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Abstract. A uniqueness theorem for the equations of generalized thermoelasticity with
one relaxation time, derived by Dhaliwal and Sherief [1], is proved. The stability of the
null solution in the sense of Liapounov, measured by a suitable norm, is shown. The
corresponding equations for a homogeneous isotropic material, derived by Lord and
Shulman [2], are considered as a special case.

1. Introduction. The equations of generalized thermoelasticity with one relaxation time
for a homogeneous isotropic medium were derived by Lord and Shulman [2]. Dhaliwal
and Sherief [1] obtained the corresporidinig equations for a general anisotropic medium,
following a method established by Biot [3] for dealing with the coupled thermoelastic
problem. These equations admit the so-called second sound effect in solids; i.e., they
predict finite speeds of propagation for heat and displacement disturbances. This is not
the situation encountered in coupled thermoelasticity, where an infinite speed of propaga-
tion is inherent.

Uniqueness theorems for the equations of generalized thermoelasticity were proved by a
number of authors. For the isotropic case, Ignaczak [4] proved a uniqueness theorem for a
stress-flex problem, Sherief and Dhaliwal [5] proved a general uniqueness theorem, but
their proof relied heavily on the field inequality

-q8,>0 on B Xx[0,00), (1.1)

which was not used directly in the proof of the corresponding classical theorem by Weiner
[6]. More recently, Ignaczak [7] established uniqueness by means of an associated
conservation law involving higher-order time derivatives. For the anisotropic case, Dhaliwal
and Sherief [1] have proved a uniqueness theorem similar to that in [5].
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2. Statement of the problem. We assume that a linear anisotropic thermoelastic material
at time ¢ occupies a closed bounded region B(t) of three-dimensional space with
sufficiently smooth boundary dB. The governing equations have the following form [1] in
B X [0, o0):

%u, 9 9
v gx_j(“,‘,klu/\./) - gx—j(ﬁ,,@) +pF, (2.1)
and
30 NCu,\ 9,
pCEL( a ) + TOIB (axjat) - ax, (1‘1/9/) (22)

In the above equations p(x) denotes the density, u,(x,r) are the components of the
displacement vector, ¢;;,,(x) are the elastic moduli, (x, 1) is the temperature deviation
above a reference temperature T, chosen such that |0 /7,| < 1, F; are the components of
the external applied force per unit mass, ¢, is the specific heat for zero deformation,
k,;(x) are the components of the conductivity tensor, and x(x,, x,. x;) represents a point
inside B(#). In Eq. (2.2) we have denoted by L the linear operator

L=l+%%, (2.3)
where 7, is the relaxation time.

Equations (2.1) and (2.2) are subject to the initial conditions that at t = O on B, u,, i
6, and @ are prescribed functions of x and to the e boundary conditions that for ¢ > 0, 6 is
prescribed on 3B, u, is prescribed on a portion 3B, of 3B, while the traction Cojpitpn ) 1s
given on 9B — 9B,. We assume also that u; and 6 are continuous in the closure of B.

Throughout this paper, the convention is adopted of summing over repeated indices
whose range is 1, 2, 3.

'3. Stability under perturbation of the initial data. Let (u!,8') and (u?,6?) denote two
solutions of equations (2.1) and (2.2) with the same force F, and the same boundary
conditions but with (possibly) different initial conditions. We shall consider the difference
functions

L= u—u?, 0=20"—6°
and take
U = Lu,, o=1L10. (3.1)

Applying the operator L to (2.1) (with zero F,) and to the initial and boundary
conditions, we see that (u,, 0) satisfies

82U ) 9 .
8t é?j((ijkluk.l) - Ej(ﬁ,fﬁ) in B x[0,00), (3.2)

ke U, 9 .
per 5, T ToBiy 55, ox,d1 8x,(k'~’0~»/) in B X[0,00), (3.3)

U(x,1) =0 on dB, x[0.c0). (3.42)
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U, =0 on (3B — 9B, ) x[0,00), (3.4b)
¢(x,1) =0 ondB x[0,0), (3.5)
U(x,0) = Uy(x),  U(x,0) = Uy(x) on B(0), (3.6)

0(x,0) = 0y(x),  ¢(x,0) = ¢o(x),  ¢(x,0) =¢,(x) on B(0). (3.7)
THEOREM. If (U, 8) is a solution of (3.1)—(3.7), then the function

J(1) = TOE(z)+/ fB(n k6.8, dxdn, (3.8)

is a constant independent of time, where

oU, aU.
E(t) = 2 - { = 3 T ComUi Ui+ ——q> + —k,jﬂ,aj} dx, (3.9)

provided that k,; and ¢, ,, satisfy the standard symmetry conditions

kij = kji’ Cljkl C/\Ilj (310)

Proof. From Eq. (3.2), it follows that

U, 82U 9 3
- (U + — (8. dxdn = 0.
/ ~/B(n) a'l‘] { axj(cuk/ k./) ax.j(Blj(i))} Xdan

Integrating by parts, we get

2
/ol /B(n) E;’ITJI E:)szd dn_/./ 'J"’Uk’?')Un dSdq

+/0' fB() ijki aaZIaJ Uk,dxdn+f / .B,, 3 nqdedn
2

' U,
- B, - dxdn =0.
'[) ‘[BM) / 3 3

The two surface integrals in the last equation vanish by virtue of equations (3.4) and (3.5),
respectively. We thus get

’ o, %, 8°U, 3 22y,
f /B('I){ a»,-' o "2 + ¢k ax_a,,’ E)_x,— ¢‘B,j ox a }dXd'I] 0. (311)

Eliminating B, 92U /dx On between equations (3.3) and (3.11) yields

, U, 32U, U U, pee, 3
ffB(,,){ B o M axan ax, T T, g 4%

1 e 0
~T0/0 /qu, o (k.8 ;) dxdn=0.
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Integrating the last integral by parts and using equation (3.5), gives

1 U, 3°U, 32U, U, LY ¢
ffB(,,,{ 3 oan +C'/“8x8n ax, T, @ oy | 4X9

1 !
+ = k. ¢ .8 dxdn=0.
T()fo '/B(n) 0Pl 1

Substituting for ¢ from the second part of equation (3.1) and using (2.3), we arrive at
f'f { (R 32y, 0, , pey ¢ 320 ao}d i
B(m)

P an? * i dx,0m Ax, —_¢ " _k’f dx,0m 0

1 1
L k, 8.0 dxdg=0. (3.12
Tof() /B(n) Vo ! ( )

Using the symmetry conditions (3.10) and equation (3.9), equation (3.12) yields

foaa n)dn + — ffm)k,ja,ojdxdn-o

which gives

TOE(z)+f’

/ Ki,6, dxdn = T,E(0). (3.13)
0 YB(n

Recalling equation (3.8), equation (3.13) can be written in the final form
J(1) = J(0), (3.14)

which completes the proof.
CoroLLARY 1. There is at most one solution of equations (2.1) and (2.2) satisfying the
prescribed initial and boundary conditions, provided that
(i)p>0,cg>0,T,>0,and 7, > 0, (3.15)
(i) k;; and c, ;, satisfy the symmetry conditions (3.10),
(ii1) k,; and ¢, satisfy the positive definiteness conditions

k;i§€ > &€, (3.16a)
CiinibiEr = 88, (3.16b)

for some positive constants ¢, and ¢, and for all nonzero tensors §, and £, .
Proof. As usual, to prove uniqueness the difference functions must satisfy equations
(3.1)-(3.5) and the homogeneous counterparts of equations (3.6) and (3.7), namely

U(x,0) = U(x,0) =0 on B(0), (3.17)
6(x,0) = ¢(x,0) = $(x,0) =0 on B(0). (3.18)

Using the initial conditions (3.17) and (3.18), it follows from (3.9) that
E(0) = 0. (3.19)
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Equations (3.9), (3.13), and (3.19) give

pCg

PCe 2 To
To¢ + Tok.0.0 .}dx

ijoil

U, Ay,
TO'/;?(,) {p-? —51_ + cijk/Uk./ +

ijo,i7,)

14
+2 k.88 dxdn=20. (3.20
'/0 '[B(n) K ( )

Using conditions (3.16) in (3.20) and taking account of (3.15), we see that all terms in the
resulting inequality are nonnegative; this gives

AL PCE 2 . To
fo B(1) {p a0 ar Ul T, ¢+ Tocxé’,,ﬂ_r} dx

!
+2 c,0.0 dxdn=0. 3.21
[ ], ct.8.dxdn (3.21)
Due to (3.15), all terms on the left-hand side of equation (3.21) are nonnegative; therefore
oU, -
a—t’ =¢=0 on B X[0,0). (3.22)
The first part of equation (3.17) together with (3.22) yields
U=¢=0 on B Xx[0,00). (3.23)
Using (3.1), (3.23) may be written as
ou,; —
u~+1'0i=0, 0+70%=0 on B x[0,00). (3.24)
! ot ot
As was noted by Ignaczak [7] that equations (3.24) may be written in the equivalent form
u (%, 1) = ,(x,0) exp(;—t) on B x[0.00). (3.25)
0
8(x, 1) = 6(x,0) exp(;—t) on B x[0,00). (3.26)
0

Now, using (3.17) and (3.18), the last two equations yield
u(x,1)=0(x,t)=0 on B x[0,00),

which completes the proof.
COROLLARY 2. The null solution of equations (2.1) and (2.2) is Liapounov stable in the
J-norm provided that conditions (3.10), (3.15), and (3.16) are satisfied.

The proof of this corollary follows directly from equation (3.14) and resembles
somewhat the linear version of one obtained by Ericksen [8, 9] in discussing thermoelastic
stability. It also resembles a result of Knops and Payne [10] for the coupled thermoelastic
equations.

4. The isotropic case. For this case the elastic moduli ¢, are given by the relation
Cijki = }‘8:’]8“ + ”(Siksj/ + 6il8jk) (4.1)
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while the components of the conductivity tensor are given by
k,, = ks, (42)

where A and p are Lamé’s constants and & is the coefficient of thermal conductivity.
After some manipulations and using the fact that the tensor e, ; defined by

1
e, =5(U,+U.) (4.3)

is symmetric, the function J(¢) in (3.8) can be written in the form

T, oU. oU. : k
3 { f ot Aef, + 2pe e, PCh 52 + 7-0—0’,0~,.} dx
B(1) 0

JO=5] "% T T

2

+kf’f 0.0, ,dxdn=J(0). (4.4)
0 7B v

(m)
Uniqueness and stability in this case follow from equation (4.4) as before, provided that
p, A, u,cp, Ty, k,and 7, are all nonnegative.
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