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Abstract. Certain elastic solids when subjected to sufficiently high loads abruptly change

their mechanical properties and yet continue to respond elastically to further loading. In

one dimension such mechanically induced elastic phase transitions may be due to a

nonmonotonic stress-strain relationship. This appears to be particularly true for certain

mineral crystals, such as calcite.

This work considers a one-dimensional dynamical problem for a special material. The

problem reduces to determining the location of the internal moving boundary separating

distinct elastic phases. This phase boundary is similar to a gas dynamical shock wave. For

the problem considered here, this phase boundary is shown to be governed by a functional

equation of the form

<p(<p( 0) + f(<p( 0) + t = 0,

for the unknown <j)(f), where F( ■ ) is a known function involving the boundary conditions.

The unusual equation is derived by considering the effect of acoustic waves reflecting

repeatedly between the phase boundary and the external boundary. The equation is shown

to possess a unique solution and can be treated asymptotically to determine the behavior

of the phase boundary after short and long time periods.

1. Introduction. One of the objectives of the one-dimensional dynamical theory of

displacive elastic phase transitions is to determine the motion of the internal moving

boundary separating different elastic phases. An example of such motion occurs in the
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mineral calcite, where a moving front can separate different crystal structures [1], Models

for such displacive phase transitions have been proposed which, in one dimension, involve

a nonmonotonic stress-strain relation [2, 3], Moving phase boundaries in these models are

kinematically similar to other types of shock fronts in that velocity and strain are

discontinuous across them. One difference is that even at first formation, say t = 0, the

jump in strain may be large [4, 5]. The simplest of these models lead to solutions with a

high degree of nonuniqueness. Resolution of the admissibility question for such theories

has led to more detailed modeling of the phase change zone, where certain effects in the

simpler theories can no longer by presumed small [6, 7, 8], The object of this study is to

treat an aspect of the original kinematic theory involving sharp-fronted phase boundaries,

namely, how to determine the trajectory of such a moving boundary when it is being

driven forward by acoustic waves ringing between it and a loading device. In certain cases

this problem is reducible to a functional equation of the form

<p(<p(0) + f(<p(0) + t = 0,

where F(-) embodies the loading conditions, and the function to be determined, (p, is

subject to some side conditions. We sketch the derivation of this equation and then show

that it possesses a unique, continuously differentiable solution on t > 0. In general, higher

derivatives at t = 0 will not exist unless additional restrictions are imposed on the loading

conditions. In addition, one of the theorems presented here furnishes an iterative scheme

for solving this functional equation. An interesting feature of this scheme is that it does

not require a preliminary analysis of cp(t) on an initial interval. This contrasts with

methods employed for treating a set of functional equations arising in the theory of plastic

unloading waves [9, 10].

While uniqueness of solutions to the functional equation is proved, this equation is

derived under a number of assumptions stated in the following section. As such, the

analysis presented here in no way implies uniqueness of solutions to initial-boundary

value problems for materials which are characterized solely by a nonmonotonic stress-strain

relation.

2. Formulation of the problem. Consider a semi-infinite bar occupying x > 0 to which a

load is being applied at the end x = 0. Let

u(x,t), e = du/dx, v = du/dt, o(e),

denote, respectively, the longitudinal displacement, strain, velocity, and stress in the bar.

Our essential assumptions are:

(i) The loading device initiates a change of phase at t = 0. Specifically we consider an

applied positive traction which at t = 0 induces at x = 0 a finite jump in strain from £] to

e* due to the material admitting multiple strain phases at the value of stress a* (Fig. 1).

Afterward the end-strain is assumed to increase smoothly. We write this boundary

condition thus:

e(0,t) = h(t), h( 0-) = £I? h( 0+) = e*
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crU)

cr = C2€ + D

where a(£[) = a(e*) = a*. For t > 0, h(t) is assumed to be of unlimited smoothness with

h(t) > e*.

(ii) The strain and velocity in the bar are initially constant at the values e,, v1 before the

phase boundary emerges at / = 0.

(iii) The material in the second phase obeys a linear stress-strain law over the range of

subsequent loading. Hence a(e) = c2e + D for e* < e < max h(t), where c and D are

constants. We take the density to be 1 so that c is the sound speed.

(iv) The phase boundary is energy confining-, acoustic waves impinging on the phase

boundary are totally reflected, leaving unaltered the fields on the other side.

A more detailed explanation of how this problem can arise may be found in [5],

The trajectory x = s(t) of the phase boundary is to be determined. Across this

boundary the jump in the dynamical fields is restricted by the familiar shock conditions

fW+M=0, fM+M=0. (2.1)
from which it follows that

HO) = (I ° 1 /I £1 )1/2|;=0 = {(o* - a*)/(e* - £])}1/2 = 0.

Thus, at least for short times, acoustic waves originating at the loading device overtake

and reflect off the back of the phase boundary, driving this boundary forward into the

region of constant strain. The ringing of these waves between the two boundaries of

changing (unknown) separation accounts for the functional equation we now derive.

Let II be the as yet unknown region occuped by the material in the second phase. Thus

II = {(jc, / )| 0 < x < s(t),t > 0}.

The governing equations in the interior of II are

c2d2u/dx2 = d2u/dt2, o(e) = c2e + D,
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with boundary condition e(0, ?) = h(t) at x = 0 and shock conditions (2.1) at x = s(t).

We assume, subject to later verification, that s(t) is continuously differentiable and never

characteristic. Thus j(0) = i(0) = 0 and 0 < s(t) < c for / > 0. Under these conditions

the displacement u(x,t) for (x, t) e II can be written in terms of the data on £ = s(tj)

between the times ta < rj < th. Here (£,17) are space and time coordinates. The times

ta = ta(x, t), th = th(x, t) delimit the domain of dependence on £ = s( 17) for the point

(*,/) (Fig. 2). This data can be expressed in terms of the (constant) strain and velocity

immediately ahead of the phase boundary via (2.1). One finds that

w(x,/) = "(0,0)+ f ° [ i1 (77) + Uj] dj] — [h f[^(r))-c]uI-ci(T))ei + c2e* } drj.
J0 1c J,^

(2.2)

The trajectory j(rj) must be chosen so as to satisfy the unused condition e(0, 0 = h(t).

The strain e(0, t) can be calculated from (2.2) and expressed in terms of a(t) and b(t)

where a(t) = ta(0, t), b{t) = th(0, t). The result is

h(t) = - ej)(b(t) + a(t)) + eL. (2.3)

The missing steps in the derivation of (2.2) and (2.3) are given in the appendix, where we

treat a more general case in which (ii) need not hold.

By virtue of a(0) = 0, b(0) = 0, Eq. (2.3) integrates to

a{t) + b{t) = 2t + \Q(t), (2.4)

where

(e* - £j) ^0

We note for future reference that Q is of unlimited smoothness with

<2(0) = Q(0) = 0, Q(z) >0 (z > 0). (2.5)

Q(t) = ^—~ J' [h(r) - e*] dr.

£ = 5(77)

Fig. 2



MOVING ONE-DIMENSIONAL ELASTIC PHASE BOUNDARY 297

The functions a(t) and b(t) are connected to s(t) by the implicit relations:

s(a(t)) — c[t — a(t)] = 0,

s(b(t)) + c\t - b(t)] = 0,

a(0) = 6(0) = 0.

The assumption 0 < s(t) < c for t > 0 ensures that a(t) and b(t ) are each increasing. Let

a'l(•) and 6_1(-) be their respective inverse functions. Eliminating .«(•) from the above

relations yields

a~l(t) + 6_1(r) = 21. (2.6)

We remark that a~l{b(t)) - t is the elapsed time for the acoustic wave generated at time t

to reflect off the phase boundary and return to jc = 0. Our final form is found by

introducing <p(z) = 2a(z) - z. Then (2.6) requires that

6 (<p(*)) = M*) + 2*,

whereas (2.4) demands that

6(<p(z)) = iQ(<p(z)) ~ i<p(<p(z)) + I<p(z).

Together these give

<p(<p(z))-2<p(z) + z = Q(<p(z)), z> 0. (2.7)

The phase boundary s(t) is given in terms of <p as

s(t) = c[a_1(0 - ?], a(t) = \[<p(t) + t]. (2.8)

The assumptions on s(t) are equivalent to cp being continuously differentiable with

<p(0) = 0, tp(0) = 1, 0 < <p(z) < 1 for z > 0. (2.9)

In general we cannot expect higher derivatives of cp to exist at z = 0 without additional

assumptions on h(t). To show this we suppose that

2(z) = i£(0)z2+ 0(z3),

and by virtue of (2.9) attempt a small t expansion for qp of the form

<p(t) = t + atk + o(tk), k > 1.

Then

<p(<p(0) ~ 2<p(t) + t = ka2t2k 1 + o(tlk x)

e(v('))-ie(o)'2 + »('J)-

T(0 = <-(e(o)/3),/2<'/2 + ()(,v2),

s(t) = 2c(£?(0)/3)1/V/2 + o(?3/2) = c(\'h{0 +)/(e* - tz/2 + o(r3/2).

and

This implies

which in turn yields
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3. Existence of a solution to the functional equation. In this section, we prove that (2.5),

(2.7) has a unique solution obeying (2.9). In addition, the first of the two theorems in this

section furnishes an iterative scheme for solving (2.7).

Let R + = {x\x ^ 0}, and for n = 0,1,2,... let

<p[nl(x) = <p(cp(cp( • • • (<p(x)) • • • ))), (/7-times) and <p[0|(.x) = .x.

Define the set of functions

y = {(p : 7? + —> R + | <p(0) = 0, cp(t) strictly increasing,

and cp Lipschitz with Lip[(p] < 1}. (3.1)

Note that y is closed under composition. The following theorem shows that (2.7) has a

unique solution <p e Zf for a class of functions Q which include those Q obeying (2.5).

Theorem 1. Let Q.R + ~* R+ be continuous and strictly increasing with Q(0) = 0. Then

the equation

<p(<p(0) - 2<p(t) + t - Q(q>(t)) = 0 (?> 0), (3.2)

possesses a solution <p Moreover this solution <p obeys

0 < cp(t) < t (t > 0), (3-3)

and is the only solution of (3.2) in y.

Proof. Define L: y -* y by

Also define K:R4~-> R+ by K(z) = z + \Q(z). The hypotheses on Q ensure that K is

invertible on R + with the inverse function K'1 obeying

0< K~\z)<z (z > 0). (3.4)

Furthermore, one may verify that K'1 e y.

We may write (3.2) either as

K(cp(t)) = Lv(t) (t> 0), (3.5)

or as

<p(t) = Kl(Lcp(t)) (t> 0). (3.6)

We are first going to show that the sequence of functions

<pn(t) = K~l(L<pn_1(t)), <Pi(0 = (3.7)

converges pointwise to a solution <p e y of (3.5).

We have 0 < <p„(0 < 1 since cpn y. An inductive argument now gives <pn(t) > <P„-1(0;

thus <p„(0 <p(0 for all t > 0. Since cp„ e y, it follows that <p(t) is (i) Lipschitz with

Lip[(p] < 1, (ii) increasing, and (iii) obeys <p(0) = 0. Since L<p„(t) -» Lcp(t) and Kcpn(t)

—> Kcp(t) it is immediate from (3.7) that cp is a solution of (3.5) or, equivalently, (3.2).

From (3.2) we have tx =£ t2 implies qo^) ^ <p(t2). whence cp is strictly increasing and so

cp e y. In addition, for t > 0 we have cp(t) > 0, so that K'1(Lcp(t)) < Lcp(t) < t by

(3.4). Since K~l{Lcp(t)) = cp(t), this establishes (3.3). It remains to show that cp is the

unique solution of (3.2) in y.
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It is immediate from (3.3) that

lim<p[nl(0 = 0 (/>0). (3.8)
n—*cc

Suppose now that tp g if is also a solution of (3.2). Then

MO — ̂(01 =|A"1(L«p(/)) - A"1(LV(/))|

<\L<p(t) - L$(t)\ = i|<p(<f>(0) - 'H'HO)!

< zI<p(<p(0) - «H<p(0) I + £I>H<p(0) - <P(<P(0)!
< -<H<P(0))i + z|<p(0 - <H0!> (3-9)

whence

MO - «H0| <M«p(0) - <H<?>(0)!- (3-10)
This gives, by iteration,

MO -<H0l ̂ M^CO) - ^(<P["!(0) |> (3.11)
for all n = 1,2,3 ... and all t ^ 0. Taking the limit of (3.11) as n -> oo and using (3.8) we

arrive at

MO -iMOl <I"p(o) -<Ho)| = o, (3.12)
hence ip = <p.

Theorem 1 implies that <p exists a.e. on R+ with 0 < (p 1 and moreover that

<p(t) = /0'<p(s) Js, the integral being in the sense of Lebesgue. Our next aim is to show

that <p is continuously differentiable and satisfies (2.9). Let D c R + be a Lebesgue

measurable set with ju(D) = 0 such that cp exists for all r G £)c. Here and throughout the

section, ju will denote Lebesgue measure and 0 will denote set complement in R+.

Differentiating (3.2) gives

(<p(<p(0) _ 2 ~ Q(v(0))v>(0 + 1=0, (3.13)
for all / g Dc such that <p(t) G Dc. Since t G Z)° need not imply <p(t) G Dc, it is

inconvenient to work with the sets D and Dc. Instead, we seek a set F c R + such that (i)

[i(F) = 0, (ii) <p exists for all t e Fc, and (iii) <p(Fc) c Fc. Clearly the set

F =- U (3 M)
n-0

satisfies the latter two requirements. Thus (3.13) holds for all t G Fc. To show that

fi(F) = 0 we note that <p G if ensures that 9"1 is a strictly increasing function. Moreover,

(3.2) gives explicitly

<p~\t) = 2t+(3.15)

Suppose Q is absolutely continuous. Then so is cp"1 which, in turn, renders /x(F) = 0. In

particular, Q is absolutely continuous under the hypotheses of:

Theorem 2. Let Q be continuously differentiable with £(0) = £>(0) = 0- Q(z) > 0 for

z > 0 and, in addition, let Q be Lipschitz on every interval [0, z0]. Then the solution

<p g if of (3.2) is continuously differentiable with <p(0) = 1 and 0 < <p(/) < 1 for all

t > 0.
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The theorem will be proved in several stages. The hypotheses of Theorem 2 are assumed

throughout.

Lemma 1. Let A : B -> R+, where the set B c R + is such that <p(B) c B. Let A obey

0<i4(/)<l, (3.16)

and

[A(cp(t))-2- Q(<p(t))]A(t) + l =0, (3.17)

for all / g B. If tk G B and tk -> 0, then A(tk) —> 1.

Proof. If A(tk) ■+> 1, we conclude from (3.16) the existence of a subsequence tk such

that A(tk ) -» y0, 0 < y0 < 1. Thus it is sufficient to show that if A(tk) -> y0, then y0 = 1.

For each n = 0,1,2,..., (3.3) yields

lim (pl"l(rA) = 0, lim 2(?w(/t)) = 0. (3.18)
k—* oo k —* co

Since (p(B) c B, (3.17) ensures the existence of each limit

y„ = lim ^((p[nl(^)), n = 1,2,, (3.19)
k—* oo

obeying

Yn = 2 — 1/Yn-i, « = 1,2,..., (3.20)

which is the same as

1 - Y„ = (1 - n = 1,2,.... (3.21)

From (3.19), (3.16) and the definition of y0, we have 0 < yn < 1 (n = 0,1,...). Thus

(3.21) gives yn < Yn-i* Hence yn y with 1 — y = (1 - y)/y, so y = 1. Collecting

results we have 1 = y = lim„_>00yn < y0 < 1, whence y0 = 1.

Two sets which satisfy the requirements upon B stated above are Fc and R+. Note that

<p obeys (3.16), (3.17) for B = Fc. Thus we draw three corollaries central to the following

development.

Corollary 1. All A :FC^>R+ obeying (3.16), (3.17) on Fc have the property that

A(tk) —> 1 whenever tk -> 0, tk G Fc.

Corollary 2. y(tk) -> 1 for all tk -> 0, tk g Fc.

Corollary 3. If A :R + -+ R+ obeys (3.16), (3.17) on R+, then A is continuous at the

origin with ^4(0) = 1.

The first two corollaries guarantee that <p is the unique solution of (3.17) in the

following sense.

Lemma 2. If A :R + -> R+ obeys (3.16), (3.17) for all t e Fc, then A(t) = ep(t) for all
t g Fc.
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Proof. Write (3.17) in the form

A(t) = -l/[A(<p(t)) - 2 - 0(<p(f))];

a corresponding result holds with <p replacing A. By subtracting these two expressions and

invoking(3.16), 0 < <p < 1, and (?(<p(0) > 0. we arrive at

M(0 - <p(0 I <M(<p(0) - <p(<p(0)I ('GFC), (3-22)
which gives, by induction since <p(Fc) c Fc,

M(0-<p(0l<M(«P["1(0)-<p(<P[n,(0)| (teFc,n = 1,2,...). (3.23)

Letting n -* oo we have from (3.8) and Corollaries 1 and 2,

\A(t) - <p(r) | < lim \A(r) - <p(r) | = 0 (t e F°). (3.24)
r—>0

We already have that <p is a solution of (3.17) on Fc. We now show that (3.17) possesses

a solution not only on Fc, but also on R+.

Lemma 3. There exists A : R + -> R+, continuous with yl(0) = 1, 0 < A(t) < 1 for t > 0

such that (3.17) holds for all / e R+.

Proof. Consider the sequence of functions generated by

Ak + l{t) = l/{2 + 0(?(/))-^W/))}, A(n = V{2 + 0MO)}.

(3.25)

Separate arguments based upon induction and Q(z) > 0 yield 0 < Ak{t) ^ 1 (/ > 0), and

Ak + l{t) ^ Ak(t) (t > 0). Hence A(t) = limk^x Ak(t) exists and obeys 0 < A(t) < 1. It

is evident from (3.25) that A(t) is a solution of (3.17). Also

-4(0) = l/{2 + Q(<p(0)) - ^(«p(0))} = l/{2 - ,4(0)}

so that ,4(0) = 1. Moreover, for t > 0, the strict inequality Q(<p{t)) > 0 furnishes

1 /A(t) = 2 + Q(<p(t)) -A(<p(t)) > 2 - A(<p(t)) > 1,

whence 0<yl(/)<lfor/>0. The continuity of A at the origin is the result of Corollary

3. It remains to show that ^4(/) is continuous for t > 0.

Let t > 0 and e > 0 be given; we shall show that there exists 8 > 0 such that if t > 0

with |/ — t| < 8 then \A(t) — A(t)\ < e. Let q be a Lipschitz constant for Q on

0 < z ^ t + 1. Choose d > 0 such that 0^x^d,0^y^d implies \A(x) - A(y)\ <

e/2. Now (3.8) guarantees the existence of an N such that (j>[A,1(? + 1) < d. From (3.17)

and the bounds A(z) < 1, Q(z) > 0, it follows that

\A{t) -^(t)|<|0(<p(t)) - <2(<p(0)I + M(<p(0) -^(<p(t))I (*> 0, t> 0).

(3.26)

Iterating this inequality N — 1 times, we arrive at

M(l) -/Kt)|« ( £ I6(»m(<)) - e(v|4|(r))|) +M(<p'»'('))
k= 1

(3.27)
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Let 5 = min{l, e/(2Nq)} and suppose that \t — t| < 8. Then (3.27) implies

\A{t) - A(t) | < | £ q\t - t|| + | < e. (3.28)

We now rapidly complete the

Proof of Theorem 2. Let A be as given in Lemma 3. Then, since ja(F) = 0, Lemmas 2

and 3 furnish

<p(f) = f <p(s)ds= f A(s)ds. (3.29)
Jo Jo

In view of the continuity of A, the latter integral is a Riemann integral. Hence, by the

Fundamental Theorem of Integral Calculus, <p(t) exists for all t > 0 and <p(t) = A(t).

Finally, Lemma 3 ensures all the requisite properties of <p.

4. Remarks. In Sec. 2 we touched upon the short-time behavior of solutions. The

long-time behavior can also be addressed. If we suppose that h(t) —> > e* then

C?(<P(0) ~ 4((e00 - e*)/(e* - e,))(p(0

and (2.7) yields <p(/) ~ yt where y is the root of a quadratic equation. This root is

uniquely determined from the requirement that 0 < y < 1 and leads to

HO ~ ((«oo - £*)/(£oo - ei))W"ct.

This indicates that the square of the asymptotic phase boundary speed is given by the

slope of the secant line on the a(e)-curve connecting (e,, a*) to (ex, 0(6^)).

Equations where a function, which is to be determined, appears in the argument of

another function, arise in other wave propagation problems involving an unknown time

delay for the return of a reflected signal. Mortell and Seymour [11] consider a set of

functional equations in connection with the study of oscillations occurring in an inviscid

gas confined in a closed tube. In fact, their equation (1) can be manipulated into the form

of (2.7), although the properties of Q (H in [11]) differ. The reason for the signal delay is

also different; in [11] the location of the reflecting barriers are known whereas the sound

speed—being amplitude dependent—must be determined. A different set of functional

equations arise in the one-dimensional theory of elastic-plastic unloading waves. By

showing that a complete solution follows from the solution on the initial time interval,

Skobeev [9] gives an existence theorem for this set. The difficulty lies in analyzing a

sequence of problems with successively shorter initial intervals on which it is possible to

find the solution. In contrast, the iterative method (3.7) for our problem does not require

the analysis of cp(t) on an initial interval.

The success of the procedure used here is connected to the simple form of the final

equation (2.7). A more complicated formulation results if we drop assumption (ii) of Sec. 2

and study a phase boundary advancing into a more general strain and velocity field. In

this case (2.6) holds but (2.4) does not. The latter gives way to a modified form of (2.3)

which is derived in the appendix. Then it is found that h(t) remains linear in a{t) and

b(t), but the coefficients are complicated functions which involve the unknowns a(t) and

b(t) in their arguments.
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Appendix. A phase boundary advancing into a general strain and velocity field. Consider

a phase boundary £ = s(y) obeying (i), (iii), and (iv) of Sec. 2. Integrating the equation

c2d2u/dx2 - 32u/dt2 = 0 over the triangular region of Fig. 2 and applying Green's

theorem yields the analogue of d'Alembert's formula:

u(x,t) =

{u(s(tj) - ,y)s(y) + c2e(j(r?) - ,r?)} dy. (A.l)

Here the argument (£, y) = (s(y) - , y) refers to a coordinate immediately behind the

phase boundary. It is desired to express the quantities appearing in (A.l) in terms of

e(s(rj) 4- , y) and v(s(y) + , y). Now

u(s( t),t) = u(0,0) + f {e(j(rj) - ,y)s(y) + v(s(y) ~ ,v)j dy
J0

= u(0,0) + f (e(s(y) + ,y)s(y) + v(s(y) + ,rj)} dy, (A.2)
•'0

since u(x, t) is continuous across £ = s(y) (see (2.1)1). The shock conditions (2.1) also

furnish

v(s(y) - ,y)s(y) + c2e(s(y) - ,y) = v(s(y) + ,y)s(y) + a(e{s(y) + ,y)) - D.

(A3)
Substituting from (A.2), (A.3) into (A.l) gives

u(x,t) = u(0,0) + f" (s(y)e(s(y) + ,y) + v(s(y) + ,y)} dy
Jo (A.4)

1 ft
~ 2cJ" ~ C)V(SM + ~ cs{y)e(s(y) + ,?]) + a(e(j(rj) + ,77)) - D) dy.

To obtain an expression for e(0,/) we differentiate (A.4) with respect to x and then set

x = 0. This gives

h(t) = e(0, t)

1 9 ta

2 c dx

J_9tj,
2c 8.x

X{cs(y)e(ty) + (s(y) + c)v(£,y) + o(e(£,y))~ D)
(0,0

X{(s(y) - c)v(£,y) - cs(y)e(£,y) + o(e(£,y))~ D)
(0,1)

(i,7j)-(j(u(/))+,a(0)

(£. l) = (s(/>(0)+, />('))

(A-5)

The functions ta = ta(x,t) and th=th(x,t) are defined implicitly in terms of the

trajectory s(-) as the roots of

x = s(th) + c(t - th), x = s(ta) - c(t - ta), (A.6)

and a(t) = ta(0, t), b(t) = th(0, t). Thus

*(«(')) = T^y - c, s(b(t)) = -jjjj + c, (A.7)
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and

1 a{t)<K
0X

fix

In view of (A.7), (A.8) the equation (A.5) becomes

h(t) = ~ D - c2e(£,T))}
2 c

(0,/) s(ta(0,t)) + c c

 (A.8)
(0,0 j(/ft(0,0)-c c

(J,1 )-(s(a(t))+,a(t))

+ ^^-{o(e(^,T))) - £) - C2£(^,T))}

(£.v)=(s(/>('))+,/>(>))

+ + cv(^v)J
2c a,-n) = (s(a(t))+,a(t))

(A.9)+ -^{c2e(£,T)) - cw(£,tj)}
lc ((,T])-(s(b(t))+,b(t))

For the case in which (ii) of Sec. 2 also holds, one has

e(s(t]) + ,v) = «i,

v(s(y) + ,i/) = Uj,

CT(e(5(i7) 4- ,?])) — D = c2e*

so that (A.4), (A.9) reduce to (2.2), (2.3).
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