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1. Introduction. The question of partition of energy in the asymptotic form was first

investigated by Lax and Phillips [1] and Brodsky [2], Further, this problem has been

studied by Goldstein [3,4], In his elegant analysis of the abstract wave equation, Goldstein

applies the semigroup theory in order to obtain an equipartition theorem stating that the

difference of the kinetic energy and the potential energy vanishes as the time approaches

infinity. By means of the Paley-Wiener theorem, Duffin [5] has shown that if a solution of

the classical wave equation has compact support, then after a finite time the kinetic energy

of the wave is constant and equals the potential energy.

Levine [6] later treated an abstract version of Goldstein's approach by use of the

Lagrange identity method. His result represents a simplified proof that asymptotic

equipartition occurs between the Cesaro means of the kinetic and potential energies, a fact

first demonstrated by Goldstein [4], The asymptotic equipartition between the mean

kinetic and strain energies within the context of linear elastodynamics was established by

Day [7],

In this paper we consider the classical linear theory of thermoelasticity for inhomoge-

neous and anisotropic materials. We investigate the asymptotic partition of total energy

for the solutions of the initial boundary value problems of linear thermoelasticity. In fact,

we materialize the idea of partition in terms of the asymptotic behavior in the Cesaro

sense of various parts of the total energy associated to a solution. Thus we prove, among

other things, that the mean thermal energy tends to zero as time goes to infinity. We

demonstrate that the asymptotic equipartition occurs between the Cesaro means of the

kinetic and strain energies. This proves that thermal effects do not influence explicitly the

asymptotic equipartition of the mean kinetic and strain energies. Therefore, the result

established by Day in [7] for linear elastodynamics continues to hold in the framework of

dynamic linear thermoelasticity.
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The system in question consists of the hyperbolic equations of motion coupled with the

parabolic equation of energy and, therefore, does not belong to one of the categories

considered in previous papers. Of course, it is possible to include in our treatment suitably

abstract versions (see, for example, the approach devised by Levine in [8]), but since this

generalization is somewhat standard, we prefer instead to emphasize the technique itself in

the classical linear theory of thermoelasticity.

Our method of proof uses Levine's refinement of the Lagrange-Brun identities. This

method is a direct one and it does not rely on any special features of the thermoelastic

continuum such as the homogeneity and isotropy of the material.

Finally, we remark that for isotropic and homogeneous linear thermoelasticity, the

partition of energy for transverse and longitudinal waves was studied by Dassios and

Grillakis [9]. Thus, for transverse waves it is shown that the total energy is conserved and,

in finite time, is divided into equal parts of kinetic and strain energies. For longitudinal

waves it is established that the total energy is divided equally between the strain energy

and a convex combination (depending only on the coupling parameter) of the kinetic and

thermal energies after a large lapse of time. The results are established by means of

Fourier transform and asymptotic analysis.

2. Preliminaries. Throughout this paper we shall consider a thermoelastic solid occupy-

ing in the reference configuration the properly regular region B of Euclidean three-dimen-

sional space £3. We assume that B is bounded by the piecewise smooth surface dB [10].

The motion of the body is referred to the reference configuration and a fixed set of

rectangular Cartesian axes, relative to which B is at rest to the uniform temperature

e0 > o.
For a material point with configuration x at time t, let u(x,/) and d(x,t) be the

displacement and temperature deviation, respectively, from the natural state of the

reference configuration. By p(x) we denote the density at the point x of the natural state.

A superposed dot denotes the derivative with respect to the time variable and V denotes

the gradient operator. We denote by n the outward unit normal, by dV the element of

volume, and by dA the element of surface area.

In the absence of the body force and heat supply fields, the fundamental system of field

equations for the linear theory of thermoelasticity [11] consists of the equation of motion

pii = divS, (1)

the energy equation

cd = 0OM • E - divq. (2)

the stress-strain-temperature relation

S = C[E] + 0M, (3)

the heat conduction equation

q = -Kv0, (4)

and the strain-displacement relation

E = symvu. (5)
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Here E, S, and q are the strain, stress, and heat flux, respectively; while C, M, K, and c are

the elasticity, stress-temperature, conductivity, and specific heat fields, respectively. The

fourth-order tensor C is symmetric; that is, for any pair of symmetric (second-order)

tensors A and B

A • C[B] = B • C[A]. (6)

The stress-temperature tensor is symmetric,

M = Mr. (7)

Furthermore, we make the common assumption that the conductivity tensor K is symmet-

ric, i.e.,

K = Kr (8)

A further consequence of the heat conduction inequality is the following dissipation

inequality:

V0 • Kv0 > 0. (9)

In what follows we assume that the elasticity tensor C, the stress-temperature tensor M,

the conductivity tensor K, the specific heat c, and the density p are prescribed fields, and

that C, M, and K are smooth on B while c and p are continuous on B.

Introducing S and q from (3) and (4) into (1) and (2) and using the relations (5), (6),

and (7), we obtain the coupled system of linear thermoelastic equations

pu = div(C[vu] + 0M), (10)

c6 = 0OM • vii + div(Kv0), (11)

in B X (0, oo).

Let dBv dB2, 9fi3, and 3B4 be fixed subsets of 3B such that dBx U 3B2 = 3B} U 3B4 =

3 B and 3 B1 n 3B2 — 3B^ O 3Z?4 = 0. We assume that a scalar field Q > 0 is assigned on

3 B4.

By a solution of the mixed initial boundary value problem in B X (0, oo) we mean a

pair (u, 6) satisfying Eqs. (10) and (11) for all (x, t) e B X (0, oo), together with boundary

conditions

u = 0 on dBj x(0, oo), (C[vu] -I- 0M)n = 0 on 352X(0, oo),

0 = 0 on 3Z?3x(0,oo), n • Kv# + Q6 = 0 on 3Z?4x(0,oo), (12)

and the initial conditions

u(x,0) = u°(x), u(x,0) = ii°(x), 0(x,O) = 0°(x), x e B, (13)

where u°, ii°, and 80 are prescribed functions in W^l?), W0(5), and W0{B), respectively.

Here Wm(B) represents the familiar Sobolev space [12], and Wm(B) = [W^B)]3.

In thermodynamic terms, the second relation in (12) states that the part 3B3 of the

boundary is kept at a constant temperature 90, while the rest 3B4 is radiating into a

surrounding medium at temperature 0o. The above initial boundary value problem was

considered by Brun [13], who proves the uniqueness of solution.



330 S. CHIRIJA

If meas 3Bl = 0, then there exists a family of rigid motions and null temperature

deviation which satisfy Eqs. (10) and (11) and the boundary conditions (12). From this, we

decompose the initial data u° and ii° as follows:

u° = u°+U°, ii° = u* + U°, (14)

where u# and ii# are rigid displacements determined so that U° and U° satisfy the

normalization restrictions

f pU°</K=0, f px A \J°dV = 0,
JB JB

[ pi)°dV = 0,- f px A \J°dV = 0. (15)
JB JB

Let us introduce the following notations:

CH B) = (v e [cL( B)]3: v = 0 on 9B[ and if meas dB^ = 0,

J p\dV = 0, J px A \dV = oj;then

Cl(B) = {x G C!( B): x = 0 on 3B3 and if meas 3B} = 0,

then n • Kvx + Qx = 0 on 35};

Wx( B) = the completion of C*( B) by means of H^w^s),

WX{B) = the completion of C'(B) by means of ||*||w,(B).

In these relations C1(B) represents the set of scalar functions which are continuous and

continuously differentiable on B.

Let u, v e C^B) and 8, \ e C1(B). We set

0(u,v)= f vu*c[vv] JF, Q(6.x)=[ T^d'K ^xdV.
JB JB

Obviously, $ and £2 may be extended by continuity onto W^B) X Wj(5) and W^B) X

W\(B), respectively.

In order to obtain our results, we make the following further assumptions:

(a) The density and specific heat satisfy the conditions

0 < p, < ess.inf p(x) < ess.sup p(x) < p2,
B B

0 < c, < ess.inf c(x) < ess.sup c(x) < c2. (16)
b B

(b) There exist positive constants m and k such that

$(v,v)>m[ (symw) -(syrnvv)#, for all v e Cl(B), (17)
JB

®(x<x)>k[ VX'VXW, for all x e CJ( B). (18)
J ft
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Remark 2.1. The assumptions above are in agreement with physical experience. The

mechanical interpretation of (16) is obvious. Estimate (17) may be interpreted with the

help of the theory of elastic stability [14]. Finally, estimate (18) is related to the defining

property of a definite elastic heat conductor and is in accordance with the consequence (9)

of the heat conduction inequality.

Remark 2.2. We note that the hypothesis (17) ensures that the following Korn's

inequality [15] holds, for all v e W^B):

$(v,\)^m1f (v • v + Vv • Vv) dV, m1 = const. > 0. (19)
JB

Moreover, under hypothesis (18), for all x G Wx(B), the following Poincare inequality

holds:

®(x>x)+{ ~E~Qx2dA > kx( x2dV, k1 = const. > 0. (20)
JdB4 °0 JB

Remark 2.3. Under assumptions similar to the above, Dafermos [16] has demonstrated

the existence, regularity, and asymptotic stability of the solutions to the initial boundary

value problems defined by relations (10) to (13). Therefore, in what follows it is assumed

that a twice continuously differentiable solution (u, 6)(x, t) exists satisfying Eqs. (10) and

(11) and conditions (12) and (13).

If meas dB\ = 0, then we shall find it a convenient practice to decompose the solution

(u, 6) in the form

(u,0) = (u£ + till + v,x), (21)

where (v, x) G Wt(B) X WX(B) represents the solution of (10)—(12) with the initial

conditions

v(x, 0) = U°(x), v(x,0) = U°(x), x(x>0) = 0°(x), xe£.

3. Some evolutionary identities. In order to establish our principal results, we shall need

some preliminary integral identities. The first theorem presents a well-known conservation

law of energy in linear thermoelasticity.

Theorem 3.1. Suppose that u° e Wj(B), ii° <s W0(B), 6° e W0(B) and that C. M, and K

satisfy the symmetry relations (6), (7), and (8). Let (u, 6) be a solution of the initial

boundary value problem defined by (10) to (13). Then the following energy conservation

law holds:

^(0 = \jB {pu(0 'u(0 + vu(/)-c[vu(0] + To02^)}dv

+ f f -jr-v8(s) • Kv#(.s) dVds + f f -jr-Q92(s) dA ds = ^iO), r e (0, oo),
■'0 JB "0 ■'0 "o

(22)

where we have omitted to mention the explicit dependence of functions on their spatial

argument.
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Proof. We multiply Eq. (10) by ii and (11) by (\/80)6 and add the results. Then we

integrate the result over B X (0, t), t e (0, oo), and use integration by parts. Further, we

make use of conditions (6), (7), (8), (12), and (13) in order to obtain (22). The proof is

complete.

We shall find it convenient to introduce the following notations associated with a

solution (u, 8) of (10) to (13),

*(t) = \ f pu(0 * u(/) dV,
Z JB

y(t) = \[ Vu(r) • c[vu(/)] dV,
L J B

r(t) = \SBT{e2(^dV< <23)

T(t) = (' f ^rV0(s)-Kv6(s)dVds,
Jo JB t)0

- f f irQe2(s)dA ds-
•'o Ja b4 po

Thus, the energy conservation law (22) can be written in the form

S'(t) = jr(t)+y(t) +y{t) + r(0 + a(0 = ̂ (o). (24)

Remark 3.1. We notice that X represents the global kinetic energy of 5, Sf represents

the strain energy of B, ST is the thermal energy of B, T represents the thermal entropy

product on (0, t) or the dissipation energy in the body due to the thermal irreversibilities,

and A represents the total heat supplied into B on (0, t) by conduction across 3B4. In the

next section, we shall establish the asymptotic partition of energy <a(t) in terms of the

Cesaro means of the energies defined by (23).

We now establish some Lagrange-Brun type identities. Thus, we have

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Let (u, 6) be a solution of

the initial boundary value problem defined by (10) to (13). Then the following identity

holds:

if pu(t) - ii(t) dV + J *k(jT V0(z)<fc)</K

+ f f 6(z)dz) dA
JdB4 "o WO I

= lf f | pii(s) *11(5) — vu(i)'C[vu(i)]-T-fl2(i)
•'O JB \

dV ds

+ 2 f pu°- ii°dV+ if' [ T)o0(s)dVds, t e (0, 00), (25)
JR Jq JB

where

Vo(x) - -M(x) • vu°(x) + |c(x)0°(x). (26)
0o
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Proof. We start from the following identity:

^ [pu(s) • ii(s)] = pii(s) • ii(s) + pu(s) *11(5).

By an integration over B X (0, t) and using conditions (13), we get

f pu(t) • ii(t) dV = f pu° • ii°dV + f f [pii(s) - ii(s) + pu(s)' u(s)] dVds.(27)
J B J B J o J b

We next eliminate the inertial term on the right-hand side of (27) by means of (10). Then

we integrate by parts with respect to the spatial variable and use (6), (7), and (12) to

obtain

[ pu(t) • ii(t) dV = [ pu° • ii°dV + [' f {pii(s) • u(s) - Vu(i) • C[vu(s)j
Jg Jb J0 JB

-M • Vu(j)S(j)} dVds. (28)

On the other hand, by integration with respect to the time variable, from (11) and (13),

we deduce

M-vu(r) = ^(/)-^div(Kjf'v«(z)<fe)-T,0, (29)

where t)0(x) is defined by (26). Further, we use Eq. (29) in (28). By integration by parts

followed by the use of (12), we obtain

f pu(t) • ii(t) dV + f f V0(s) • k( f v0(z)dz)dVds
JB •'o JB "0 \J0 /

+ f f -jrQO(s) f 9(z)dzdAds
0 JdB4 ^0

(' f {pu(-s) *u(-0 - Vu(j) -C[Vu(5)]-|-^:(5)
JQ J B \ "n

dV ds

+ f pu°'U°JK+ f ( r)06(s)dVds, ( e (0, oo). (30)
J B J o J B

It follows from (30) that (25) holds. This completes the proof.

Theorem 3.3. Suppose that the conditions of Theorem 3.1 hold. Let (u, 6) be a solution of

the initial boundary value problem defined by (10) to (13). Then the following identity

holds:

2f pu(t)-b(t)dV + / vff(z) dzj •K(jf' v0(z)dzj dV

+ / T@( f Hz)dz\ dA
JdB, °0 \J0 I

= f {pii° • u(2?) + pu° • u(2r)} dV 4- f ( t]06(s) dV ds - f f -q06(s)dVds,
Jg JQ Jg J, J B

t e (0, oo). (31)
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Proof. Let f(-,s) and g(-,s) be vector fields assumed to be twice continuously

differentiable with respect to the time variable s. Obviously, we find that

^{p[f(j) 'g(s) - f(s)*g(s)]} = p[f(s) 'g(i) - f(j)*g(s)].

By integration of this identity over B X (0, t), t e (0, oo), we deduce

f p[f(0-g(0 - f(0-g(0] dV= (' f p[t(s)-j*{s)-f(s)'g(s)]dVds
JB J0 JB

+ p [f(0) • g(0) — f(0) • g(0)] dV. (32)

We now set

f(x,r) = u(x,t), g(x, t) = u(x,2/ - t), t e [0,2/], t e (0, oo),

so that (32) becomes

2 f pu(?) • ii(r) dV = f f p[u(2/ — s) • u(.s) - u(^) • u(21 — s)] dVds
JB Jo JB

+ [ p [ii° • u(2/) + u" • u(2/)] dV, ?e(0, oo). (33)
JB

Substitution of the inertial terms on the right-hand side of (33) and application of the

divergence theorem, followed by use of relations (6), (7), and (12), lead to

l( pu(t)-u(t)dV= [' f [<9(2/ - j)M • vu(s) - 0(j)M • Vu(2? - s)] dVds
JR Jo JB

+ f p[ii0-u(2/) + u°-u(2/)]^K, / e (0, OO )■ (34)
J R

Further, we use Eq. (29) in order to obtain

f [0(2/ - j)M • vu(s) - 6{s)M • vu(2/ - *)] dV
JB

=L ~ s^'K[l ve(<z">dz)

-v6(s)-K^j*'~S V0(z)dz^ dV + f r\{)[0(s) - 6{2t - s)] dV

+ [ j~Q\d(2t - s) f 0(z) dz - e(s) 6 (z) dz
Jd b, °q I J(i Jr>

dA,

[0,2t\, / e (0, oo).
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Therefore, the identity (34) takes the form

2 ( pu(f) • ii(?) dV
JB

= f j j[v8(2t - ,).k(jT V6(z)dz J - V0(s) • fj'~s vd{z)dz]j J dVds

+ f f -jrQ 8(2t — s) f 0(z) dz - 9(s) ( 0(z)dz dA ds
J0 JdBi "o J0 J0

+ ( p [ii° • u(2/) + u° • ii(2r)] dV + f f i)0[9(s) - 0(2t - s)] dVds,
jb •'o •'b

t e (0, oo). (35)

Since

/' L iiUv#(z) dz)' "Ifv'(z) dz]dVds

' fB V»(z)<fc)- k(jT' v«(z)rfz dV

+ (' I Tv0(2t ~ J)*K f V0(z)dz)dVds,
J0 JB "0 \J0 I

L, iQi((H!),k)(C'eii)di)dAds

= f tQ{ f '^(z) dz\ dA + C f 0(z)dzdAds,
•/3B4 "o V-'o / •'o •/3B4 ") •'0

with the aid of (8), from (35) we get (31). Thus, the proof is complete.

An immediate consequence of Theorem 3.3 is the following uniqueness result.

Corollary 3.1. Suppose that C, M, and K satisfy the symmetry relations (6), (7), and (8)

and that p is strictly positive and the thermal conductivity tensor K is positive definite in

the sense of relation (18). Let (u, 6) be a solution of the initial boundary value problem

defined by relations (10) to (12) and by the initial conditions

u(x,0) = 0, u(x,0) = 0, 0(x,O) = O in B. (36)

Then

u(x, 0 = 0, 9(x,t) = 0 for all (x,/) e B X [0, oo). (37)

Proof. Using the initial conditions (36), the identity (31) implies

( pu(r) • u(t) dV 4- f [ tt( [ V0{z) dz\ • k( f v6(z) dz \ dVdt
JB J0 JB "0 \ J0 I V J0 I

+ f f ~?rQl f 0(z) dz\ dA dt = 0, t e (0, oo).
Jo Jd b4 "o Wo /

(38)
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In view of hypothesis (18), from identity (38) there results

u(x,f) = 0, v#(x,/) = 0, (x, ?) €E B x(0,oo),

0(x,/) = O, (x, t) e dB4 X (0, oo).

This proves relation (37) and the proof is complete.

Remark 3.2. Corollary 3.1 represents a uniqueness result similar to that obtained by

Brun [13]. We note that, in contrast to [13], we have not used the energy conservation law.

4. Asymptotic partition of energy in the Cesaro sense. In this section we shall use

identities (22), (25), and (31) in conjunction with the hypotheses made in Sec. 2 in order to

establish the asymptotic partition of total energy defined by (24). In this aim, we introduce

the Cesaro means of various energies defined in (23). Thus, we define

Jfc(t) = — f Jf(s)ds = — f f pii(s) • ii(s) dVds,
t J0 It J0 jb

•^ciO — ~ f ^(s) ds = ~ f f vu(j)-C[vu(i)] JFrfj,
t J0 It Jq Jg

rc(t) = \f'r(s)ds = j-f( f e2(s)dVds,
1 J0 Ll '0 JB uo

rc(/) = - f T{s)ds = ~ f f f iv0(z) -Kvff(z) dVdzds,
t J0 t Jq J0 Jg V{)

Ac(t) = —f A(s) ds = — f f f Q92(z) dA dzds, ( e (0, oo). (39)
' J0 1 J0 J0 J dB4 "0

Remark 4.1. The Cesaro mean values of the temperature, heat flux, displacement,

strain, and stress have been introduced by Day [17, 18]. It was shown by Day that these

mean values can be found by solving an equilibrium boundary value problem which is

more tractable than the original dynamic problem.

We have now assembled all the preliminary material needed to derive the asymptotic

partition of energy in terms of the mean energies defined by (39).

Theorem 4.1. Suppose that C, M, and K satisfy the symmetry relations (6), (7), and (8)

and together with the specfic heat c and the density p verify the hypotheses (16) to (18).

Let (m, 6) be a solution of the initial boundary value problem defined by (10) to (13).

Then for all choices of initial data u° e Wx(5), u° e W0(B), 6° e IV0(B),

limjrc(0 = 0. (40)
t~* 00

Moreover, the following assertions hold:

(i) If meas =£ 0, then

lim Jtc(t) = lim £fc(t), (41)
t —* OO t—> 00

lim [rc(0 + Ac(0] = <f(0) - 2 lim jfc(<) = <f(0) - 2 lim yc(t). (42)
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(ii) If meas 3Bx = 0, then

lim Xc(t) = lim 'fc{t) + 1 f pu* • ii*dV, (43)
t~* oo / —» oo ^ ^B

lim [rc(/) + Ac(/)] = <^(0) - 2 lim tfc{t) + 4 f pu* • ia^dV
t —* co t —* oo ^ J B

= <f(0) - 2 lim yc(t)f pill ' u Idv. (44)
t-* oo ^ J B

Proof. We first use the energy conservation law (22) in conjunction with hypotheses (16)

to (18) and relations (19) and (20) in order to prove relation (40). Thus, from (18), (20),

and (22), we deduce

f [ 62(s)dVds f [ ^-v6(s)-Kv0(s) dVds + f f ]-Qd2{s)dA
J0 JB k\ JB ^0 J0 JdB4 Uq

ds

t e (0, oo). (45)

Now, we use hypothesis (16) to obtain

£2

•'O J B ^0 #0 •'O JB
( f ^~e2(s)dVds ( f 62(s)dVds,

Jr "a "r\ J(\ Jr

so that (45) implies

(46)

Letting t -» 00 in (46), we deduce relation (40).

Further, we use identities (25) and (31) to obtain

f f pii(s) • ii(s) dVds - { ( vu(j)*c[vu(i)] i/FA
J0 J g Jq Jb

= [' f -7j-02(s) dVds — f pu° • ii° dV + \ f p [u° • u(2;) + u° • u(2r)] dV
J0 JB "0 B 2 J B

f ( Vo0(s)dVds - ^ f 7)o0(s) dVds. (47)
^ JQ JB z Jt J B

To estimate the right-hand side of the identity (47) we shall use relation (46), the energy

conservation law (22), and hypotheses (16) to (18). Thus, we have

f pu(t) • ii(r) dF < 2<f(0), t e (0,oo). (48)
JB

Let us first suppose that # 0. Then u e Wj(B) and from (17), (19), and (22) we

get

[ pu(r) • u(t) dV < — f Vu(t) • C[Vu(r)l dV < ——<f(0), re(0,oo).
J B mlJB ml

(49)
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Now we use the Schwarz and Cauchy inequalities and the estimates (45), (48), and (49), so

that, with notations (39), we deduce from (47)

\xc(t)~ yc(t)\ = STc^t) - ( pu° • ii° dV + ^-f p[u° • ii(2?) + ii° • u(2/)]
It JB 41 J B

- il, SB^e{s)dVds ~ SB^{s)dVds

<-*c(0 + ^/ p(u°-u° + u°-u°) dV

+ -J- f p[u° • u° + ii° • ii° + ii(2/) • ii(2/)
61 JB

+ u(2f) • u(2r)] dV + J rfodVds^ |j|* J 62(s)dVds

i / \1//2l \1//2

4 ̂ u) + h L ̂ '"°+' "0) Jv+i?#(0)('+ ̂

+ ir'/'[fi,uy)'/]^m)'/2- (50)

We make t —» oo in (50) and we take into account relation (40) so that we obtain relation

(41). Relation (42) is obtained from (22) by taking the Cesaro means and using relations

(40) and (41).

Let us now consider the case meas 9B1 = 0. If we use the decomposition (21), we get

j~t Jf pu° • u(21) dv = J~t jB p(»* + U°) *[u2 + 2ii%t + v(2t)] dV

= if pu° • u IdV + ±J pii° • ixldV + ±f pU° • v(2 t)dV.

(51)

In deducing relation (51) we have used relations (14), (15), and the fact that v e W^fi).

In this case, from identity (47) we deduce

jrc(t)-src(t)-±f pbl-iiUv

= rcU) - ^ jB p«° * u°dv + i jB p«° • "(20 dv+iSB pa*'u*dv

it fB ptj0'v(2r) dV ~ i /„' fB ̂6{s) dVds ~ i f fB ̂ou)dvds.

(52)

+ 41
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Further, we use estimates (45) and (48) in conjunction with

f pv(r) • v(t) dV < — f Vv(t) • C[vv(t)] dV
J B ml JB

Pi f / \ / M ,,, , ^p2
= -f"/ Vu(t)'C[vu(t)]#<--^(0), re(0,oo),

m\ JB m\

to obtain from (52) an estimate similar to (50). This leads immediately to (43) and (44).

Thus, the theorem is proved.

Remark 4.2. Relations (41) and (43) (restricted to the class of initial data for which

u* = 0) prove the asymptotic equipartition of the mean kinetic and strain energies.

Remark 4.3. It is worth noting that the coupling factor M does not appear explicitly in

our relations expressing the partition of energy.

Let us consider a fictive thermoelastic continuum for which M = 0. Then Eqs. (10) and

(11) become uncoupled. In this case we obtain more precise information about the

asymptotic behavior of the mean energies. Thus, the analysis proves that relation (40)

continues to hold true, while relations (41) to (44) become

lim [Tc(0 + Ac(0] =^"(0). (53)
/—* OO

(i) If meas 3Bx + 0, then

lim Jfc(t) = lim yc(l) = \[jf(0) + Sf(0)]. (54)
t —*00 [—* OO **

(ii) If meas 3Bx = 0, then

lim = 0)+y(0)] + \ f pill-iiUv,
t —* oo £ ^ J B

Vim yc(t) = \[jf{0)+y{0)\ -J f pul'iitdV. (55)
t-> oc ^ 1 JB

It will be recognized that relations (54) and (55) describe the partition of energy in

linear elastodynamics, while relations (40) and (53) describe the asymptotic behavior of

the Cesaro means of T(0. and A(t) associated with the parabolic equation of heat

conduction.
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