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THE MOVING LOAD ON A STRING AS FREE BOUNDARY PROBLEM*
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Abstract. A free boundary problem for the nonhomogeneous wave equation is studied.

Such a problem arises when the motion of a load on a string is analyzed without

supposing that the load velocity is known and fixed. Preliminarily the complementary

equations which characterize the free boundary are determined. The mechanical problem

is then solved by proving a uniqueness and existence theorem.

1. Introduction. The problem of a moving load & on a beam or a string y usually has

been approached under the hypothesis that the load velocity is known and fixed [see, e.g.,

3-5],

But it is clear that, while the motion of the load influences the vibrations of the body y

on which it is constrained, the motion of 9 is reciprocally modified by the oscillations of

y. From this follows the impossibility of determining the motion of <& without at the

same time finding the vibrations of £f. The analysis of the interferences of the motion of

'S with y and vice versa therefore requires the study of a free boundary problem for the

equation governing the motion of y.

Such a problem is discussed in this paper in the case where y is represented by a string

which is supposed to be elastic, subject to external forces, and infinite.

2. Statement of the problem. Let us take the x-axis to be along y when it is in

equilibrium under the action of the tension only. Let y(x,t) be the position at time t of

the point of the string labelled by x. Assume that the equation governing the free

transverse motion of y is

y„ - yxx = /> (2-i)

where f(x,t) is the external force. Next consider a load &(xc, yc), of mass m, con-

strained to move on the string. Suppose that F(G,G,t) is the force applied to 0 and

indicate by F1, F2 the components of F along the axes x and y.
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Let 5 be the curvilinear abscissa that indicates the position of 'S on the string. In the

linear theory xc = s. In addition, we set yG = a.

We have the following equations:

yn — yxx = f, t > 0, -oo < x < s(t), s(t) < x < + oo. (2.2)

y(s(t),t) = a(t), t > 0, (2.3)

together with initial conditions

y{x,Q) = y0{x), y,(x,0) = y^x), (2.4)

s(0) = s0, j(0) = i0, (2.5)

and compatibility conditions

"o = a(0) = y0(s0), d0 = a(0) = yo{s£)s0 + ^(V)- (2-6)

System (2.2)-(2.6) does not suffice for determination of y(x,t), s(t), and a(t). We

need two more equations, which, as will be shown later, are the following:

m(aa + ss) - F2d - Fts = (1 - i2)(.yx+ ~ y~){a - \s(y+ + y~)}, x = s(t), t > 0,

(2.7)

(1 ~ s2)(yx — y~) + F2 — ma = 0, x = s(t), t > 0, (2.8)

where yx and y~ are defined by

yx=yx(*( 0+.0> yx=yx{*( 0~.0- (2-9)

Let xA and xB be two points of y. Let s(t) be a curve for which xA < s(t) < xB,

t g [0, T]. Assume |j| < 1 and set fiir = {(jc,/): 0 < t < T, xA < x < s(t)}, tt2T =

{(x,/): 0 < t <T, s(t) <x < xBj, SlT= Sl1T U fi2r. From Eq. (2.1) one deduces

/ y,yxdt + jf {yf + yx2) dx = - f fy,dUjT, j = 1,2.
JdSijT z JdSljT JU/T

From here, by setting

E0) = \f_B{y?(x,t)+yt2(x,f)}dx, wf = / y,fduT,
XA

wa = - fT (y,yx)(xA^)dt,
J0

wb= fT (y,yx)(xB>t)dt,
J0

and indicating by [g] the jump of a function g(x, t) on x = s(t), one obtains

E(T) = £(0) + WA+WB+ Wf - jT {[^,] + ±s[y? + v,2]} dt. (2.10)

On the other side, denoting by K(t) the kinetic energy of the conservation of the

energy of the system yields

fT (E + K)dt = WA + WB + fT (Fji + F2d)dt + Wf. (2.11)
Jo Jo

By comparing (2.10) with (2.11) and using (2.3) and (2.9), we get (2.7).
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Now we deduce Eq. (2.8). Let F* be a concentrated force applied to x = s(t). From

the momentum balance for a one-dimensional continuum, one has

d

dt
/ " y,{x,t)dx = -yx(xA,t) + yx(xB,t) + J " f(x,t)dx + F*(s(t),t),

XA XA

and therefore

+ / " y„(x,t)dx = yx(xB,t) -yx(xA,t) + j " f(x,t)dx + F*(s(t),t).
XA XA

If we make xA and xB tend to s and use (2.3) we get s2[yx] = [yx] + F*. From here, we

obtain (2.8), since in our case F* = F2 - ma.

3. Solution of the free boundary problem. In this section we will indicate by C<r,1)(/) the

space of all functions which have continuous derivatives up to order r and verify a

Lipschitz condition in every subset of I.

Suppose that there exist three functions y, s, a satisfying the system (2.2)-(2.8) and

show how it is possible to determine them in a unique way. Set S2U = {(jc, t): 0 < t < T,

-oo < x < s0 - t}, Q,22 = {(*, t): 0 < t < T, s0 + t < x < + oo}, T > 0. Note that the

solution of (2.1) in S2n, j = 1,2, depends only on the initial data. If e C(1~'a)(R -

{S0}), / = 0,1, /e C(0,1)(R X [0, + oo[), there exists, in the sense of distributions, a

unique solution y e C^n U ^22) °f (2-1) verifying (2.4) (see, e.g. [1]). Moreover, setting

<f>(x) = y(x, -x + s0), s0 - T < x < s0, \p(x) = y(x, x - s0), s0 < x < s0 + T,

(3-1)

we can see that

<t> e C(U)(K - T, 50[), ^ e C™(\s0, s0 + T[). (3.2)

Let us now consider the set fl12 = {(*, /): 0 < t < T, s0 - t < x < ^(0} an<3 assume

a, s e C2([0, T]), |j| < 1. This last assumption means that the velocity of the moving load

is not greater than the propagation speed along the string of the disturbance created by

the motion of & on .V. We next observe that there exists a unique explicit solution

u(P0) e C1(fi12) of (2.1), in the sense of distributions, which satisfies conditions (2.3) and

(3.1)j (see, e.g., [1]). If we differentiate u(P0) with respect to x0 and let P0 tend to (s(t), t)

in Q12, we have

= I1 + s(t) }_1{ -a(r) +/1(s(0»0}. (3-3)

where/j(i, t) = 4>'((s0 + s - t)/2) - /(sJo+J-r)/2 f(o,a - s + t)da.

We apply the same argument to fl21 = {(x, t): 0 c t < T, s(t) < x < s0 + t}, obtain-

ing

y*o(*(0+.0 = {! - j(0}_1{-^(0 +fi(H0>0}' (3-4)

where f2(s, t) = \p'((s + t + s0)/2) + f}s+,+so)/2 f(o, -a + s + t)da.
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We now reconsider Eqs. (2.7) and (2.8) and substitute in them the expressions for yx^

given by (3.3) and (3.4). We get

ms = F^{s, s,a,a,t) - ^{ma - F2(s, s, a, a, t)} {(1 -

+ (! + s)f2(s,t) - 2as}/(l - s2), (3.5)

ma = F2(s, s, a, a, t) - 2a - (1 - s)fx(s,t) +{1 + s)f2(s, t), (3.6)

where only the unknown functions s(t) and a(t) appear. Initial conditions (2.5) and (2.6)

are associated with Eqs. (3.5) and (3.6).

On the other side, ft e C(0,1)(]s0 - T,s0+ r[X]0, T[), j = 1,2, because of (3.2).

Moreover, suppose that the functions Fj(s, s, a, a, t) are continuous and satisfy locally a

Lipschitz condition. Under these hypotheses the Cauchy problem (3.5), (3.6), (2.5), (2.6)

has a unique solution (a, s) e C2([0, 7]) X C2([0, T]), with T > 0 depending on the initial

conditions. When the free boundary s(t) and the function a(t) = u(s(t), t) are explicitly

determined, one can also find the function y(x, t) satisfying Eq. (2.1) on the sets fi12, fi21.

Thus, setting U fi12, fl2 = fi21 U fi22, we can state the following

Theorem. Suppose that the functions Fj(s, s, a, a, t), j = 1,2, are continuous and satisfy

locally a Lipschitz condition for s, s, a, a. Assume / e C(0,1)(R X [0, + oof), yi e

C(1_,'1)(R - {»S0}), i = 0,1, and |j| < 1. Then there exists a unique solution y e C^^i)

U CHQz), 5 e C2([0, T]), a e C2([0, T]) for system (2.2)-(2.8).
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