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Abstract. In the model for phase transitions in binary systems based on Fourier's and

Fick's laws, the interface equilibrium condition 6 = w, relating the temperature 8 and the

chemical activity w, is here replaced by a relaxation dynamics for the liquid concentration

-37 + ,w) (H 1: inverse of the Heaviside graph);

here fi e C°(R2) and sign fi(6,w) = sign(# — w). In the case of a single dimension of

space, with an interface jc = s(t), a different dynamics can be considered:

s'(t) = fi(6{s(t),t),w(s(t),t)).

Each of these laws is coupled with the energy conservation equation. Existence of at

least one solution and maximum and minimum principles are proved for both problems.

These results can be generalized in many ways, in particular, for temperature, concentra-

tion and phase-dependent coefficients. For the problem in a single space dimension,

existence of a solution is proved also for the case of vanishing mass diffusivity in the solid.

Uniqueness of the solution is shown for the problem in several dimensions of space.

1. Introduction and presentation of the models. 1. The study of phase transitions in

binary mixtures generalizes the classical Stefan problem. Its essential features are that the

temperature, governed by the Fourier's equation, is coupled with the concentration,

governed by the Fick's equation; the gradients of these variables fulfill Stefan-type

discontinuity conditions at the interface y, assumed to be a smooth surface. Actually in

mass diffusion the concentration c plays a role similar to that of the enthalpy in heat

diffusion; in particular, c is discontinuous across the analog of the temperature 6 is

the chemical activity w, which is continuous across y, as 6 is.
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240 A. VISINTIN

Under conditions of thermodynamic equilibrium, namely excluding supercooling and

superheating effects, the phases are characterized as follows:

8 < w in the solid phase

w at the interface 5" (1-1)

8 > w in the liquid phase.

We denote by x the characteristic function of the liquid phase (namely x = 0 in the solid,

X = 1 in the liquid), and by H the Heaviside graph (namely H(£) = {0} if £ < 0,

H(0) = [0,1], H(£) = {1} if £ > 0). (1.1) then yields

xeH(O-w). (1.2)

In the framework of a weak formulation, the interface is not assumed to be a smooth

surface, and mushy regions, namely mixtures of liquid and solid, are allowed; these

correspond to zones where the liquid concentration x attains values comprised between 0

and 1.

Problems of this sort have been studied by several authors [2, 6, 7, 8, 12, 13, 19, 20, 21,

30, 31], Here we shall introduce two alternative models.

2. Phase transitions are driven by nonequilibrium conditions: "If the interface is not at

the equilibrium temperature, then either melting or solidification occurs at a rate that

increases with the difference between the actual temperature and the equilibrium tempera-

ture. For small departures from equilibrium the rate is approximately proportional to

departure." (See [5], p.91.) We refer also to [15], Chapter 9.

As a first mathematical model of this physical picture, we propose a law of the form

P(0,w), (1-3)

with /? e C°(R2) and signfi(0,w)= sign(0 - w). (1.3) is equivalent to the following

variational inequality

[0<X<1; VI e [0,1],

9X
3, ~P(8,w) •<x-«)<»• (M)

This represents relaxation towards the equilibrium condition (1.2) and introduces dynami-

cal supercooled and superheated states, characterized by

8 < w and x = 1> 8 > w and x = 0 (1-5)

(respectively), contrasting with (1.1).

In the case of homogeneous systems the second member of (1.3) is replaced by a

function depending just on 8:

$(8), (1-3)'

with ft e C°(R) and /? monotone in a neighborhood of 0; (1.3)' is then coupled with an

equation corresponding to the enthalpy balance.

This model was studied from a theoretical viewpont in [24]; an approximation proce-

dure was proposed and an estimate of the order of convergence was then given in [23], A

physical justification of (1.3)' and some concrete applications were pointed out in [16].
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3. In the case of a single dimension of space, a different model can be considered.

Assuming that the interface is characterized by x = s(t), the equilibrium condition

becomes

9(s{t),t) = w(s(t),t). (1.6)

If x < s(t) corresponds to the liquid and x > s(t) to the solid, then one can also consider

the following kinetic condition (see [3, pp. 222-223]):

s'{t) = /3(6(s(t),t),w(s(t),t)), (1.7)

with fi as above. The corresponding problem for a homogeneous system was studied in

[28], An equation similar to (1.7) was studied by Crowley in [7] in modelling an annealing

process used for the production of semi-conductor devices. There the phase transition is so

fast that thermodynamic equilibrium cannot be assumed at the interface; moreover, the

superheating is much smaller than the supercooling and consequently one is induced to

consider the following kinetic condition:

s'(t) = j(0 — w) + — a(8 — w) on y, (1-8)

with a and e positive constants and e I/a.

In the case of several space dimensions, (1.7) should be replaced by

v ■ n = P(8,w)\y,, (1.9)

where v ■ n is the normal component of the velocity of the phase transition front and is

positive for melting. In several space dimensions it is natural to look for a weak

formulation and to try to represent (1.9) in terms of x- Difficulties then arise in forcing x

to attain just the values 0 and 1 a.e. in Q\ however, in the case of homogeneous systems,

attempts in this direction have been made in [14, 25].

We notice that (1.3) corresponds to either the growth or the decrease of x in the mushy

region (see Fig. 1); this also yields a certain regularity for 3x/3On the other hand, (1.7)

and (1.9) represent the motion of a sharp interface S? between the two phases (see Fig. 2).

(1.3) ((1.7), respect.) is adequate when nucleation (crystal growth, respect.) is the dominant

mechanism of phase transition.

X

Fig. 1. 1st Mode of phase transition: Fig 2. 2nd Mode of phase transition:

"Equiaxed Growth". "Columnar growth".
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We stress that even in the one-dimensional case, (1.3) and (1.7) are not equivalent. This

situation is quite different from the standard model for binary mixtures, in which the

relaxation dynamics (1.3) and the kinetic law (1.7) are replaced by the corresponding

equilibrium conditions (1.2) and (1.6), respectively. Indeed if equilibrium is assumed at the

interface, then the strong formulation in terms of (0, w, s) entails the weak formulation in

terms of (6,w, x), and also conversely under suitable regularity conditions [2, 8, 13], This

generalizes what happens for the standard Stefan problem.

4. In section 2 we present the physical problem. In sections 3 and 4 we study it in a

single space dimension with the kinetic condition (1.7) and in several space dimensions

with the relaxation law (1.3), respectively. In both cases we introduce variational formula-

tions, prove existence and regularity results and also maximum and minimum principles.

We stress that for the one-dimensional case, variational solutions are also strong solutions.

In the case of several space dimensions, we also prove that x e Wl x{0,T\ L2(£2)) O

L°°(0, T\ //x( )); that is, x *s much more regular than in the case with no phase

relaxation.

Uniqueness of the solution is proved for the problem in several space dimensions of

Section 4, whereas it is an open question for the one-dimensional problem of Section 3.

The previous results can be extended to more general physical models. Though we detail

only the case of linearized phase diagrams (see figs. 6, 7 later on), our arguments hold also

in the nonlinear case (see figs. 3, 5 later on). We stress that it is also possible to deal with

temperature, concentration, and phase-dependent specific heat, as we discuss later on.

In the case of a single space dimension, we also study the asymptotic behavior as the

mass diffusivity vanishes in the solid phase, as is physically reasonable. For instance, this

assumption was made by Astarita and Sarti [1] in modelling certain phase transition

phenomena in glassy polymers; there only the concentration evolution was considered and

a kinetic law was assumed at the interface; this problem was also studied by Fasano,

Meyer, and Primicerio in [11]. Our Theorem 3 can be applied also to phenomena of this

sort, and yields the existence of a solution for the one-dimensional problem of coupled

thermal and concentration evolution with no mass diffusion in the solid.

5. For a moment, let us consider linearized laws, with replaced by n(6 - w), ju,

being a positive constant. The choice between equilibrium and nonequilibrium conditions

at the interface depends on the ratio between the relaxation coefficient ju 1 and the

characteristic time-scale of the phenomenon under consideration. From a more mathe-

matical viewpoint, evolution laws of the type (1.3) and (1.7) are well-fitted for proving

existence results and yield extra-regularity properties for the solution. On the contrary, for

the problems corresponding to the equilibrium conditions (1.2) and (1.6), in general even

the existence of a solution is not evident.

An important open question concerns the asymptotic behavior as the phase relaxation

time ju-1 vanishes; do then the solutions, or suitable subsequences, converge to a solution

of the reduced problem, in which (1.3) and (1.7) are replaced by (1.2) and (1.6)

(respectively)? An affirmative answer can be given for one-component systems [28], A

similar question arises as e -> 0 in (1.8); in this case the numerical results obtained by

Crowley in [7] seem to indicate the convergence.
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6. A different approach to phase transitions in heterogeneous systems is based on the

so-called "nonequilibrium thermodynamics". Mathematical studies based on this model

were started by Donnelly in [9] and continued by Luckhaus and the present author in [18].

In [24] a relaxation dynamics for the phase variable x was introduced into such a model.

Finally, let us shortly consider the problem of coupled heat and electric evolution in a

two-phase electric conductor; here the temperature is coupled with the electro-magnetic

variables governed by Maxwell's equations. The mathematical structure of this problem is

quite similar to that of the standard formulation of the binary alloy problem considered

here. Nonequilibrium interface conditions and supercooled and superheated states can be

introduced also here and lead to mathematical developments similar to those of the

present paper. Also, for this problem, an alternative approach based on the "nonequi-

librium thermodynamics" was studied in [29],

The results of the present paper were announced in [27].

2. The physical problem. 1. We consider a mixture of two components, which are

completely soluble in each other in all proportions in both the liquid and solid states. We

denote the temperature by 6 and the concentration of one of the two components by c

(e [0,1]). We assume that the system occupies a bounded domain £2 c (N ^ 1) in a

time interval [0, T] (T > 0); we denote by and Q0 the space-time domains correspond-

ing to the liquid and solid phases, respectively, and by Sf the interface between them.

We shall deal with a simplified model, in which, in particular, convection and cross-

effects between heat and mass diffusion are neglected. Then Fourier's and Fick's laws

have the form:

Ti,f-V-(L'V«J = 0 in Qj (* = 0,1), (2.1)

|-V-(I2.,-Vc,) = 0 in Q, (/ = 0,1); (2.2)

in each phase, , ( > 0) is the specific heat multiplied by the density, kl , (> 0) is the

thermal conductivity tensor, k2j (> 0) is the mass conductivity tensor; v := (a^,..., 3^).

The balances of heat and mass at the interface yield

(^1,1 ' V0! - kl 0 ■ v02) ■ n = -Lv ■ n on y, (2.3)

(k2a • VCj - k2 0 • Vc2j • n = -(q - c0)v ■ n on S?\ (2.4)

here L is the latent heat of phase transition multiplied by the density; u is the velocity of

the solidification front; n e R" is normal to Sf(t):= £fC\ (R" X {/}); 0, and ct are the

limits of 6 and c from onto y (i = 0,1).

As we said, we assume that the two components of the system are soluble in each other

in all proportions in both the liquid and solid states; this leads to an equilibrium diagram

like Fig. 3. The situation is more complicated when the components are soluble only in a

bounded range of concentrations in the solid state [5, 15], a situation we shall not address
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6

6--TJM

Fig. 3. Phase diagram for a mixture of two components, soluble in each other in all proportions in both the

liquid and solid state.

here. In our case the thermodynamic equilibrium corresponds to the following conditions

at the interface:

= 80 on Sf, (2-5)

0, = V,(c,) on y (i = 0,1), (2.6)

where tj, e C'([0,1]), tj, > tj0, r)i(0) = rjo(0) = 0, ^(1) = rj0(l) = 6 (with 6 < 0, say).

If supercooled and superheated states are excluded, we have

0>ih(c) in Qi, O^rJo(c) in Q0. (2.7)

Following a standard technique (see [8,13] e.g.), we introduce the function

w:=T),(c) in Q, (/ = 0,1), (2.8)

which physically represents the chemical activity; thus 0 < w < 0 in Q. Then (2.5),..., (2.7)

yield

= w0 = 6 on 5", (2.9)

6 > w in Qx, 6 < w in Q0. (2.10)

Hence, still denoting by x the characteristic function of the liquid phase and by H the

Heaviside graph, we have

X e H(6 — w) in Q. (2.11)

We set

v = -c in Q, (2.12)
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=k^:= >(k-U W mQ' (-0-1)- (2-13)
V,(V, (w))

For the moment we assume that the coefficients y, ,, k1 and ~k2 l are constant and

phase-independent, and set

Yi:= Yi,i = Yi.o, kj := kjX = kj<0 (j = 1,2);

later on we shall remove these restrictions.

The previous setting corresponds to the following system:

- V -(Xi • vfl) = 0 in^'(0), (2.14)

^  
- V \k2 ■ Vw) = 0 in ®'{Q), (2.15)

u = Kx{6) in Q, (2.16)

u=Gx(w) in Q, (2.17)

where

Kx(6):= yi6 + LX V«6R,Vxe[0,l], (2.18)

Gx(w):= --nll(w)x + i?o1(vv)(x - 1) Vw g [0,0], Vx g [0,1] (2.19)

(see Figs. 4, 5), and x fulfills (2.11). Here u represents the enthalpy density. Later on

G (w) will be extended to the whole R; however, just the values 0 < w < 0 are physically

meaningful and then it will be quite convenient to prove maximum and minimum

principles for w.

Fig. 4. Enthalpy density versus temperature for a binary alloy. Kn: solid , A",: liquid.
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w

Fig. 5. Negative concentration versus chemical activity for a binary alloy. G(): solid, liquid.

In [2] Bermudez and Saguez used (2.11) for eliminating x from (2.18) and (2.19), getting

uekw(0):= Kms_w)(e) in Q, (2.20)

v Ge{w)\= Gft{e_w){w) in Q\ (2.21)

then they used the maximal monotonicity of the graphs Kw(-) and Ge(-) (the latter

extended for w £ [$,0]), for fixed 9 and w. Here we shall follow a different approach.

We notice that the system (2.11), (2.14), (2.19) can be directly deduced from

physical principles, without any assumption on the regularity of the interface. In the

framework of this weak formulation, it is possible to introduce heat and mass sources at

the second members of (2.14) and (2.15), respectively. In such a case new phases can

appear; in a more accurate physical model, nucleation phenomena should be considered.

If the solute concentration is "small", namely if c is confined to a neighborhood of

zero, it is possible to linearize the tj('s, setting

0. = fj,.(c):= - -c on5" (/ = 0,l), (2.22)

where rt = — (tJi(O))"1; thus 0 < r0 < rx < + oo (see Fig. 6). Then we set y0:= r0, t.= rx

- r0 and replace (2.19) with

Gx(h>):= y0w — tw X Vw e R,Vx e [0,1], (2.23)

(seeFig.7), where := \(\w\ - w).

If Yi i # Yi namely if the product between the specific heat and the density depends

on the phase, then we replace (2.18) with

Kx(0):= Yi,o0+(Yi.i-Yi.oM* + £)-X V0 e R. Vx e [0,1], (2.24)

where f g R. This corresponds to a latent heat of the form

L(8)-= (Yi,i-Yi,o) ■(« + £); (2-25)
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Fig. 6. Linearized phase diagram, for c = 0.

Fig. 7. Linearized concentration versus chemical activity relationship.
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L(6) is negative either for large or for small values of 6, depending on the sign of

Yj i - Yj 0; in order to prevent such a pathology, it is suitable to have either a maximum

or a minimum principle at disposal; as we shall see, it is possible to deduce both.

Finally we assume that S2 is of class C1 and introduce boundary and initial conditions:

d6 = 8 w
= Pi k 2 ' "7T

dv dv

u I ,=o = w°' v I /=o = v° in fl, (2.27)

where p, q, u°, v° are given functions and d/dv denotes the exterior normal derivative.

2. Now we remove the condition (2.6) of thermodynamic equilibrium and introduce

supercooled and superheated states, corresponding to 6 < w in the liquid and 0 > w in

the solid, respectively. We introduce the dynamical law

^ + H-\x)3 p(9,w) in Q, (2.28)

where /3 e C°(R2) and sign /?(0, w) = sign(# - w), for any 6, w e R; for instance

ft(6,w) = iu,(0 - w) - ji2(6 - w) (ju.,,2: constants > 0). (2.29)

(2.28) corresponds to the variational inequality (1.4) and can also be written in the form

I /i (6, w) + where x = 0

0 < x < 1 in Q and ^ = \ /3(9,w) where0 < x < 1 (2.30)

~P(0,w) where x = 1 ■

(2.28) represents a relaxation toward the equilibrium condition (2.11).

3. Now we consider the case of a single dimension of space, with 12 =]0, a[ (a > 0). We

assume that the interface is of the form

y= {(5(0,010 < / < t},

where j e C°([0, T]), 0 < s(t) < a, and that

Qx = {(jc,c)|0<ji:<'s(')'0</< T }, Qo = {(x,t)\s(r)<x<a,0<t< T).

Here (2.1),..., (2.4) can be rewritten in the form

^ <2-3i)

If - -If) -0 ine- <2-32)
(\f) ()f)

kUOfa(s(t) + 0,')-klA-^(s(t)-0,t) = Ls'(t) in ]0, r[, (2.33)

^2,0^7(5(0 + 0-0 - - °.')
3c
3jc ^"v*y '' ,V2-1 ; (2.34)

= [c0(i(0,0 - C!(j(0,0] ■ s'(l) in ]0.7l-

Also, this setting corresponds to a system of the form (2.11), (2.14),..., (2.19).
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Here the phase characteristic function can be expressed in terms of s:

x(x,t) e H(s(t) - x) in Q, (2.35)

and the following kinetic law can be considered:

s'(t) = P(6(s(t),t),w(s(t),t)), where 0 < s(t) < a, in ]0, T[ (2.36)

with /? as above. We stress that even in a single space dimension, (2.28) and (2.36) are not

equivalent.

Taking account of the constraint acting on s(t), (2.36) will be coupled with

s>tt\ = lfi(0(O,t),w(O,t))+ where s(t) = 0

\ /), w(a, t)) where s(r) = a.

(2.36) and (2.37) correspond to the following variational inequality:

f 0 < s(t) < a; Vf.e [0,a],

\[s'(t) - p{6{s(t),t),w(s(t),t))] ■[£ - s(t)] > 0.

(2.28) and (2.38) represent a relaxation toward the equilibrium conditions (2.11) and

■[*(/) - £] >0 V| e [0, a], in ]0, r[. (2.39)

3. One-dimensional case. We denote by H the Heaviside function

/° if€<0
\l if £ > 0.

We also set W:= L2(0, a), V:= H1(0, a), and

y(AiU,v) v:= ktf u'(x) ■ v'(x) dx Vm, v g V (/ = 1,2).
'0

We assume that

(3 e C°(R2), (3.1)

fi e L2(0, T\ V) (i = 1,2); 0 < s° < a; 0°, w° e V. (3.2)

Problem (PI). Find 6, w e L2(0, T\ V) and s e WlA(0, T) such that

0
^-[yid + LH(s(t) - x)] + Aid = ft in V, a.e. in ]0, T[, (3.3)

0
tt[yo w - Sw~ H(s(t) - x)\ + A2w = f2 in V, a.e. in ]0, T[, (3.4)

I a.e. in ]0, T[, 0 < s(t) < a and V£ e [0, a]

\ - /3(0(s{t), t),w(s(t), 0] • [I - s(t)] > 0,

0\l=o = 6° inV, (3.6)

[y0h> - fw~- H(s{t) - x)],_0 = w° in V, (3.7)

s(0) = s°. (3.8)
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Remarks, (i) (3.3) yields yx9 + LH(s(t) — x) e Hl(0, T\ V); moreover H(s(t) — x) e

C°([0, T\, hence 9 e C°([0, T]\ V) and this gives a meaning to (3.6). Similarly (3.4)

yields y0w — €wH(s(t) - x) e Hl(0, T; V) and this justifies (3.7). Notice that a priori

we cannot give a meaning to w | ,=0.

(ii) (3.3) can be rewritten in the following equivalent form:

d ra ra ()f)
yidtJ0 6vdx + Ls'(') ' + kl J0 0^ ' v' dx = v)y,

Voe F.a.e.in ]0J[. (3.9)

(iii) For a suitable choice of fx and /2, the variational problem (PI) is equivalent to the

corresponding strong formulation, in which (3.3) and (3.4) are replaced by (2.31),..., (2.34).

Hence the regularity properties of the solution can be improved.

Lemma 1. For any e > 0 there exists a constant C(e) > 0 such that, for any 9 e V and

r G [0, a],

\0(r)\2 < f [^'(v)2 + C(e)6(ri)2] d-q. (3.10)
Jo

Proof. Let £ e [0, a] be such that 0(£) = iJq 0(rj)drj. We have

6(r)2 = 0(£)2 + / (02(v))'dv

— f d(i))dt] + 2I f 9(r\)9'(t]) dn]
a J 0 | J(

/ f+ e6r(T>)2+
J n L a e

d 7]. □
t.

Theorem 1. Assume that (3.1), (3.2) hold and that

|/8(|, r/) | < Constant V£, i) e R, (3.11)

9°,u0 £ W. (3.12)

Then problem (PI) has at least one solution such that

6 e L2(0, T; V) n L°°(0, T\ W) n Hl(0, T\ V'), (3.13)

w e L2(0,T; F) n L°°(0,r; W) n H1/2~s(0,T-, W), VS > 0, (3.14)

ielf'"(0,r). (3.15)

Remark. The assumption (3.11) of uniform boundedness is quite restrictive; however,

maximum and minimum principles can be proved and then (3.11) can be removed, as in

Theorem 2 below.

Proof, (i) Faedo-Galerkin approximation

Let {Vm }m e N be a sequence of finite-dimensional subspaces filling up V. Let

e C°°([0, r]; F')} meN, fm - f strongly in L2(0,T-,V) (i = 1,2),

9° -> 9° strongly in W,

{wm e K,} -» w° strongly in W,
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where w° is such that y0w° - <f(iv°)~- H(s° - x) = co° a.e. in ]0, a[,

//„,(£):= maxjo.min ^-(m£ + 1),1 j

*«(*):= ^[(^-«) + -r] VI eR.

VfeR,

(3.16)

For any m we introduce the following approximated problem.

Problem (Pl)m. Find 0m,wm: [0, T[-> Vm and sm: [0, T[-»R such that, setting

sm(t):= max[min(sm(O,a),0],

■ v' dx + LS'm{t) • v(sm(t)) = y.(flm(t),v)y

V«e Km,in]0,r[, (3.17)

Yo + SHm{-wm) ■ Hm(sm(t) - x)] + k2^- ■ t/J dx

-twm(sm(0.0~-Sm(0 ■ »(*m(0) = viflmi*)' V VU S Vm , in ]0,T[,

(3.18)

■*«(0 + <M*m(0) = ^(^™(«m(0»0.w«(5m(0»0) in ]°'r[' (3-19)

f 0mvdx\,_o= f e°vdx Vv e Vm, (3.20)
Jo Jo

f wmvdx | ,_0 = f w°vdx Vd e Fm, (3.21)
J0 Jo

sm( 0) = 5°. (3.22)

(Pl)„, is equivalent to a Cauchy problem for a system of a finite number of ordinary

differential equations and has at least one solution in [0, Tm[. for a suitable Tm e]0, T],

(ii) A priori estimate

(3.19) and (3.11) yield

|5m(0 | = |^(^m(^(0.0. Wm(5m(0.0) I

< Constant (independent of m), in ]0, T[. (3.23)

Now we take v = 6m in (3.17), v = wm in (3.18) and sum these equations. We notice that

by (3.23) and by Lemma 1 we have

1^(0 • 0(Sm(O.O - 'wm($m(0.0~- s'Jt) ■ W„(5m(0.0|
< Constant -{1^,(^(0.01+ [^(^(0.0"]2)

< Constant • (e1/2||||^ + C(e)1/2||^l||H/ + e||+ C(0||w~lt),
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for any e > 0. Setting Bm(£):= J0( Hm(-y)yd tj V|eR (thus £m(£) -> i(^)2), we have

ra / 3 w

Jo ' Hm(sm(t) ~ X) •

= J(j Hm(sm(t) - x) • ̂ Bjwjdx

= JtfQ - x) ■ Bjwjx,t))]

- ( ~ x)-s'm(t) ■ Bm(wm(x,t))dx;

moreover, still by (3.23) and by Lemma 1, we have

f\fo Hm(SmU) - X)'K,( 0 ■ Bjwm(x,t))dx |

< Constant • Bm(wm(s„(t),t)) + a(m)

( 2 , 2 \

Elk~ IIK + C(e)||wm \\w) + o(m),

where o(m) —> 0 as m -» oo. Thus we get

ti r r /d0m\2. , yo d c
2 I/," e^x-<?d* + *>f (fcf) ".(x-'fdx

h (^) d" + 4,L ~ ')) dx+ k2

< II /l II V ' II 0m II K + II fl II V ' II Wm II V

+ Constant • (e1/2|| 6m || y + C(e)1/2||0„, || w + e\\wmtv + c(E)\\wmtw] + a(m>■

(3.24)

Applying Gronwall's lemma we get Tm = T for any m and

II II/-00(0,7-; w)nl2(o,t; k)> II ̂ IL°°(0,r; w)ni2(o, 7"; K) ̂  Constant (independent of w);

(3.25)

hence we have

l|0«(*m(O.OIIz.2«>,7> IIK,(s„(0.0 IIl*(o.7-)< Constant, (3.26)
and by comparison in (3.17) we also get

II ®m II//'((>,T\V) < Constant. (3.27)

Now we want to estimate the time regularity of wm. We first notice that by comparison in

(3.18) and by (3.25) we have
r) \aj

< Constant. (3.28)[v0 + ■ Hm(sm(t) -x)] • ^
/.2<o,r; V)dr

For any m, wm is absolutely continuous in time, by (3.18); hence, setting

Wm(x, t):= wm(xj + h) in Q (here wm(x,T +5):= wm(x,T) V<5 > 0), as h -> 0+ we

have
/j

«™(*>0:= - W"' ~ W"' -* 0 strongly in L2(0,T; V).
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Then we get

y°l Ig ~ h ~ dxdt ̂ IfQ fy° + 0 - *)] ■ ̂dxdt

(0 W \
-Jf + amh I • ( ̂  - Wm) dx dt

< Constant • || w* - wm ||z.2(o,r; n + <*»,/, < Constant

(here -» 0 as h -* 0+). For any 8 e]0, |] and any u e //1/2~S(R), one has (see [22], p.

190)
% !/2

[u{t) ~ u{ t)]

|/-t|2
II l! ||//1/2_S(R) = II M II l.2(R, + { II l :> :_V2VJ dt d 7

Thus we get

II ll//'/2-s(0,r; no < Constant, VS > 0. (3.29)

We notice that a similar estimate holds also for 6m, as a consequence of (3.24) and (3.26).

(iii) Limit procedure

By the previous a priori estimates, there exist 6. w, s such that, possibly taking

subsequences,

6, u> -> w

(3.30)
weakly star in L°°(0,r; W) n //1/2~s(0, 7; fF) n L2(0,T; F) V<5 > 0

jffl, sm -* s weakly star in 0, T). (3.31)

By Aubin's lemma (cf. [17, p. 57]), (3.30) yields

-> 0, wm —> w strongly in L2(0, T;//1_p(0, a)), Vp > 0; (3.32)

then for any p e ]|, 1[, we have

ll®i»(i«(0.0 - ®(J(')> 0 IU2(0,r)

<\\0m(sm(t),t) - ^(•s(0.0lkJ(0,r) + ||^(j(0.0 - &(s(0>0 IU2(o,r,

„(') 30,

that is,

0«(Sm(O>O Hs(t),t) strongly in L2(0,T).

Similarly we get

wm(*m(0.0 ^ w(s(0,0 strongly in L2(0,r),

and then

weakly star in L°°(0, T) and strongly in L2(0, T). (3.33)

+ Constant -||0m 0 ||z,2(0,r; //l/2+,,(0,a)) 0-
L2(0. T)
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Now we set bm(£) := /04 dt\, V£ e R. For any u e V we have

9vV. J. _ u t, \ 36«(Wm)
^ ~ x)~vdx = Hm(sjt) - x) vdx

f Hm(sm(t) - x) ■ bjwjvdx - f H'm(sm{t) - x) ■ s'Jt) ■ bjwjvdx;
*c\ Jc\

d ra

dt J0

we notice that by (3.32)

bm(wm)-> ~w~ strongly in L2(0, T\ H1 "(0, a)) Vp > 0.

Thus taking m -* oo in (3.17) and (3.18) we get (3.3) and (3.4). Multiplying (3.19) by

£ — sm(t) for a generic £ e [0, a], we have

[■*«(*) - ^(®™(j™(0.0.w«(^«(0.0)] "U " *«(0]

= -^m(^,(0) '[$ ~ S«(0] > 0.

and taking m —> oo we get (3.5). □

Proposition 1 (Maximum principle for 9). Let M e R. Assume that (3.1), (3.2) hold and

that

J3((,v)>0 V£> M, Vtj e R, (3.34)

0°eW, 9°(x) ^ M a.e. in ]0, a[, (3.35)

/, < 0 in^'(<2). (3.36)

7V2e« for any solution of problem (PI)

0<Ma.e. in 0. (3.37)

Proof. We take v = (9 — M)+ in (3.3) and integrate in time. □

PROPOSITION 2 (Maximum principle for w). Let N £ R. Assume that (3.1), (3.2) hold and

that

/3((, 77) < 0 V{eR, Vij e [ — A'_, 0] (3.38)

r/iere exist s° e [0, a] a/i*/ ic°e (Csmc/z //?a/

^(jc) = y0w°(x) - Sw°(x)~-H(s° - x) a.e. in ]0, a[, (3.39)

_ w{)(x) < iV a.e. in ]0, a[

/2< 0 in^'(<2). (3.40)

Then for any solution of problem (PI)

w ^ N a.e. in (). (3.41)

Proof. We multiply (3.4) by (w — N) + and integrate in time. □

Minimum principles can be similarly stated for 9 and w. These results can be coupled in

several ways; they also enable us to prove another existence theorem, where /? is not

required to be bounded:
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Theorem 2. Let My, M2, Nx, iV2 e R, Mx < M2 and Nx < N2. Assume that (3.1) holds and

that

8° e W, Ml^8°(x)^M2 a.e.inQ, (3.42)

there exist w° e Wands°e [0, a] such that

u°(x) = y0w°(x) - t?w°(x)~ H(s° - x) a.e. in]0,a[, (3.43)

[iVj < tc°(x) < N2 a.e. in]0, a[,

< o V(f,u) e Q-oo.A/j] x[iVj,JV2]) U([M1(M2] x[a^2, +oo[),(3.44)

P(S,v)>0 V(£, rj) e {[M2, + oo[x([iV1,Ar2]nR-)}

U([M1,M2] x]-00, JVx] n R ) (3.45)

A = A = 0 in^'(e). (3.46)

77?<?« problem (PI) has at least one solution such that

Mx < 0 < M2, < w < iV2 a.e. in <2- (3.47)

Proof. We truncate ft outside [A/lt M2] X [ JVj, jV2], denote this new function by /? and

replace /? with /3 in (3.5). The problem we get has at least one solution by Theorem 1. The

maximum and minimum principles for 6 yield Ml < 8 < M2 a.e. in Q; then the

maximum and minimum principles for w yield N1 < w < N2 a.e. in 0. Hence /3(8,w) =

f3(8, w) and consequently (8, w) solves also (PI). □

Remark. The uniqueness of the solution of (PI) is an open question.

Generalizations, (i) Theorems 1 and 2 are easily extended to the case of nonconstant

and phase-dependent diffusion coefficients, namely for k, = k,(8,w, H(s(t) - x)) (i =

1,2), if the given functions kl and k2 are continuous and comprised between two positive

constants.

(ii) The previous results can be generalized to the case of yj = y^#), y0 = YoC^)' anc^

£= £(w), under natural assumptions for the given functions y0, and c. Notice that this

includes the constitutive relationship considered in Section 2 and corresponding to Figs. 3

and 5.

(iii) The results of this section can be extended to the case of phase-dependent specific

heat and of temperature-dependent latent heat: de = yi(x)d8 + L(8) d\ (e = enthalpy

density), with = L'. Then the structure of (3.3) becomes similar to that of (3.4) and the

regularity property 6 e Hl(Q,T\ V) must be replaced by 8 e Hl/2~s(0,T, W) for any

8 > 0, which is deduced as in (3.27),..., (3.29).

(iv) Now we study the asymptotic behavior as the mass diffusivity k2 vanishes in the

solid phase. First, for any i e [0, a] we set

y(A2t,u,u)v:=k2f u'vdx + ef u'v'dx Vi/.ue F, Ve > 0,
Jo Jo

V'(As2u,v) v'.= k2 f u'v'dx Vw £ Hl(0, s), Vv e V.
Jo

Problem (P1)E. As (PI), with A2 replaced by As2['? a.e. in ]0, T[.
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Theorem 3. Assume that (3.1), (3.2), (3.11), and (3.12) hold. For any e > 0 let (Oe,we,se)

be a solution of problem (Pl)t (existing by Theorem 1). Then there exist 9,w, and s such

that, possibly taking subsequences,

9^0 weakly star in L°°(0,7; W) n L2(0, T\ V) n Hl(Q,T\ V), (3.48)

we -> w weakly star in L°°(0, T; W) n //1/2~5(0, T\ W), VS > 0', (3.49)

sf s weakly star in WI,0°(0, T). (3.50)

Moreover, (6, w, s) solves the reduced problem (Pl)0.

Problem (Pl)0. Find 8 e L2(0, T\ V), w e L2(0,T\ W),and s e such that

9w/dx e L2({(x, t) e Q\x < s(t) in ]0, T[}) and

~[yie + LH(s{t) - x)} + A,6 = in V, a.e. in ]0,r[, (3.51)a?

3/
^r["Yow ~ H(s(t) - x)] +Af)w = f2 in V, a.e. in ]0, T[, (3.52)

a.e. in ]0, T[, 0 ^ s(t) ^ a and V£e[0,a]

s'(t) — pid(s(t), t), lim w(x,/)) ■ [| - s(0] > 0, (3.53)

e\l=0 = e° inV, (3.54)

[y0w - tw~H(s{t) - x)] ,_0 = w° in V, (3.55)

s(0) = j°. (3.56)

Proof. Also here we have an estimate of the form of (3.23). We multiply (3.3)f by 0e and

(3.4)e by vv; by the procedure used in the proof of Theorem 1, we get

I llz.°°(0.r; W)nL2{0,T\ V)> II we II L"(0. T\ W)i

[k2H(se(t) - x) + y£] ^
(3.57)

< Constant (independent of e),
L2(Q)

whence estimates of the form of (3.26), (3.27), and (3.29), uniform in e.

By these estimates, there exist 6, w, s, £ such that, possibly taking subsequences,

(3.48) (3.50) hold and

0 yy
H(se(t) - *)"g~ £ weakly in L2(Q); (3.58)

by the uniform convergence of sf to s, we get

£

moreover, by (3.57) we have

£ = H(s(t) - x)-^ a.e. in ]0, T[; (3.59)

3 w
e[l - H(se(t) - jc)] -» 0 strongly in L2(Q).

By (3.49) and (3.50), we have that, possibly extracting a further subsequence, for any

n <e N

w uniformly in C°|]0, s{t) — — [ j, a.e. in ]0, T[\ (3.60)
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hence, still taking advantage of the uniform convergence of se to s,

lim we(se(t), t) = lim w(x,t), a.e. in ]0, r[. (3.61)
e -* 0 x —* (0

Thus taking e -> 0 in (Pl)Ewe get (Pl)0. □

Remark. The interpretation of (3.52) is easily obtained by setting k2>0 = 0 in (2.32) and

(2.34). We notice that here w is no longer continuous across y.

4. Case of several space dimensions. We remind the reader that we denote by H the

Heaviside graph; we also set W:= L2(tt), V:= //'(fl) and

y,(AjU,v)y'.= / kyu-Vvdx Vm, v g V (i = 1,2).
hi

We assume that

/? g C°(R2), (4.1)

1°, ,°er, /, G L2(0,T; V) (i = 1,2),

X°: ~> [0.1] measurable.

Problem (P2). Find 6,w g L2(0, T; F) and x e #*(0, 7"; IF) such that

Yt(yie + Lx) + Ax0 =/i in F', a.e. in ]0, T[, (4.3)

-^(Vow - <?w~x) + A2w = h in F', a.e. in ]0, 7"[, (4.4)

+ #_1(x) 3 0(0, w) a.e. in 0, (4.5)

0Uo = 0° inF', (4.6)

[70w -/w~x],=o = w° in v'< (4-7)

Xl,_0 = X° a.e. in (4.8)

Remark. (4.3) and (4.4) yield y+ L\, Yo^ — X G ^1(0, T; V); hence 0 e

Hl{0, T\ V) and (4.6), (4.7) are meaningful. Notice that w| ;=0 is not meaningful, a priori.

Theorem 4. Assume that (4.1), (4.2) hold and that

|/?(£, v) I < Constant, V£, 77 g R, (4.9)

0°, 40° G fF. (4.10)

Then problem (P2) has at least one solution such that

6 g L°°(0, T; W) n L2(0, r; F) n T; V), (4.11)

w G r(0, T\W) n l2(o,t-,v) n h^2~s(o,t-,w), V<5 > 0, (4.12)

X G lFl oo(0,T; L°°(fl)). (4.13)

Remark. The boundedness assumption (4.9) can be removed by means of maximum and

minimum principles, as in Section 3.
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Proof, (i) Faedo-Galerkin approximation

We introduce sequences Vm, fim, and Hm as in the proof of Theorem 1 and such that

{xl G vm}, x™ -* X0 Strongly in W,

KU)-= KU) - H»m(n - 0 V£ e R,

KM-= f b"U)-= f [H(i,)-H(n-r,)]di, V(eR,
Jo Jo

i)+-r], v^r.

For any m,neNwe introduce the following approximated problem:

Problem (P2)"m. Find 6"m, X"m- [0, T[-> Vm such that

{ + Lx"-) " V + ^ ' *°\ dx=v(fim<»)v Vf' G in M'

(4.14)

l2 ' ^wm ' V0 dx = y(f2m, t>) y

Vv e Fm,in]0,r[, (4.15)

/Q + vdx = jj(0"m,W"m)vdx Voe Fm,in]0,r[, (4.16)

/ O><&l*-o= Vu e Fm, (4.17)
•'a •'a

/" w^vdx\l=0= f w°vdx V(;eFm, (4.18)
•'a Ja

f X"nf>dx\t-0 "/ V"eKr (4-19)
•'a ■'a

(P2)^ is equivalent to a Cauchy problem for a system of ordinary differential equations

and has at least one solution in [0, T£[, for a suitable e]0, T[.

(ii) A priori estimates

We take v = 6"t in (4.14), v = w>£ in (4.15), v = 9x"„/3/ in (4.16) and sum these

equations. We set

*;(X):= f HZ(-r,)r,dr, V£ e R;
yo

hence |fi^(£)l < «2/2- We notice that

/ -<dx = l [y-w;,k)x: + «,«)'Y w,„

-1 jf x: ■ *;(<) & - j[ ̂  •«:(»:) & + /o k

dx — n
^Xm

0?
•Ilw» (4.20)
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notice the presence of the factors « and n2. By a standard procedure based on the

Gronwall's lemma, we get that Tn" = T" for any m and

I II &m llz.°°(0,r'; W)CM?(0,T"\ V)' II Wm || L°°(0, 7"'; W)n L2(0, T"\ K)» II X m II W'(0, T"; W) (4 21)

\ < Constant,, (:constant dependent on n but not on m);

then by comparing in (4.14) and by applying to (4.15) a technique similar to that used in

Sec. 3, we also get

ll^mll//1(o,7'"V) < Constant,,, (4-22)

II wm llw1/2_s(0.r"; w) ̂  Constant,,, VS > 0. (4.23)

Setting Qn := £2 X ]0, T"[, by (4.9) we have

II P(0m>Wm) ||z.»«2„) < Constant (independent of n and m). (4.24)

(iii) Limit as m —> oo.

By the previous a priori estimates, for any n e N, there exist 9", w", x" such that,

possibly taking subsequences, as m -* oo

e;;t 0" weakly star in L°°(0, T"\ W) n L2(0, T"; V) D Hl{0, T"; V), (4.25)

< -> w" weakly star in L°°(0, T"\ W) O L2(0, 7"; V) n Hl/2~s(0, T"\ W)

(VS > 0) (4.26)

X"m -» x" weakly star in WUx(0,T"\L°°(S2)), (4.27)

weakly star in Lx(Qn). (4.28)

By Aubin's lemma (cf. [17, p.57]), (4.25) and (4.26) yield

9^9" strongly in L2(0, T"\ Z/1 s(S2)), V<5 > 0,

wm w" strongly in L2(0, T"\ Hl ~5(fi)), \/S > 0;

hence

KAO b"(w") strongly in L2{0,T7/1 s(S2)>, VS > 0,

= (S{9'\wn) a.e. in 0".

We indicate by (P2)" the problem obtained by replacing -w~ with b"(w) in (P2); taking

m -* oo in (V2)"m we get that (9", w", x") solves (P2)".

(iv) Limit as n —* oo.

In order to deduce a priori estimates uniform in n, we multiply the 0"-equation of (P2)"

by 9", the ^"-equation by w" and the x"-equation by dx"/dt, sum them and integrate in

time. We notice that by (4.9), (4.5) (now written for x") yields

3x"
9/

< Constant (independent of /;);
L»(e")
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hence, setting B"(£):= b"(r])i]dt], V£ G R, we have (cf. with (4.20))

fQ ̂  [b"(w") ■ x"] w"dx = \jtfaX"' B"(w") dx

-If ■ B"(w")dx + ( b"(w") ■ • w" dx
2 Ja dt ' Jo v ' 91

dx"
3t • IIK'rill,£»«?")

(4.29)

with constants independent of n. This makes it possible to prove for 6", w", x" estimates

of the type of (4.21),..., (4.23) uniform in n. Finally, possibly extracting subsequences, we

get the convergence to a solution of (P2). □

Maximum and minimum principles can be proved, as in Sec. 3. For instance:

Proposition 3 (Maximum and minimum principles for w). Let N G R+. Assume that (4.1),

(4.2) hold and that

j8U,ij)>0 V£ g R. Vtjg[0,JV], (4.30)

I there exist x° e Lx(Sl\ [0,1]) and u>° G W such that

\ co° = y0w° - I -(w0) • x° a.e. in 12; |w°| < N a. e. in S2,

f2 < 0. (4.32)

Then for any solution of problem (P2)

| w\ < N a.e. in Q. (4.33)

Proof. We multiply (4.4) by min[max(w, -N), N ]. □

Here we can also prove a uniqueness result:

Theorem 5. Assume that (4.1), (4.2), and the assumptions of Proposition 3 hold, and that

ft is Lipschitz continuous (with constant A). (4.34)

Then problem (P2) has at most one solution.

Proof. Let (0,, w,, x,) ('= 1,2) be two solutions of (P2). We set 6 := 6l — 02,w'= h'j —

w2, x:= Xi Xi a-e- *n Q- We write (4.3), (4.4), and (4.5) for / = 1,2 and take the

differences; then we integrate the first two in time, multiply the three of them by 0,vv, x,

respectively, and sum the resulting expressions. Then, since

-/wfXi + Iwjx2 = -/(wf - wi )Xi - lwiX > -l\w\Xi ~ hv2 X,

we get

1 d
J [ Yi<?2 +(y0 - /Xi)w'2] dx + If x2dx+v,(Alj'ddr, J'0dr)v

^2 \ 12 0 0

+ y{A2 {' wdT, ' wdT)y) < L||x||l2(B) • ||^|k:(£2)
•'o Jo !

+ /||wi IU~<G)' IIx IU2(«) • II *lk2<"> + A(II ̂ lk2<"> + II Hk2<°>) ■ llx lk2m- (4-35)
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We recall that Yo > /: moreover, by Proposition 3, ||w2~||L«((2) < N. Then by Gronwall's

lemma we get 8 = w = x = 0 a.e. in Q. □

Remark. The Lipschitz-continuous dependence on the data can be proved similarly.

Finally we state two regularity results:

Theorem 6. Assume that (4.1), (4.2), (4.9), (4.34) hold and that

0°, X° G V, (4.36)

/,=/,a) + /,<2\ f el2(6), 0,T-V) (i = 1,2). (4.37)

Then problem (P2) has at least one solution such that

6,we Hl{Q,T\W) n L°°(0, T; V); x e L°°(8)). (4.38)

Outline of the proof. We take v = 36^/dt in (4.14), v = dw^/dt in (4.15), then derive

(4.16) in time and multiply it by 3x^/3^ by summing these equations and integrating in

time, we obtain a priori estimates corresponding to (4.38). □

Theorem 7. Assume that (4.1), (4.2), (4.9), (4.34) hold and that

X° e V. (4.39)

Then problem (P2) has at least one solution such that

X e L°°(0, T; V). (4.40)

Outline of the proof. For any m e N, let be as in the proof of Theorem 4 and let

Xm) be a solution of problem (P3)m, obtained by replacing (4.5) with

3*
-jf + *m(Xm) = P(0m,Wm) a'e- in Q-

Now we apply the space gradient to the latter equation; assuming for simplicity that /3 be

differentiable, we get

Jvxm = ■ v0m + . VH'm.

Then we multiply this by Vxm and integrate in space and time. This procedure is just

formal, but it can be made rigorous by using an approximation technique which yields

more regularity for \m, or also by replacing the gradients by the incremental ratios in

space. By (4.34) we get

I   2 i   2

t l^XmCO | Z.2(ft)3 — T II VX || Z.2(S2 )3

    /   2 \ 1/2

A(||v^m||^(e)" + ||vwm||t2(e)w) -|jf ||vxm(*. ,

whence an a priori estimate corresponding to (4.40). □

Generalizations, (i) The existence and regularity results of this section can be easily

extended to the case of Yi = Yi(#X Yo = Yo(w), ^= under natural assumptions for

the given functions Yj, Y2> ̂■ As f°r the uniqueness result, we notice that

[7i(0i)0i - 71(^2)^2] "(®i - h) > fminYi - \ei l) "(^ "
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hence also Theorem 5 can be extended, if maximum and minimum principles hold for 6

and if is Lipschitz-continuous with Lipschitz-constant A < ||0||2«>(g) • min y,.

(ii) The case of phase-dependent specific heat and temperature-dependent latent heat

can be treated as for problem (PI).

(iii) An existence result can be proved in the case of nonconstant and phase-dependent

conductivities, namely kj = k^O, w,\) (' = 1,2), thanks to the regularity property (4.40).

(iv) In the case of vanishing mass conductivity in the solid phase, even the existence of a

weak solution is an open question.

(v) Finally we consider the case in which the phase transition velocity depends also on

X, i.e., (4.5) is substituted with

^+£-1(x)3/J(0,w,x)a.e.ine. (4.41)

For instance

p{e,w,x) = Mi(# ~ w) + (i - x) - ~ w) x g r+) (4-42)

In this case, for fixed 6 — w, x has an exponential decay in time. In general ji is

antimonotone in x; hence -/8(0, w, x) = (B^/SxX#, w, x), with ^ continuous in 8, w and

convex in x- Thus (4.41) corresponds to the following variational inequality:

' a.e. in Q, 0 < x < 1 and Vu: S2 -» [0,1 ] measurable,

f ^(x-v)dx+( [¥(0,w,x) - *{6,w,d)] dx 0, a.e. in ]0,r[.4'4^
JQ vt J$i

The results of this section can be easily extended here. A priori estimates can be proved as

above; the continuity of ^ in 6,w and its convexity in x make it possible to take the limit

in the approximated (4.43). Also uniqueness holds, if yS is Lipschitz-continuous in 6, w,

uniformly with respect to x (as in (4.42), e.g.).
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