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Abstract. A uniqueness theorem for the equations of generalized thermoelasticity with

one relaxation time, derived by Dhaliwal and Sherief [1], is proved. The stability of the

null solution in the sense of Liapounov, measured by a suitable norm, is shown. The

corresponding equations for a homogeneous isotropic material, derived by Lord and

Shulman [2], are considered as a special case.

1. Introduction. The equations of generalized thermoelasticity with one relaxation time

for a homogeneous isotropic medium were derived by Lord and Shulman [2]. Dhaliwal

and Sherief [1] obtained the correspondinig equations for a general anisotropic medium,

following a method established by Biot [3] for dealing with the coupled thermoelastic

problem. These equations admit the so-called second sound effect in solids; i.e., they

predict finite speeds of propagation for heat and displacement disturbances. This is not

the situation encountered in coupled thermoelasticity, where an infinite speed of propaga-

tion is inherent.

Uniqueness theorems for the equations of generalized thermoelasticity were proved by a

number of authors. For the isotropic case, Ignaczak [4] proved a uniqueness theorem for a

stress-flex problem, Sherief and Dhaliwal [5] proved a general uniqueness theorem, but

their proof relied heavily on the field inequality

on 5 x[0,oo), (11)

which was not used directly in the proof of the corresponding classical theorem by Weiner

[6]. More recently, Ignaczak [7] established uniqueness by means of an associated

conservation law involving higher-order time derivatives. For the anisotropic case, Dhaliwal

and Sherief [1] have proved a uniqueness theorem similar to that in [5].
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2. Statement of the problem. We assume that a linear anisotropic thermoelastic material

at time t occupies a closed bounded region B(t) of three-dimensional space with

sufficiently smooth boundary 9B. The governing equations have the following form [1] in

B X [0, oo):

^ +fF- (2i)

and

+ P.2)

In the above equations p(x) denotes the density, m,(x, t) are the components of the

displacement vector, cjjkl(\) are the elastic moduli. 6(\,t) is the temperature deviation

above a reference temperature T0 chosen such that \6/T0\ «: 1, F- are the components of

the external applied force per unit mass, cE is the specific heat for zero deformation,

kij(x) are the components of the conductivity tensor, and x(jclt x2, x3) represents a point

inside B(t). In Eq. (2.2) we have denoted by L the linear operator

L = 1+t0|-, (2.3)

where t0 is the relaxation time.

Equations (2.1) and (2.2) are subject to the initial conditions that at t = 0 on B, u:, w,,

9, and 8 are prescribed functions of x and to the boundary conditions that for / > 0, 6 is

prescribed on 3B, u( is prescribed on a portion SBj of 9B, while the traction cijkluk /«/ is

given on 3B — 9Bv We assume also that «■ and 6 are continuous in the closure of B.

Throughout this paper, the convention is adopted of summing over repeated indices

whose range is 1, 2, 3.

3. Stability under perturbation of the initial data. Let (u],6l) and (uj,62) denote two

solutions of equations (2.1) and (2.2) with the same force Fi and the same boundary

conditions but with (possibly) different initial conditions. We shall consider the difference

functions

u, = u)~ uf, e = el-e\

and take

Ul = Lu„ cf> = L6. (3.1)

Applying the operator L to (2.1) (with zero F:) and to the initial and boundary

conditions, we see that (u:,6) satisfies

P^r = 3^(c'7*A,/) - a^(M) in B X [0,oo), (3.2)

pcE^ + WuHjr 9^'A') in B X[0'oo)' (3-3)

Ui{\,t) = 0 on 9B{ x[0,oo), (3.4a)
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cijkiUk,inj = 0 on (95 - 9Bx ) X [0,co), (3.4b)

cf>(\,t) = 0 on95x[0,oc), (3.5)

U,(x,0) = Ujx), Ut(x,0)=Ua(x) onfl(O), (3.6)

0(x,O) = 0o(x), <J>(x, 0) = <f>0(x), <#>(x,0) = ^(x) on 5(0). (3.7)

Theorem. If (U^O) is a solution of (3.1)—(3.7), then the function

J(t)=T0E(t)+ (' f kjjdfijdx cIt), (3.8)
J0 JB( 7))

is a constant independent of time, where

/ \ 1 C I PCF 1 rl) )

E{,) -2/»,„ ("-37-57 + + if*1 + <3■«)

provided that ktj and c,- .fc/ satisfy the standard symmetry conditions

ku = kj» cijki = Ckiij- (3-10)

Proof. From Eq. (3.2), it follows that

ft r 9t/ I d2Ui 9 , , 9 , -A
I /»,„ ~^(c'"Aj) + ̂ (v)) '

Integrating by parts, we get

ft ( W: d2U: , , f, f 9 U:

I a? 17 '"-l

+f r 92t/ f r „ 3t/

/„ 3^57'+/„ 4a
(t r 92i/

7 / dxd-q = 0.
J0 JB(r,) ' M/1)

The two surface integrals in the last equation vanish by virtue of equations (3.4) and (3.5),

respectively. We thus get

« r ( W, 92I/ 9 2t/. 9 {A 92t/ ) , „ .

i fB(v) \P 3r, 01)2 + C"A/ dXjdv dx, dxjdr/ jdxd^~ °- (3"U)

Eliminating /3; / 92f/,/9jc .977 between equations (3.3) and (3.11) yields

w, d2^ 92ui wk PcE d<j>ft f ou, OJJ, o Uj auk , pcE , 6<t> I J

1) h(V)\P dy 9rj2 "Jkl dXjdrj dx, T0 9ij J V

f/7 *-£r(kijej)dxdli = 0-
*0J0 B(tj) ax'
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Integrating the last integral by parts and using equation (3.5), gives

{' f / 92t/; Wk PcE 9

L h(-n)\P dr) dt]2 iJkl dXjd-n dx, TQ d-qj^'71

+ F (' f kn4> ,e jdxdT] = 0.
/ n J(\ J Ri n\Tq jo jB{t])

Substituting for <±> from the second part of equation (3.1) and using (2.3), we arrive at

v f I at;, a2# a<M :, ,
■lo K(n) \P 3r? 0Tj2 ijkl dxjdt] dx, T0 3tj T0 '' dx,d-q dxj V

+ f f kti6 ,6 jdxdti = 0. (3.12)
l n •'n ■> rit,\'0J0 JB( 7))

Using the symmetry conditions (3.10) and equation (3.9), equation (3.12) yields

/' lLE('n)d'n + Y f I k'je.ie.jdxdl) = °'
•'n OlJ in •'n JR<n\'O-'O •'fi(i))

which gives

r0£(/) + /' ( ktjOJjdxdr, = ro£(0). (3.13)

Recalling equation (3.8), equation (3.13) can be written in the final form

= 0), (3.14)

which completes the proof.

Corollary 1. There is at most one solution of equations (2.1) and (2.2) satisfying the

prescribed initial and boundary conditions, provided that

(i) p > 0, cF > 0, T0 > 0, and r0 > 0, (3.15)

(ii) kjJ and cijkl satisfy the symmetry conditions (3.10),

(iii) ktj and cijkl satisfy the positive definiteness conditions

ktMj > (3-16a)

Cijkl£ij£kl ^ Cliij^ij (3.16b)

for some positive constants q and c2 and for all nonzero tensors £, and

Proof. As usual, to prove uniqueness the difference functions must satisfy equations

(3.1)—(3.5) and the homogeneous counterparts of equations (3.6) and (3.7), namely

U,(x,0) = U;(x,0) = 0 on 5(0), (3.17)

0(x,O) = <J>(x,0) = <j>(x,0) = 0 on 5(0). (3.18)

Using the initial conditions (3.17) and (3.18), it follows from (3.9) that

£(0) = 0. (3.19)
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Equations (3.9), (3.13), and (3.19) give

r j 3U 9t/ pcF 7 Tq )

{"IT 17 + + iff2 + jf*,<"<

+ 2 (' ( k,fi fi jdxdn = 0. (3.20)
•'O JB{-q)

Using conditions (3.16) in (3.20) and taking account of (3.15), we see that all terms in the

resulting inequality are nonnegative; this gives

C ( 9 U: dU PCF 7 Tq )

r»/S(„ ("if 17+m++tf'9Arx

+ 2/"'/" cxe ,e td\ dt] = 0. (3.21)
*'0

Due to (3.15), all terms on the left-hand side of equation (3.21) are nonnegative; therefore

9 U
_i = <f> = 0 on B X [0,oo). (3.22)

The first part of equation (3.17) together with (3.22) yields

Ut = <t> = 0 on B X [0,oo). (3.23)

Using (3.1), (3.23) may be written as

du c
ui + To"g^" = 0- ^ + T0— = 0 on B X [0,oo). (3.24)

As was noted by Ignaczak [7] that equations (3.24) may be written in the equivalent form

w,(x, t) = «,(x,0) exp| j onBx[0,oo), (3-25)

^(x, t) = 0(x, 0) expl — ) onflx[0,oo). (3.26)

Now, using (3.17) and (3.18), the last two equations yield

w,(x, t) = 8(x, t) = 0 on B X [0,oo),

which completes the proof.

Corollary 2. The null solution of equations (2.1) and (2.2) is Liapounov stable in the

./-norm provided that conditions (3.10), (3.15), and (3.16) are satisfied.

The proof of this corollary follows directly from equation (3.14) and resembles

somewhat the linear version of one obtained by Ericksen [8, 9] in discussing thermoelastic

stability. It also resembles a result of Knops and Payne [10] for the coupled thermoelastic

equations.

4. The isotropic case. For this case the elastic moduli cljk! are given by the relation

c i jki = ^jjSki + n(8ik8ji + 8,/8/k) (4.1)
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while the components of the conductivity tensor are given by

k,j = kStJ, (4.2)

where X and fx are Lame's constants and k is the coefficient of thermal conductivity.

After some manipulations and using the fact that the tensor defined by

e,, = |(t^ + t/,J (4.3)

is symmetric, the function J(t) in (3.8) can be written in the form

/ \ T0 r I W: . , . pcE , T0k \
J{t) = y fB{t)\p-dT-di + Xekk + 2lxe^e'j+ ~t(+ ~t^ ' •')dx

+ k [' ( e ,e ,d\dy] = J(0). (4.4)
•'0 B(-q)

Uniqueness and stability in this case follow from equation (4.4) as before, provided that

p, X, jii, cE, T0, k, and t0 are all nonnegative.
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