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Abstract. Short time analytic solution of the problem of two-phase freezing due to an

axisymmetric cold spot is presented. The melt could be superheated and it occupies an

infinite region bounded internally by a cylinder of finite radius. Although the method of

solution is valid for various other types of boundary conditions, the results in the paper

are given for prescribed flux which could be time and space dependent. The method of

solution is simple and straightforward and consists of assuming fictitious initial tempera-

tures in some fictitious extensions of the region originally occupied by the melt. The

spread of the solidification is much faster along the surface of the cylinder than along the

interior of the cylinder and the spread along the surface always depends on material

parameters. Several interesting results can be deduced as particular cases of the general

results.

1. Introduction. A typical feature of the solidification problems (the melting problem is

mathematically analogous to the solidification problem and it is sufficient to discuss here

only solidification problems) is that, apart from the fixed boundary of the region

originally occupied by the melt, there is also a boundary inside the region which is

associated with the change of phase and is commonly known as the moving boundary.

This moving boundary is unknown and is time dependent, and certain boundary condi-

tions are to be satisfied on this moving boundary. Considerable information on the utility

and analytical and numerical solutions of these moving boundary problems is contained

in [1-3].

According to the change of phase along the fixed boundary of the region originally

occupied by the melt, Sikarskie and Boley [4] have classified the solidification problems

into three classes. In class I problems, the solidification starts simultaneously at all points

of the fixed boundary. In class II and III problems, the solidification initiates over a

portion of the fixed boundary and at a point of the boundary, respectively. The problem

considered in the present work is a class III problem. As compared to the problems of
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other classes, class I problems are easiest to tackle for the reason that, under suitable

assumptions, many problems can be formulated as one-dimensional problems, but class II

and III problems have to be at least two-dimensional. Further, in class I problems, a single

boundary condition could be prescribed over the entire fixed boundary, whereas in other

problems the boundary condition on the solidified portion of the fixed boundary will be

different from the boundary condition on the portion of the boundary on which the

solidification has not yet started. In one of the articles Boley [5] has stressed the need to

study the multiphase problems of class II and III types for which, as far as we know, no

analytical solution exists in the literature. However, for one-phase ablation problems

(melting problems in which the melt is removed as soon as it is formed) some references

exist [6-8].

The exact analytical solutions valid for total solidification time for multi-dimensional

and multi-phase problems are rather unconceivable even for class I problems. For

one-dimensional class I problems, some of the important analytical techniques employed

are (i) similarity solutions such as the one given in [9], (ii) series solutions by Tao [10], (iii)

perturbation solutions [11], and (iv) approximate methods [12]. Several other references

can be found in the references listed above. None of the above-mentioned methods have

been applied to class II and III problems and there does not seem to be any systematic

way of extending these techniques to these classes of problems and so we shall not dwell

on these methods. In the absence of analytical solutions valid for longer time, short time

analytical solutions have also been developed [5, 13, 14] which are of considerable

mathematical and practical interest. Class III problems may arise in many physical

situations such as resistance spot welding, solidification of casting resulting from any

unavoidable initial evenness in the mold, etc. In the laser welding process the interaction

time is generally less than 0.1 s and the melt depth is generally less than 1 mm [15]. Short

time solutions are ideally suited for direct applications or simulation of experimental runs

in such processes.

Boley et al. [5] have contributed substantially in developing short time analytical

solutions of several types of solidific/melting problems. Some of the papers of Boley et al.

[6-8] are more relevant to the present work as they deal with the one-phase problems of

melting due to hot spots and so we shall briefly describe the method of solution employed

in these. In [16] Boley gave an embedding technique which consists of prescribing

fictitious flux in the case of ablation problems and fictitious boundary flux (or fictitious

boundary temperature) together with suitable fictitious initial temperature in the case of

solidification problems. The solid and liquid regions are embedded in the region originally

occupied by the melt. The temperature solution is written with the help of Duhamel's

theorem [17] and the unknowns are determined by evaluating integrals and by comparing

different powers of time variables and/or space variables on both sides of the equations.

For one-phase class III melting problems in [6-8], Boley's embedding technique was

suitably modified to account for the growth of the melting along the surface and toward

the interior of the solid region. Some results on the uniqueness of these solutions are

reported in [18].

The temperature solution in the present paper is written with the help of the source

solution. Solid and liquid regions are first embedded in the region originally occupied by
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the melt, and then the original melt region is further extended fictitiously and fictitious

initial temperatures are then prescribed for the extended fictitious regions. Unknown

quantities are then determined by repeated differentiations of the equations with respect

to the time variable and appropriate limits are taken. Both Boley's technique and the

present technique are essentially integral-equation techniques.

2. Problem formulation. A superheated melt at time t = 0 occupies the cylindrical mold

region R0 < r < oo, \z\ < oo (axisymmetric problem in which r and z are cylindrical

polar coordinates). This melt is cooled by prescribing a known flux QL(z, t) on the

surface r = R0 of the cylinder. The temperature of the melt at t = 0 is a known quantity

/L(r, z) which is symmetric in z and is such that

ft \l=Tm' z = 0, r = Rn
/L(r'-Z)\ > Tm, z*0,r±Ro. ( • }

a/, 32/l , .
-£T = 0, z = 0; at r = R0, z = 0. (2.2)

Tm is the unique solidification temperature, Tm + 0. The solidification will start im-

mediately at z = 0, r = R0, and with time it will grow along the surface r = R0 of the

cylinder and toward the interior of the cylinder. The equation of the solidification front

may be written in the following mathematical form:

r = s(z, t); |z|<6(/); (2.3)

|z| = b(t) is the equation of the spread of solidification along the surface r = R0 of the

cylinder, s(z, t) and b(t) are unknowns and are to be determined together with the

temperatures in the liquid and solid regions by solving the following system of equations.

For liquid regions

,97, I d2TL 1 97Y 92Tl\
2" _ H m2 + » + l (2-4)dV - '[ dR2 R dR dz2 ,

X(Z, V) < R < oo, IZI < oo, V> 0,

TL(R,Z,V)\v_0=fL(R,Z), 1<A< oo,|Z|< oo, (2.5)

= Ql(Z,V), \Z\>B(V). (2.6)
97V
9 R R = 1

For solid regions

97; I d2n i 97; d2r,, . ,
2w= + ' (2-7)dv r\dR2 RdR 9 z2

1 < R < X(Z, V), |Z| < B(V), V> 0,

pQl(Z,V), |Z| < B(V). (2.8)
97s
9 R /? = 1

For solid-liquid interface conditions

Tl(R,Z,V)\^X(ZV)= 1, |Z| < B(V), (2.9)
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T%(R,Z,V)\R_X{ZtV)= 1, \Z\^B(V), (2.10)

MV
3 Z

97s _
9/? P 9/?

R = X(Z, *0

X(Z,F)|K=0 = 1, B(K)|„.o = 0, (2.12)

*(Z,F)||zW)=l. (2.13)

jT(/?, Z, F) is the temperature and the subscripts L and S stand for the liquid and solid

regions, respectively. All the temperatures have been made dimensionless with the help of

the temperature Tm (which is unique). Equations (2.4) and (2.7) are the usual Fourier heat

conduction equations, and in (2.4) it is assumed that there is no natural convection.

Equations (2.6) and (2.8) give the prescribed fluxes over the unsolidified portion and

solidified portion of the surface R = 1, respectively. Equations (2.9) and (2.10) are

isotherm conditions and (2.11) is the heat balance condition. In Eqs. (2.4)-(2.13), the

following dimensionless variables have been used.

Z = z/R 0, R = r/R0, V = 2{kst/R20)1/2,

a2 = ks/kL, X = 1/ csTm, fi = Kh/Ks,

Ql(Z,V)= QL(z,t)-R0/KsTm, X(Z,V) = s(z,t)/R0,

Zl(R< Z) =fL(r, z)/Tm, B(V) = b(t)/R0\ (2.14)

R0 is the radius of the cylinder, K is the thermal conductivity, k is the diffusivity, / is the

latent heat, and Cs is the specific heat of the solid. Thermal properties are taken to be

constants. Qh(Z, V) is symmetric in Z.

The function fL{R, Z) in Eq. (2.5) is essentially presolidification temperature of the

melt, and it can be either prescribed directly or obtained from the solution of a heat

conduction problem without phase change with (say) flux prescribed boundary condition.

We shall avoid the formulation of this pure heat conduction problem as it is simple; we

simply mention here that if fL(R, Z) is not prescribed it will be the temperature of the

melt at time t = tm, tm> 0, and tm may be obtained, in some cases, using the condition

(2.1). The dimensionless time V in Eq. (2.14) in this case can be redefined as

V=2{ks(t-tm)/Rl}l/1. (2.15)

We shall see later that the short time solution of this pure heat condition problem can also

be obtained by the present method.

3. Solution. In view of the condition (2.6), the solution of Eq. (2.4) may be written as

TL(R, Z, V) = T£\ 1 < R < 00, IZI > 5(F),

= T[2\ X(Z,V) < R < 00, |Z|< B(V), (3.1)
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y(l) = 2a3

L 7r^V3
/OO rOO/ H1(p, q)fL( p, q) dpdq

- 00 ^1

(3.2)
/OO "1

I Hi{p,q)gL(p,q) dpdq
-00 •'0

TP-TP + ^r f H1(p,q)hL(p,q)dpdq, (3.3)
IT V J-oo J0

Hiip^q) = pexp[-a2{p2 + R2 + (Z - ^)2}/F2]/0(2a2«/?/F2). (3.4)

/0(jc) is the modified Bessel function of the first kind of order zero, fL(R, Z) is the

known initial temperature, and gL(R, Z) is the unknown initial temperature in the

fictitious extension 0 < R < 1, |Z| < oo, of the original melt region. hL(R, Z) is an

unknown function introduced for mathematical convenience.

We shall see later that T[1] can be determined by using the condition (2.6) alone and

this implies that the temperature in the region |Z| > B(V) is not affected by the growth of

the solid layer. For short time, the above assumption is reasonably justified and numerical

work has been done in this paper (refer to Fig. 3) to show that this assumption gives

insignificant error in the calculation of T[X) which is confined to a very small neighbour-

hood of the points R = 1, |Z| = B(V).

The solution of Eq. (2.7) may be written as

2 roo ,oo

/ / H2(p,q)fs{p,q) dpdq
J-oo J1

TS(R,Z,V) =
7T1/2F3

+
/co /*i _

/ H2(p> q)Es( P, q) dpdq
- oo 0

(3.5)

H2(p, q)=p exp[ - { p2 + R2 + (Z - q)2}/V2} I0(2Rp/V2). (3.6)

/s and gs are unknown initial temperatures in the solid regions 1 < R < oo, |Z| < oo,

and 0 < R < 1, |Z| < oo, respectively . It may be noted that at V = 0, there is no solid

region and therefore these initial temperatures are fictitious. Mathematically, there are six

unknowns, namely, gL, hL, /s, gs, X(Z, V), and B(V) and six conditions (2.6),

(2.8)-(2.11), and (2.13) to be satisfied.

For large values of the argument, the following asymptotic expansion for I0(x) can be

used [17].

r , . exp(x) (,19 )
Ir. ( X ) =  T~p: { 1 +  1-  T +•■•>. (3.7)

(27tx)1/2\ 8a" 128x / V ;

In Eqs. (3.2), (3.3), and (3.5), I0(x) is replaced by the first two terms of the series in (3.7)

and then TL and Ts are substituted in Eqs. (2.6) and Eqs. (2.8)-(2.11) which, after suitable

substitutions, become
- 00 r — 00[• ~ 00 r ~ 00

nVQL(Z, V) = I / DX(V, p)fh{ 1 - Vp/a, Z - Vq/a)zxV{-p2 - q2) dpdq
Joo J0

+ / 00 /° lDi(V>P)/(l - Vp/a)V2} ■ gL(\ - Vp/a, Z — Vq/a)
J m Jn/V V 'a/V

■exp(-p2 — q2) dpdq, |Z|<oo, (3.8)
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- 00 c - 00C — oc c - oo

-nPVQL(Z,V)= / D2(V,p)fs{\ - Vp,Z- Vq) ■ exp(-p2 - q2) dp dq
oo ■'0

+ r00 f° [D2(V,p)/( 1 - K/>)1/2)gs(l - F/>,Z- F<?)
•'oo •'l/K

•exp(-p2 - q2) dpdq, |Z|<oo, (3.9)

■nX3/2 = f fiA 1>a/l D^(V, p)fL(X - Vp/a, Z - Vq/a) exp(-p2 - q2) dp dq
Joa JXa/V

+ I " I ~ {D3(V,p)/(X- Vp/a)1/2}{gL(X- Vp/a, Z — K?/a)
•'oo •/(Y-l)a/)/

+ /iL( X - tp/a, Z - w7/a)}exp(-/r - g2) dpdq, \Z\^B(V), (3.10)

77X3/2 = ( ((X 1)/y D4(V, p)fs(X - Vp, Z - Vq)exp(-p2 - q2) dpdq
oo JX/V

+r / {^4(^)/(^ ^)i/2}gs(^- k9)
yoc •/(Ar-l)/*/

•exp (-p2 - q2) dp dq, |Z|<Z?(F), (3.11)

2"**5/2W

nm'/rcr^
■fL(X - Vp/a, z - Vq/a) exp(~p2 - q2) dpdq

+ fiS X / " [Di(V,p)/(X- Vp/a)1/2}
Joo {X ~l)rx/V

■ { gL( X — Vp/a, Z — Vq/a) + h L( X — Vp/a, Z — Vq/a)} exp(-p2 — q2) dp dq

f — oo /•( x \)/V

-J J Db{V, p)fs(x- Vp,Z- Vq)exp(-p2 - q2)dpdq
J J Y / 1/
7 00 JX/V

C 00 rOC

-f f [d6(V,p)/(X- Vp)l/2}gs(X- Vp,Z- Vq)
Joo J(X-\)/V

•exp(-p2 - q2) dpdq\, |Z|<fi(F), (3.12)

DX(V, p) = 2pa(\ - Vp/a + V2/\6a2) + V{\ - Vp/a)/2 + 3V3/32a3,

D2(V,p) = D1(V,p)

D3(V,p) = X(X- Vp/a) + V2/16a2,

D4(V,p)~D3(V,p)\a.1,

Ds(V,p) = 2 pa[X2(X- Vp/a) + V2X/\6a2} + VX( X - Vp/a)/2 + 3V3/32a\

DjV,p) = Ds(V,p)\a_v (3.13)

gi(R,Z) = g,(R,Z)/Rl/2, i= L,S;

hL(R,Z) = hL(R,Z)/R1/2. (3.14)
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In writing Eqs. (3.8) and (3.9), the boundary conditions (2.6) and (2.8) have been extended

to |Z | < oo and this is justified as they still satisfy (2.6) and (2.8).

We shall first formally obtain the solution and then justify rigorously some of the steps

in the method of solution. Some analytical and numerical checks will also be provided

later.

The following series expansions will be assumed for the various known and unknown

functions:

oo oo m + nOm + n/ f\

fi(R,z)= E E dR4z'
n=0m=0

oo oo ^m + n ( n \

( R 7\ = V V d Lill
''■* ' > L L dRm 3Z"

w = 0 m = 0

{R - 1 )"'Z"
m\n\

R = l, Z = 0

i = L, S, 1 < R < oo, |Z| < oo, (3.15)

(R - 1 )mZ"

m\n\
R-l,Z = 0

i = L, S,0 < R < 1, |Z| < oo, (3.16)

Ql(z,v)= E QZW-1; V>0,\z\<oo, (3.17)
n = 1

00

X(Z,V) = 1 + E A„(Z)V, 0, |Z|< B(V), (3.18)
>7=1

00

B(V)= E bnV"/2. (3.19)
n = 1

The series expansion in (3.16) also holds for hL(R, Z) (with g, replaced by hL). It will be

assumed that the series expansions in (3.15)—(3.17) are uniformly convergent in the

regions indicated there, and the series expansions in (3.18) and (3.19) are uniformly

convergent in some regions of the form |Z| < Z0, Z0 > 0; 0 < V < Vv Vl> 0. These

assumptions will be further discussed later.

In order to obtain the solution, the series expansions given in (3.15)—(3.18) are

substituted in (3.8)-(3.12) and then the limits V —> 0+ of these equations are taken. Five

equations in five unknowns are obtained which when solved give a unique solution.

Equations (3.8)—(3.12) are then differentiated once with respect to V and limits V -» 0 +

are taken. Again five equations in five unknowns are obtained which when solved give a

unique solution. This process of higher-order differentiations and limits V —> 0 + can be

continued until the desired coefficient in the series (3.18) of the moving boundary is

obtained. However, after few differentiations the algebra becomes very complicated. The

outcome of the zeroth-order differentiation is given below. AX(Z) is the root of the

transcendental Eq. (3.20).

7r1/2A^l1exp(^12a2)(l - erf^a) = 0a{l —/L(l, Z)}, |Z|<5(F). (3.20)

/L(l,Z) = gL(l,Z). (3.21)

/s(l> Z) = 1, gs(l,Z) = l. (3.22)

AL(1,Z) = 2{1 -/L(l,Z)}/erfc A,a. (3.23)
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A2(Z), A3(Z), and other related quantities are given in the Appendix. In principle, other

coefficients A4(Z), A5(Z), etc., can also be determined, but the algebra becomes

extremely complicated. Equations (3.20)-(3.23) need some discussion. It can be easily

checked from Eq. (3.20) that /^(O) = 0 and for |Z| > 0, AX(Z) < 0. It is this property of

AX(Z) which enables us to determine B(V). Equation (3.21), together with /7L(1,0) = 0

which follows from (3.23), implies that at V = 0, temperature Ts is continuous at R = 1

and is unity, which it should be.

It may be remarked here that the above method of finding limit V -> 0+ holds even if

the temperature solutions given in (3.2), (3.3), and (3.5) are directly substituted in Eqs.

(2.6) and (2.8)—(2.11), but in order to find the limit V -> 0, one has to necessarily use the

asymptotic expansion of I0(x) given in (3.7). Therefore Eqs. (3.8)—(3.12) are given for the

sake of clarity. If the functions gt(R, Z), i = L, S are expressed as in Eq. (3.14) then the

integrands in (3.8)—(3.12) have no singularities. If more than two terms of the asymptotic

expansion in (3.7) are to be used (this asymptotic series does not converge) then Eq. (3.14)

can be suitably modified. To determine B(V), condition (2.13) will be used in the

following form:

^'1'(0)(fc1F1/2 + b2V 4- b3V3/2 + ■■■ )V/2

+ A["'{0)(b1Vi/2 + b2V + b3V3/1 + ■■■ )V/24

+ { A2(0) + (b^2 + b2V + b3V3/2 + ■ • • )2A'2'(0)/2j V2

+ Ai(0)V3 + ■■■ = 0, for K > 0. (3.24)

In Eq. (3.24), both A^Z) and A2(Z) have been expanded in the Maclaurin series. The

following two cases arise.

Case I. A2(0) ¥= 0. i.e., the presolidification dimensionless flux

JU
P ^ D

U/V /? = 1, z = o

and post-solidification dimensionless flux are not equal. In this case

b\= -2A2(0)/A{'(0), A['(0) =£ 0; b2 = 0, (3.25)

b3 = -{24/13(0) + 12^2y4'2'(0) + 6^'1'"(0)}/(24Z)1^'(0)), (3.26)

^2(°) - sr
R = l,Z = 0,

2

tt1/2A"(0) = - — 9 ^
77 a 9z2

R = l,Z = 0

2 H 34/l
7t1^A['"(0) = a U(A['{0)) - f

3 Z iR = 1, z = 0

(3.27)

(3.28)

(3.29)
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9Vs , a_\/2a„Ic\\ 9/s

, (3.30)
R = 1,Z = 0

16X^0)=(4^ + 4w1/2^0)M

.n93(gL + hL +/L) fi92(gL + hL)

P SRdZ2 P 9 Z2

24771/2Xy43(0) = 21/4 - 2/l2(0) - ^{21/4 - 2^2(0)a2}/a

(1 + 4^12(0))|| + 29"(^2gs) - (3 4- 4/l2(0))||

- f {-(3 + 4^2(0)«2)9(gL9;/;L) + (1 + 4A2(0)a2)^ L

9/?

292(gL + hL-fL) _ S^L

9^2 ' -i R - l,Z = 0

(3.31)

X(0, F) = 1 + ^2(0)F2 + •••, and since A2(Q) is the leading term in the moving

boundary, it should be positive. Equation (3.27) confirms this fact. It can be easily shown

that bx is real, which it should be, and this also provides a useful check on the method of

solution. The solidification spreads along the surface of the cylinder as 0(Vl/2), V «: 1.

b1 in Eq. (3.25) will always depend on material parameters. If

92/l

0Z2

34/,
= 0 and

r) y ^
R = l,Z = 0

* 0,
R = 1,Z = 0

then we modify Eq. (3.19) and write B(V) = bnV"/4. It can be easily shown that the

solidification spreads along the surface of the cylinder as 0(V1/4), V «: 1.

Case II. A2(0) = 0. In this case

b\ — 0; b\ = -2A3(0)/A['{0). (3-32)

X(0,V)= 1 + ^43(0)F3 + •••, and since A3 (0) is the leading term in the moving boundary

it should be positive. To show that ^3(0) is actually positive, the mathematical expressions

of prescribed initial temperature fL(R, Z) and prescribed flux QL(R, Z) should be

known or the numerical values of ^43(0) can be obtained. The solidification spreads along

the surface of the cylinder as O(V), V «: 1. If

32/l

dZ
0 and ^

H-1.Z-0 az
+ 0,

R-l.Z-0

then the solidification spreads along the surface as 0(Vl/2), V « 1. b2 depends on the

material parameters. It may be mentioned here that even if higher-order terms like V1/2,

V4, etc., are considered in Eq. (3.24), the values of the coefficients bv b2, and b3 given

above in Eqs. (3.25), (3.26), and (3.32) will remain unchanged.

Along with the unknowns in the moving boundary, the unknowns in the temperature

solutions given in (3.2), (3.3), and (3.5) are also determined. Only the temperature

distribution T^\R, Z, V) is being given here as T^ and Ts can be easily obtained from
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the expression of T^2) given below (after making some minor changes). We replace I0(x)

in (3.3) by the first two terms of the asymptotic series in Eq. (3.7), use series expansions

for /L, gL, and hL given in (3.15) and (3.16), and integrate term by term. For V «: 1,

X(Z, V) R < oo, and |Z| ^ 5(F), Tl2)(R, Z, V) is given by

r<2)(R,Z,V) = R1^gL(l,Z) + (R - 1)^^ JerfcM^ - l)/F}/2

~V(R/la + ^l(1- Z)|exp{-«2(R - 1)2/V2}

+ i|/L(l, Z) + Al(1, Z) + (K - 1)0(/L3^l)[ J[1 + erfc(a( R - 1)/V)]

+ z) + /?l(1' z) + 2*(w + M~a2(R - d2/^2}}

+ terms of the type (R - \)'"V'\ where m + n ^ 2, V > 0. (3.33)

Higher-order terms were also calculated in (3.33) and have been included in the numerical

work but are not being reported here to save space. In obtaining Eq. (3.33), whenever the

limit of integration is R/V, it is taken as infinity and this is justified as the integrals are

error function integrals [19]. TS(R, Z, V) can be obtained from Eq. (3.33) by putting

a = 1, replacing the subscript L by S everywhere and putting hL(R, Z) = 0. Ts is valid

only in the region 1 < R < X(Z, V), |Z| < B(V). T[l)(R, Z, V) can be obtained from

Eq. (3.33) by putting hL(R, Z) = 0. T[l) can be used only for \Z\ > B(V). For the

determination of T{1), Eq. (3.8) alone is sufficient. It may be noted that in Eq. (3.33), V,

|R — 1|, and |Z| can take only small values.

4. Heat conduction without phase change. Short time temperature solution of the pure

heat conduction problem with fL(R, Z) as the prescribed initial temperature of the melt

(which need not satisfy Eq. (2.1)) and QL(Z, V) as the prescribed flux is given by Eq.

(3.8). The unknown gL(5, Z) and then the temperature can be determined by following

the procedure described earlier. Temperature expression is essentially the same as that of

Tl}\ which will now be valid for |Z| < oo.

5. Class I problems. Case I. Prescribed flux is finite. If the solidification starts at V = 0

simultaneously at all points on the surface R = 1 of the cylinder then the temperature of

the melt fL(R, Z) should be such that

/L(1,Z) = 1, for|Z|<oo. (5.1)

We shall avoid the details of formulation and method of the solution of this class I

problem as it requires only some minor changes in the details given earlier and we simply

mention here that, in the case of this class I problem,

AX(Z) = 0 and hL(R,Z) = 0, |Z| < oo. (5.2)

A2(Z) and A3(Z) are still given by the Eqs. (Bl)-(BIO) after deleting Eqs. (B3) and (B8).

The solution of this class I problem is not available in the literature.
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Case II. Prescribed flux is infinite. If the melt is superheated and does not satisfy the

condition (5.1), then for the solidification to start at V = 0 it is necessary, and not

sufficient, that the prescribed flux is of the form

Ql(Z,V) = Q[°>(Z)/V+ Q^(Z) + Qp(Z)V+ V>0. (5.3)

(Sufficient conditions can be deduced as in [15], Eq. (32).) In this case also the present

method of solution is valid. Most of the results given earlier, and those in the Appendix,

can be used for this problem also with some appropriate changes.

6. Justification of some of the steps in the method of solution and comparison with other

works. To save space, only a few important points are being discussed.

(i) The assumptions made earlier about the uniform convergence of the series expan-

sions for unknown functions are a priori and the convergence can be established only if

they are determined completely, which is not possible in the present problem. In such a

situation, what is done in many problems of mathematical physics and has been done in

this paper also, is to check whether the final outcome is all right, and for that several

mathematical checks have been given earlier and, further, the numerical results also

provide some checks. These assumptions ensure the differentiation of integrals in Eqs.

(3.8)—(3.12) (with respect to V and taking the limit V -» 0+ ), justify the term by term

integration for determining the temperature, and are sufficient to invoke Watson's Lemma

(see below). There does not seem to be any rigorous way to find the region of convergence

of the series for the moving boundary except by obtaining the numerical values of the

coefficients for a good estimate. It can be shown that derivatives of At(Z), A2(Z), etc., of

all orders exist at Z = 0, but the validity of their Maclaurin series expansions cannot be

established analytically.

(ii) In the first integral of Eq. (3.2), the limits of integration for the variable p from 1 to

oo and for q from -oo to + co are dictated by the region of the known initial temperature

/L( R, Z) of the melt and so these limits of integrations cannot be altered. If the procedure

mentioned earlier for determining the unknowns is followed, then the coefficients AX(Z),

Z2(Z), etc., in the moving boundary remain unaltered even if the lower limit for p in the

second integral of Eq. (3.2) is changed from 0 to C, where C could be any real number less

than one. Using Watson's Lemma [20] or the properties of error function integrals, it can

be shown that for very short time (asymptotic analysis) so long as C ¥= 1, C can be chosen

as any real number less than one and the different values of C make insignificant changes

in the value of the integral. This asymptotic analysis has been indicated mainly to justify

rigorously the solution, but in actual practice the solution may be valid for much longer

time (see numerical work). Similar types of arguments can be put forward for the possible

changes in the limits for the variable p in other integrals and are not being repeated here.

It may be remarked here that it is not possible to alter the limits for the variable of

integration q (except changing the limits from 0 to oo because of symmetry) and still

obtain the solution, and nowhere has the two-dimensional limit R -> 1, V -» 0+ of the

integrals been taken which in fact does not exist.
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(iii) In this paper, for all practical purposes, X(Z, V) is given by

X(Z,V) = 1 + A['(0)Z2V/2 + A'/1"(0)Z4V/24

+ A2(0)V2 + A'2'(0)Z2V2/2 + A3( 0)V3. (6.1)

Equation (6.1) can be rewritten as

/

X(Z,V)=1 +A2(0)V2ll (6.2)

For V 1, the propagation of solidification towards the interior is proportional to V2.

Similarly, if /12(0) = 0 it can be shown that the solidification propagation towards the

interior is proportional to V3. These behaviors of the moving boundary are in conformity

with the well-known results given in [4], The shapes of the moving boundaries in [6-8] and

in the present work also appear to be similar.

7. Numerical work. For plotting the moving boundary or temperature distribution, a

pertinent question which can be asked is: What is the range of time for which these short

T

0.5 1.0

[X(Z,V)-1] x 10
3

Fig. 1. Effect of varying initial temperature on the solidification front. A = 0.563, /? = 0.429, a = 1.538.

Qi (Z, V) = 2{1 + exp(-Z2)}, and fL(R, Z) = 1.5 - 0.5exp{-(dZ1 + /?)}, where d takes the values 2, 4,

and 8 for the curves and -A-, respectively.
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time solutions are valid? The answer is simple. We consider the series for B(V) in Eq.

(3.19). If the absolute values of the coefficients br, b2, b3, etc., go on decreasing (for a

given set of parameter values), then by calculating \bnV"/2\ for a given V (where b„ is the

last coefficient calculated in B(V)) it can be found out whether \bn + lV(n+l)/'2\ will

contribute significantly toward the calculation of Y."m = lbmVm/1 (it is assumed here that

the absolute values of the coefficients bn + l, bn+2, etc., will also go on decreasing) and this

will determine the range of time for which the solution is valid. If only one coefficient is

available, then V can be taken arbitrarily to be very small. For one-dimensional class I

problems studied in [21], the validity of this type of criterion for the series £", = 1 AmVm

has already been verified with the help of numerical schemes, but since A1 is of a different

nature in the present work, we had to evolve the criterion in terms of the coefficients bx,

b2, etc. The numerical results presented in Figs. 1-3 justify this criterion.

In Fig. 1, flux is kept constant and the initial temperature is varied. For short time an

increase in the initial temperature decreases the spread of solidification along the surface

much faster than the solidification thickness. In Fig. 2, initial temperature is kept constant

015

V=0.05

0 05-

[x(Z,V)-l]x 10'

Fig. 2. Effect of varying flux on the solidification front. /L( R, Z) = 1.5 - 0.5 exp{-(4Z2 + R)} and QL( Z, V)

= 2{m + exp(-Z2)} where m takes the values 1, 0.75, and 0.5 for the curves and -A-, respectively.
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1.12

Fig. 3. Comparison of initial temperature fL(R,Z), temperatures T[l) and 7^2) (Eqs. (3.2) and (3.3)) at

Z = B( V) and different values of R. QL( Z, V) = 2{1 + exp(-Z2)} and /L( R, Z) = 1.5 — 0.5 exp{-(8Z2 +

/?)}. For V = 0.025 and 0.05, B( V) = 0.0806 and 0.1162, respectively. The curves - X , are for /L,

T£\ and 7^2', respectively.

and flux is varied. An increase in the prescribed flux increases the solidification along the

interior more rapidly than along the surface. The maximum values of the ratios

B(V)/11 - A"(0, V)\ in Figs. 1 and 2 are 386.2 and 274.5, respectively. In all the figures

the case A2(0) + 0 is considered. b1 = 1.0040, 0.7991, 0.5020 and b3 = 0.4891, 0.4233,

0.3004 for the three initial temperatures in the same order as mentioned in Fig. 1.

bl = 1.0799, 0.6573, 0.6000 and b2 = 0.4233, 0.3351, 0.2549 for the three different fluxes

in the same order as mentioned in Fig. 2.

It is apparent that the effect of temperature T£2) on T(given by Eqs. (3.2) and (3.3))

for a given V will be maximum at Z = B(V), R ^ 1. In Fig. 3, the absolute difference

between Tf_2) and T[l) is maximum at Z = B(V), R = 1 (which it should be) and is about
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1.7%. This difference is decreasing very fast as R increases. The effect of solidification on
Tm is felt mainly in a very small neighborhood of the point Z = B(V), R — 1 and the

assumption that T[2) does not affect T[l) appreciably is justified.

Aluminum melt is considered for numerical work. Since the solidified thickness is very

small it does not seem to be interesting to calculate the temperature in the solid.

8. Concluding remarks. The method of solution presented in this paper is quite simple as

compared to the complexity of the problem considered. With suitable modifications the

method is applicable to some other geometries and some other types of boundary

conditions also. The validity of the short time analytical solution has been reasonably

established. The results given in Eqs. (3.25), (3.26), and (3.32) are new in the literature. A

more general problem could have been to consider the interactions of several cold spots on

the surface of the cylinder, but at present there does not seem to be any systematic way to

tackle this general problem. It is hoped that the present work will motivate further

research work in this direction.

Appendix. A2(Z), A3(Z), and other related quantities are as follows:

16XA2(Z){1 + Aja2}

-20AA\ 4- 2 jj?-
R = 1

erfc Al + erfc^j + 2(1 + erf/lj
3 R

-,(2

2i erfc( Axa) ^

3/s

R = 1

erfc^a + gL(l, Z)tricAxa + 2(1 + erf A^)-^—
r = 1

+ 7t l/2(&A1aexp(-A2a2) — erfc(/l1a))/2L(l, Z) • (Bl)

R = 1

= Axa(l - erf ^1a)/L( 1, Z) + AAxa erfc(yl1a)/iL(l, Z)

— 6A^a — 77_1/2exp(-y4j!a2) X {/L( 1, Z) 4- 2hL{\, Z)J

— 4A2a2exp(-Afa2)hL(l, Z). (B2)+ 2(2A1a + i erfc/lja:)-^

9gL

dR

dgs
dR

- 20a) - —
L(2l dR L\

R = 1

R - 1

2(Al + i erfc >40
R = 1

-A(l,Z)/2. (B3)

1/2. (B4)

= 2(2 A1 + ierfcA1)j8Q(I}) — A1 — ierfcA1. (B5)

= 2
L

R - 1
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8771/2\(3 + 2Afa2)A3(Z)

= -30X7t'/2A1(a2 + A \/4) 4- 8A7t1/2AxA[2 + 2TTi/2AlerfcAl

+ 2(21/8 - A2) exp(-Al) + \lirl/2Arctic Ax - (3 + 4A2) exp(-yJ2)]

02
+ (57t1/2Ax(1 + erfc^j) 4- (4A2 + 1) exp(-^f) j - 27r1/2erfcAl-^j

k = i

r = 1dR

+ 2{exp(-/4i) + mx/2Ax{\ + erfc/1,))

— ̂  [2{ Tr1/2AxaerfcAxa + (3 - 6A2a2 - 2Ala2 - 4AlA\a6

+ &AlA2a4 + 2A4a4+ A2a2 + 4AxA3a4) exp(-/l12)} hL(l, Z)

+ 2[n1/1AlaerfcA1a + (21/8 - A2a2) exp(-^fa2)}/L(l, Z)

9(gL + ht)
+ {lirl/2Axa - (3 + 4A2a2) exp(-/l2a2)} ■

3 R R = 1

+ 2{(l 4- 4A2a2) exp(-Ala2) + 5-rr1/2Axa(l 4- erfc/lja)) • -Jjr

-2.'/.,erfc/lia^(%±M1 3 R2
i\ — L

3 2f
+ 2{7rl/2Aia(l + erfc Axa) + exp(-^42a2)} L

- exp( -Ala2)

3 R'

3 2hL

3 Z

slA
A'i(Z) = ^Z- (B6)

.-7 , , „ \ 02(^L + M
4i ~ erfc (Axa) ^ 

R = 1

2/ '

= - (2Axaexp(~y42a2)ir 1/2 + (l + 2/4fa2)(l + erf Axa)) ~~

d(gL + M

R = 1

+ 2[4A xai erfc A ja - (l + 2A2a2) erfcAx j 3 R

eric A,a
3 2hL 28/l

a - ! 3Z2
1 3Z2

— (erfc/lja — 10Axai zxicAxa
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-I-8^42«2erfc^41« + 4SA2a2 + 12^a2}/L(l, Z)/4 + 48A2a2

+ 12 Afa2 — ^67r~1/2A1aexp(-A2a2)

+ (l + 4A2a2 + 6A2a2)(l + erf /^a)]

+ 4[-erfc(y41a)(/l2a2 4- 2A2a2 + 1/16) + iT~1/2A1a

■(l + 2A2a2 - 2A?ja4)exp(-A2a2) ] /j L (1, Z)

-MXA^Aj/jB. (B7)

3^lilk
3 R2

3 ss

4

3/?2

3 2gs

= 937l
r = i 3^

= 93Vs
R = 1 3^2

/? = 1

3/l
I

^2PQ^ + ^

- A-n^aQ? + ^

3/s

r = 1 ^37?

_ TJ 3«

R = 1
(B8)

(B9)

3 R2
i erfc ,4,

= [2A1exp(-A2)tr~l/2 + (l + 2^2)(1 + erMj}^

R = 1

■ 2{4Ali erfc A1 - (1 + 2A2)erfcA1}-^
r = 1

+ 2
32/s 3/s

+ 1677 1/2A1 exp(-A2) + (1 + erfc/ljfl + 6 A\ + 4/l2)}g^
r = 1 R = 13Z

+ {erfc^^l + %A2)-lOAlierfcAl}/4. (BIO)
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