right| \\
& =-\frac{1}{2} y_{0}^{2} F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)>0 . \tag{3.8}
\end{align*}
$$

Here, we have used (2.13). Since it is clear that

$$
\begin{equation*}
\mathscr{N}\left(G_{1}\right)=\mathscr{N}(F) \cup\{0\} \tag{3.9}
\end{equation*}
$$

it follows from (c) of Theorem 2.4 that $H_{1}(z)$ is stable.

From the proof, we see that c is explicitly determined by the following:

$$
\left\{\begin{array}{l}
F(0) c>0, \tag{3.10}\\
|c|<\inf \left\{\left|y_{0} G\left(y_{0}\right)\right| \mid y_{0} \in \mathscr{N}(F)\right\} .
\end{array}\right.
$$

Lemma 3.2. Suppose $H(z)$ is stable. Then, for any $a>0$, there exist $b, c \in \mathbf{R}$, such that

$$
\begin{equation*}
H_{2}(z)=\left(z^{2}+a^{2}\right) H(z)+b z+c \tag{3.11}
\end{equation*}
$$

is stable.
Proof. From (3.11), we have

$$
\begin{align*}
H_{2}(i y) & =\left(a^{2}-y^{2}\right) H(i y)+b i y+c \\
& =\left(a^{2}-y^{2}\right)(F(y)+i G(y))+b y i+c \\
& =\left[\left(a^{2}-y^{2}\right) F(y)+c\right]+i\left[\left(a^{2}-y^{2}\right) G(y)+b y\right] \\
& =F_{2}(y)+i G_{2}(y), \tag{3.12}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
F_{2}(z)=\left(a^{2}-y^{2}\right) F(y)+c \tag{3.13}\\
G_{2}(z)=\left(a^{2}-y^{2}\right) G(y)+b y .
\end{array}\right.
$$

Now, we have, by the stability of $H(z)$, that

$$
\begin{equation*}
0 \neq H(i a)=F(a)+i G(a) . \tag{3.14}
\end{equation*}
$$

Thus, we have two cases.
Case I. $F(a) \neq 0$. Then, we take

$$
\left\{\begin{array}{l}
c=0 \tag{3.15}\\
b F(a)>0 \\
|b| \leqslant \frac{1}{2} \inf \left\{\left.\frac{\left|a^{2}-y_{0}^{2}\right|}{\left|y_{0}\right|}\left|G\left(y_{0}\right)\right| \right\rvert\, y_{0} \in \mathscr{N}(F)\right\} \stackrel{\Delta}{=} \delta_{1} .
\end{array}\right.
$$

By an argument similar to that used in the proof of Lemma 3.1, we have $\delta_{1}>0$. It is clear that

$$
\begin{equation*}
\mathscr{N}\left(F_{2}\right)=\mathscr{N}(F) \cup\{ \pm a\} . \tag{3.16}
\end{equation*}
$$

Thus, all zeros of F_{2} are real. Observe that

$$
\begin{equation*}
F_{2}^{\prime}(y) G_{2}(y)=\left\{\left(a^{2}-y^{2}\right) F^{\prime}(y)-2 y F(y)\right\}\left[\left(a^{2}-y^{2}\right) G(y)+b y\right] . \tag{3.17}
\end{equation*}
$$

Hence, we have, by (3.15), that

$$
\begin{equation*}
F_{2}^{\prime}(a) G_{2}(a)=-2 a F(a) \cdot b a=-2 a^{2} b F(a)<0 . \tag{3.18}
\end{equation*}
$$

By Remark 2.5, $F(y)$ is an even function. Thus,

$$
\begin{equation*}
F_{2}^{\prime}(-a) G_{2}(-a)=-2 a^{2} b F(-a)=-2 a^{2} b F(a)<0 . \tag{3.19}
\end{equation*}
$$

Now, for any $y_{0} \in \mathscr{N}(F)$, we have

$$
\begin{align*}
F_{2}^{\prime}\left(y_{0}\right) G_{2}\left(y_{0}\right) & =\left(a^{2}-y_{0}^{2}\right) F^{\prime}\left(y_{0}\right)\left[\left(a^{2}-y_{0}^{2}\right) G\left(y_{0}\right)+b y_{0}\right] \\
& \leqslant-\left(a^{2}-y_{0}^{2}\right)^{2}\left|F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)\right|+\left|b y_{0}\right|\left|F^{\prime}\left(y_{0}\right)\right|\left|\left(a^{2}-y_{0}^{2}\right)\right| \\
& \leqslant-\frac{1}{2}\left(a^{2}-y_{0}^{2}\right)^{2}\left|F^{\prime}\left(y_{0}\right) G\left(y_{0}\right)\right|<0 . \tag{3.20}
\end{align*}
$$

Here, we have used (2.13). Thus, by Theorem 2.4, part (b), we get the stability of $H_{2}(z)$.
Case II. $G(a) \neq 0$. Then, we take

$$
\left\{\begin{array}{l}
b=0, \tag{3.21}\\
c G(a)<0, \\
|c| \leqslant \frac{1}{2} \inf \left\{\left|a^{2}-y_{0}^{2}\right|\left|F\left(y_{0}\right)\right| \mid y_{0} \in \mathscr{N}(G)\right\} \stackrel{\Delta}{=} \delta_{2} .
\end{array}\right.
$$

An argument similar to that used above gives $\delta_{2}>0$. In this case, we have

$$
\begin{equation*}
\mathscr{N}\left(G_{2}\right)=\mathscr{N}(G) \cup\{ \pm a\} \tag{3.22}
\end{equation*}
$$

We have

$$
\begin{equation*}
F_{2}(a) G_{2}^{\prime}(a)=c(-2 a G(a))=-2 a c G(a)>0 . \tag{3.23}
\end{equation*}
$$

Since $G(y)$ is an odd function (by Remark 2.5), we also have

$$
\begin{equation*}
F_{2}(-a) G_{2}^{\prime}(-a)=2 a c G(-a)=-2 a c G(a)>0 . \tag{3.24}
\end{equation*}
$$

Now, for any $y_{0} \in \mathscr{N}(G)$, by (3.21) and (2.15), we have

$$
\begin{align*}
F_{2}\left(y_{0}\right) G_{2}^{\prime}\left(y_{0}\right) & =\left[\left(a^{2}-y_{0}^{2}\right) F\left(y_{0}\right)+c\right]\left(a^{2}-y_{0}^{2}\right) G^{\prime}\left(y_{0}\right) \\
& \geqslant\left(a^{2}-y_{0}^{2}\right)^{2} F\left(y_{0}\right) G^{\prime}\left(y_{0}\right)-\left|c\left(a^{2}-y_{0}^{2}\right) G^{\prime}\left(y_{0}\right)\right| \\
& \geqslant \frac{1}{2}\left(a^{2}-y_{0}^{2}\right)^{2} F\left(y_{0}\right) G^{\prime}\left(y_{0}\right)>0 . \tag{3.25}
\end{align*}
$$

Thus, by Theorem 2.4, part (c), $H_{2}(z)$ is stable.

4. Stabilization.

4.1. Single-input case. Suppose we are given a single-input system $[A, b]$ which is completely controllable. Then, it is well known that (cf. [11]) we have the following canonical representation:

$$
A=\left(\begin{array}{ccccc}
0 & 1 & & & \tag{4.1}\\
& 0 & \ddots & & \\
& & \ddots & \ddots & \\
& & & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right), \quad b=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Theorem 4.1. Suppose $[A, b]$ is completely controllable, and

$$
\begin{equation*}
\sigma(A) \subseteq \mathbf{C}^{-} \cup \mathbf{C}^{0} \equiv\{\lambda \in \mathbf{C} \mid \operatorname{Re} \lambda \leqslant 0\} \tag{4.2}
\end{equation*}
$$

Then, for any $r>0,[A, b]$ is r-stabilizable.

Proof. We first prove that $[A, b]$ is 1 -stabilizable. We let

$$
\begin{equation*}
k=\left(-k_{0},-k_{1}, \ldots,-k_{n-1}\right)^{T} \in \mathbf{R}^{n} \tag{4.3}
\end{equation*}
$$

Then we have, by assuming (4.1), that

$$
\begin{align*}
p\left(\lambda ; A, b k^{T} ; 1\right) & \equiv \operatorname{det}\left(\lambda I-A-b k^{T} e^{-\lambda}\right) \\
& =\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}+e^{-\lambda}\left(k_{n-1} \lambda^{n-1}+\cdots+k_{0}\right) \\
& =e^{-\lambda}\left\{e^{\lambda}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}\right)+\left(k_{n-1} \lambda^{n-1}+\cdots+k_{0}\right)\right\} . \tag{4.4}
\end{align*}
$$

By (4.2), we can assume that

$$
\begin{equation*}
\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}=\lambda^{\prime} P_{1}(\lambda) P_{2}(\lambda) \tag{4.5}
\end{equation*}
$$

where $l \geqslant 0$ and

$$
\left\{\begin{array}{l}
\mathscr{N}\left(P_{1}\right) \subseteq \mathbf{C}^{-} \equiv\{\lambda \in \mathbf{C} \mid \operatorname{Re} \lambda<0\} \tag{4.6}\\
\mathscr{N}\left(P_{2}\right) \subseteq \mathbf{C}^{0} \backslash\{0\} \equiv\{\lambda \in \mathbf{C} \backslash\{0\} \mid \operatorname{Re} \lambda=0\}
\end{array}\right.
$$

We claim that there exists a polynomial, Q_{1}, with real coefficients and $\operatorname{deg} Q_{1}<l$, such that

$$
\begin{equation*}
H(\lambda) \stackrel{\Delta}{=} \lambda^{\prime} e^{\lambda}+Q_{1}(\lambda) \tag{4.7}
\end{equation*}
$$

is stable. If $l=0$, we take $Q_{1}(\lambda) \equiv 0$. If $l>0$, consider e^{λ} which is of the form (2.11) and is stable. By Lemma 3.1, there exists a $c_{1} \in \mathbf{R}$, such that $\lambda e^{\lambda}+c_{1}$ is stable. Again there exists a $c_{2} \in \mathbf{R}$ such that

$$
\begin{equation*}
\lambda\left(\lambda e^{\lambda}+c_{1}\right)+c_{2}=\lambda^{2} e^{\lambda}+c_{1} \lambda+c_{2} \tag{4.8}
\end{equation*}
$$

is stable. By induction, our claim follows. Now, by applying Lemma 3.2, and using a similar argument as above, we can find a polynomial $Q_{2}(\lambda)$ with real coefficients and with $\operatorname{deg} Q_{2}<\operatorname{deg} P_{2}$, such that $P_{2}(\lambda) H(\lambda)+Q_{2}(\lambda)$ is stable. The polynomial Q defined by

$$
\begin{equation*}
Q(\lambda)=Q_{1}(\lambda) P_{2}(\lambda)+Q_{2}(\lambda) \tag{4.9}
\end{equation*}
$$

then has real coefficients, and satisfies

$$
\begin{align*}
\operatorname{deg} Q & \leqslant \max \left\{\operatorname{deg} Q_{1}+\operatorname{deg} P_{2}, \operatorname{deg} Q_{2}\right\} \\
& =\operatorname{deg} Q_{1}+\operatorname{deg} P_{2}<l+\operatorname{deg} P_{2} \tag{4.10}
\end{align*}
$$

If we let the vector $k^{T}=\left(k_{0}, \ldots, k_{n-1}\right)$ in R^{n} be defined by

$$
\begin{equation*}
k_{n-1} \lambda^{n-1}+\cdots+k_{0}=P_{1}(\lambda) Q(\lambda) \tag{4.11}
\end{equation*}
$$

we have

$$
\begin{align*}
p\left(\lambda ; A, b k^{T} ; 1\right) & =e^{-\lambda}\left\{e^{\lambda} \lambda^{\prime} P_{1}(\lambda) P_{2}(\lambda)+P_{1}(\lambda) Q(\lambda)\right\} \\
& =e^{-\lambda} P_{1}(\lambda)\left\{e^{\lambda} \lambda^{\prime} P_{2}(\lambda)+Q_{1}(\lambda) P_{2}(\lambda)+Q_{2}(\lambda)\right\} \\
& =e^{-\lambda} P_{1}(\lambda)\left\{\left[\lambda^{\prime} e^{\lambda}+Q_{1}(\lambda)\right] P_{2}(\lambda)+Q_{2}(\lambda)\right\} \\
& =e^{-\lambda} P_{1}(\lambda)\left\{P_{2}(\lambda) H(\lambda)+Q_{2}(\lambda)\right\}, \tag{4.12}
\end{align*}
$$

which is stable. Thus, we have proved that $[A, b]$ is 1 -stabilizable. Now, for any $r>0$, we know that $[r A, b]$ is still completely controllable and also we have

$$
\begin{equation*}
\sigma(r A) \subseteq \mathbf{C}^{-} \cup \mathbf{C}^{0} \tag{4.13}
\end{equation*}
$$

Thus, by the above proof, we know that $[r A, b]$ is 1-stabilizable. Thus, by Proposition 2.2, [A, b] is r-stabilizable.
4.2. Multi-input case. Now, we consider a multi-input system $[A, B]$ which is completely controllable. Then, by p. 44 of [11], we have the following representation.

$$
A=\left(\begin{array}{cccc}
A_{1} & & & \tag{4.14}\\
& A_{2} & & \\
& & \ddots & \\
& & & A_{l}
\end{array}\right)_{n \times n}, \quad B=\left(\begin{array}{ccccc}
b_{11} & b_{12} & \cdots & b_{1 l} & * \\
& b_{22} & \cdots & b_{2 l} & * \\
& & \ddots & \vdots & \vdots \\
& & & b_{l l} & *
\end{array}\right)_{n \times m,}
$$

where, for $1 \leqslant j \leqslant l$,

$$
A_{j}=\left(\begin{array}{ccccc}
0 & 1 & & \tag{4.15}\\
& & \ddots & & \\
& 0 & \ddots & & \\
-a_{0}^{j} & -a_{1}^{j} & \cdots & -a_{n,-2}^{j} & -a_{n,-1}^{j}
\end{array}\right)_{n, \times n,} \quad b_{j j}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)_{n, \times 1}
$$

and * represents the entries in which we are not interested. It is clear that in this case, we must have $m \geqslant l$. Now, we let

$$
\begin{equation*}
K=\binom{\hat{K}}{0}_{m \times n} \tag{4.16}
\end{equation*}
$$

where

$$
\hat{K}=\left(\begin{array}{cccc}
k_{11}^{T} & & & \tag{4.17}\\
& k_{22}^{T} & & \\
& & \ddots & \\
& & & k_{l \prime}^{T}
\end{array}\right)_{1 \times n} \quad k_{j j} \in \mathbf{R}^{n_{j}}, 1 \leqslant j \leqslant l .
$$

Then, we have

$$
A+B K=\left(\begin{array}{cccc}
A_{1} & & & \tag{4.18}\\
& A_{2} & & \\
& & \ddots & \\
& & & A_{l}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} k_{11}^{T} & b_{12} k_{22}^{T} & \cdots & b_{11} k_{l l}^{T} \\
& b_{22} k_{22}^{T} & \cdots & b_{21} k_{l l}^{T} \\
& & \ddots & \vdots \\
& & & b_{l l} k_{l l}^{T}
\end{array}\right)
$$

Thus, we get

$$
\begin{equation*}
p(\lambda ; A, B K ; r)=\prod_{j=1}^{\prime} p\left(\lambda ; A_{j}, b_{j j} k_{j j}^{T} ; r\right), \tag{4.19}
\end{equation*}
$$

and we have the following result.

Theorem 4.2. Suppose $[A, B]$ is completely controllable and

$$
\begin{equation*}
\sigma(A) \subseteq \mathbf{C}^{-} \cup \mathbf{C}^{0} \tag{4.20}
\end{equation*}
$$

Then, for any $r>0,[A, B]$ is r-stabilizable.
Proof. By (4.15), we see that $\left[A_{j}, b_{j j}\right]$ is completely controllable for each $1 \leqslant j \leqslant l$. Also, we have that

$$
\begin{equation*}
\sigma\left(A_{j}\right) \subseteq \sigma(A) \subseteq \mathbf{C}^{-} \cup \mathbf{C}^{0}, \quad 1 \leqslant j \leqslant l \tag{4.21}
\end{equation*}
$$

Thus, by Theorem 4.1, for any $r>0$, we can find $k_{j j}$, such that $p\left(\lambda ; A_{j}, b_{j j} k_{j j}^{T} ; r\right)$ is stable for $1 \leqslant j \leqslant l$. Hence, by (4.19), we get the r-stabilizability of $[A, B]$.
5. One-dimensional case. In this section, we consider a one-dimensional system

$$
\begin{equation*}
\dot{x}(t)=a x(t)+u(t) \tag{5.1}
\end{equation*}
$$

where $a \in \mathbf{R}$. By Proposition 2.2, we know that (5.1) is r-stabilizable for $r>0$, if and only if for some $k \in \mathbf{R}$

$$
\begin{equation*}
\dot{x}(t)=\operatorname{rax}(t)+k x(t-1) \tag{5.2}
\end{equation*}
$$

is asymptotically stable. It is easy to see that

$$
\begin{align*}
p(\lambda ; r a, k ; 1) & =\lambda-r a-e^{-\lambda} k \\
& =e^{-\lambda}\left[e^{\lambda}(\lambda-r a)-k\right] . \tag{5.3}
\end{align*}
$$

Let us cite the following theorem due to Hayes.
Theorem 5.1 ([6]). All the roots of

$$
\begin{equation*}
z e^{z}-p e^{z}-q=0 \tag{5.4}
\end{equation*}
$$

have negative real parts (where, $p, q \in \mathbf{R}$) iff
(a) $p<1$,
(b) $p<-q<\sqrt{a_{1}^{2}+p^{2}}$
where, for $p=0, a_{1}=\pi / 2$; and for $p \neq 0,0<a_{1}<\pi, a_{1}=p \tan a_{1}$.
As a consequence of Hayes' Theorem, we have
Theorem 5.2. System (5.1) is r-stabilizable iff

$$
\begin{equation*}
r a<1 . \tag{5.5}
\end{equation*}
$$

Proof. We know that system (5.1) is r-stabilizable if and only if for some $k \in \mathbf{R}$ (see (5.3)),

$$
\begin{equation*}
e^{\lambda}(\lambda-r a)-k=0 \tag{5.6}
\end{equation*}
$$

has no roots in $\mathbf{C}^{+} \cup \mathbf{C}^{0}$. Then, we take p to be $r a$ and we can find $k \equiv q$ satisfying (b) of Theorem 5.1. Hence our theorem follows.

Moreover, for system (5.1), we have the following:
Theorem 5.3. Suppose $k \in \mathbf{R}, r>0$, such that [$a, k ; r$] is asymptotically stable. Then, for any $\hat{r} \in[0, r],[a, k ; \hat{r}]$ is also asymptotically stable.

Remark 5.4. This theorem says that if k can be used to r-stabilize system (5.1), then it also can be used to \hat{r}-stabilize (5.1), for any $\hat{r} \in[0, r]$.

Proof of Theorem 5.3. In our case, by Theorem 5.1, we have

$$
\left\{\begin{array}{l}
r a<1 \tag{5.7}\\
r a<-r k<\sqrt{a_{1}^{2}+r^{2} a^{2}},
\end{array}\right.
$$

where, for $a=0, a_{1}=\pi / 2$; for $a \neq 0,0<a_{1}<\pi, a_{1}=r a \tan a_{1}$. Then, we have

$$
\begin{equation*}
a+k<0 \tag{5.8}
\end{equation*}
$$

This implies that $[a, k ; 0]$ is asymptotically stable. Now, we consider $\hat{r} \in(0, r]$. It is clear that (see (5.7))

$$
\left\{\begin{array}{l}
\hat{r} a<1 \tag{5.9}\\
\hat{r} a<-\hat{r} k
\end{array}\right.
$$

are always true. Thus, we only need to show that

$$
\begin{equation*}
-\hat{r} k<\sqrt{\hat{a}_{1}^{2}+\hat{r}^{2} a^{2}}, \tag{5.10}
\end{equation*}
$$

where, for $a=0, \hat{a}_{1}=\pi / 2$; for $a \neq 0,0<\hat{a}_{1}<\pi, \hat{a}_{1}=\hat{r} a \tan \hat{a}_{1}$.
Case 1. $a=0$.
Then, we have $a_{1}=\hat{a}_{1}=\pi / 2$, and thus (5.10) is equivalent to

$$
\begin{equation*}
-r k<\frac{\pi}{2} \tag{5.11}
\end{equation*}
$$

This is true because by (5.7) and $\hat{r} \in(0, r]$, we have

$$
\begin{equation*}
-k<\frac{\pi}{2 r} \leqslant \frac{\pi}{2 \hat{r}} . \tag{5.12}
\end{equation*}
$$

Thus, our theorem is true for this case.
Case 2. $a \neq 0$.
In order to have (5.10), it suffices to have

$$
\begin{equation*}
\sqrt{\left(\frac{a_{1}}{r}\right)^{2}+a^{2}} \leqslant \sqrt{\left(\frac{\hat{a}_{1}}{\hat{r}}\right)+a^{2}}, \tag{5.13}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{a_{1}^{2}}{r^{2}} \leqslant \frac{\hat{a}_{1}^{2}}{\hat{r}^{2}}, \tag{5.14}
\end{equation*}
$$

or, equivalently, by the definitions of a_{1} and \hat{a}_{1},

$$
\begin{equation*}
\tan ^{2} a_{1} \leqslant \tan ^{2} \hat{a}_{1} . \tag{5.15}
\end{equation*}
$$

(1) $a>0$. We consider the function $h(s)$ defined implicitly by

$$
\begin{equation*}
h(s)=s \tan h(s), \quad 0<s<1,0<h(s)<\frac{\pi}{2} . \tag{5.16}
\end{equation*}
$$

Since

$$
\begin{align*}
h^{\prime}(s) & =\tan h(s)+s \sec ^{2} h(s) \cdot h^{\prime}(s) \\
& =\tan h(s)+\frac{h(s)}{\tan h(s)} \sec ^{2} h(s) \cdot h^{\prime}(s) \\
& =\tan h(s)+\frac{2 h(s)}{\sin 2 h(s)} \cdot h^{\prime}(s) \tag{5.17}
\end{align*}
$$

thus

$$
\begin{equation*}
h^{\prime}(s)=\tan h(s) \cdot\left[1-\frac{2 h(s)}{\sin 2 h(s)}\right]^{-1}<0, \quad 0<s<1, \quad 0<h(s)<\frac{\pi}{2} \tag{5.18}
\end{equation*}
$$

i.e., $h(s)$ is decreasing. Thus

$$
\begin{equation*}
0<a_{1}=h(r a) \leqslant h(\hat{r} a)=\hat{a}_{1}<\frac{\pi}{2} . \tag{5.19}
\end{equation*}
$$

Hence, (5.15) follows.
(2) $a<0$. We consider the function $h(s)$ defined implicitly by

$$
\begin{equation*}
h(s)=s \tan h(s), \quad-\infty<s<0, \frac{\pi}{2}<h(s)<\pi \tag{5.20}
\end{equation*}
$$

We have

$$
\begin{equation*}
h^{\prime}(s)=\tan h(s) \cdot\left[1-\frac{2 h(s)}{\sin 2 h(s)}\right]^{-1}<0, \quad-\infty<s<0, \frac{\pi}{2}<h(s)<\pi \tag{5.21}
\end{equation*}
$$

since $\tan h(s)<0, \sin 2 h(s)<0$ for $\pi / 2<h(s)<\pi$. Thus, $h(s)$ is decreasing. Noting $r a \leqslant \hat{r} a$, we have

$$
\begin{equation*}
\pi>a_{1}=h(r a) \geqslant h(\hat{r} a)=\hat{a}_{1}>\frac{\pi}{2} . \tag{5.22}
\end{equation*}
$$

Since $\tan x$ is increasing and negative for $x \in(\pi / 2, \pi)$, we get (5.15). Hence our theorem is proved.
6. Some remarks. First of all, from the previous sections, we can easily prove the following result.

Theorem 6.1. Suppose $[A, B]$ is completely controllable, and

$$
\begin{equation*}
\sigma(A) \subseteq \mathbf{C}^{-} \cup \mathbf{C}^{0} \cup\{a\} \tag{6.1}
\end{equation*}
$$

where $a>0$, and the Jordan blocks of A corresponding to a are of order 1. Then, for any $r>0$, with $r a<1$, the system $[A, B]$ is r-stabilizable.

Secondly, we should note that Theorem 5.3 is not true in general for the higher-dimensional case. To see this, we have the following.

Theorem 6.2. Let $a>0$. Then, there exists a $c \in \mathbf{R}$ such that

$$
\begin{equation*}
e^{\lambda}\left(\lambda^{2}+a^{2}\right)+c \tag{6.2}
\end{equation*}
$$

is stable iff

$$
\begin{equation*}
\sin a \neq 0 . \tag{6.3}
\end{equation*}
$$

The proof is just a modification of that of Lemma 3.2.
Now, we consider a two-dimensional system with

$$
A=\left(\begin{array}{cc}
0 & 1 \tag{6.4}\\
-a^{2} & 0
\end{array}\right), \quad b=\binom{0}{1}
$$

and $\sin a \neq 0, a>\pi$. Then, we have $c \in \mathbf{R}$ such that (6.2) is stable. Thus, if we take

$$
\begin{equation*}
k=\binom{-c}{0} \tag{6.5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
p\left(\lambda ; A, b k^{T} ; 1\right)=\left[e^{\lambda}\left(\lambda^{2}+a^{2}\right)+c\right] e^{-\lambda} \tag{6.6}
\end{equation*}
$$

which is stable. Thus, $\left[A, b k^{T} ; 1\right]$ is asymptotically stable. However, if we take

$$
\begin{equation*}
0<r=\frac{\pi}{a}<1 \tag{6.7}
\end{equation*}
$$

then $\sin (r a)=0$. Thus, by Theorem 6.2,

$$
\begin{align*}
p\left(\lambda ; A, b k^{T} ; r\right) & =e^{-\lambda r}\left(\lambda^{2}+a^{2}\right)+c \\
& =\frac{e^{-\lambda r}}{r^{2}}\left\{e^{(\lambda r)}\left[(r \lambda)^{2}+(r a)^{2}\right]+r^{2} c\right\} \tag{6.8}
\end{align*}
$$

can not be stable; i.e., $\left[A, b k^{T} ; r\right]$ is not asymptotically stable.
Finally, let us suggest some natural questions to be solved.
(1) From the discussion of the one-dimensional case (Theorem 5.2), it seems true that a completely controllable system $[A, B]$ is r-stabilizable iff

$$
\begin{equation*}
r \cdot \sup \{\operatorname{Re} \lambda \mid \lambda \in \sigma(A)\}<1 \tag{6.9}
\end{equation*}
$$

(2) Under what conditions on A does Theorem 5.3 remain true for the system $[A, B]$?

Acknowledgment. The author would like to thank Professor L. D. Berkovitz for some help.

References

[1] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, London, 1963
[2] R. Datko, A procedure for determination of the exponential stability of certain differential-difference equations, Quart. Appl. Math. 36, 279-292 (1978)
[3] L. E. El'sgol'ts and S. B. Norkin, Introduction to the theory and application of differential equations with deviating arguments, Academic Press, New York, London, 1973
[4] J. K. Hale, Functional Differential Equations, Springer-Verlag, New York, Berlin, 1977
[5] J. K. Hale, E. F. Infante, and F. P. Tsen, Stability in linear delay equations, J. Math. Anal. Appl. 105, 535-555 (1985)
[6] N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc. 25, 226-232 (1950)
[7] Li, Xun-jing, On the absolute stability of systems with time lags, Acta Math. Sinica 13, 558-573 (1963), English transl. in Chinese Math. 4, 609-626 (1963)
[8] J. M. Mahaffy, A test for stability of linear differential delay equations, Quart. Appl. Math. 40, 193-202 (1982)
[9] L. S. Pontryagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl., Ser. 2, 1, 95-110 (1955)
[10] Yuan-Xun Qin, Iong-qing Liou, and Lian Wang, Effect of time-lags on stability of dynamical systems, Sci. Sinica 9, 719-747 (1960); English transl. in Chinese Math. 9, 169-198 (1967)
[11] W. M. Wonham, Linear multivariable control: A geometric approach, 2nd ed., Springer-Verlag, New York, Heidelberg, Berlin, 1979

[^0]: *Received June 23, 1986.
 This research was supported by the David Ross Fellowship of Purdue University.

