
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLIV, NUMBER 4

JANUARY 1987, PAGES 629-637

NONLINEAR FOCUSSING IN MAGNETIC FLUIDS*

By

S. K. MALIK and M. SINGH

Simon Fraser University, Burnaby, B.C.

Abstract. The phenomenon of nonlinear focussing or collapse is presented for two

superposed magnetic fluids subjected to a normal magnetic field. We show that the

focussing is direction-dependent and is more pronounced at shorter wavelengths as well as

at higher values of density ratio. Nonlinear focussing occurs if the dimensions of the

system are higher than one and the magnetic field is in the subcritical regime. Because of

this nonlinear effect, the regular pattern formation may develop local spots of highly

irregular behaviour.

1. Introduction. Cowley and Rosensweig [1] (see also Rosensweig [2]) have investigated

the linear stability of two superposed magnetic fluids in the presence of an externally

applied magnetic field. They show that the magnetic field acting normal to the surface of

separation has a destabilizing effect on the interface. When the applied field H is slightly

larger than the critical magnetic field Hc, the interface deforms to form a regular

hexagonal pattern. The nonlinear stability of such a configuration for H > Hc has been

examined by various authors ([2] and the references therein). A generalized formulation of

the evolution equation governing the wave amplitude was developed by Malik and Singh

[3], who obtained the nonlinear Klein-Gordon equation leading to the derivation of

bell-shaped solitons and kink solutions as special cases.

On the other hand, for a tangential applied magnetic field, Zelazo and Melcher [4]

studied the linear stability in superposed ferro-fluids and showed thereby that the

magnetic field exerts a stabilizing influence on the fluid interface. In investigating the

nonlinear evolution of two-dimensional wave packets on the surface of the superposed

magnetic fields in the presence of a tangential magnetic field, Malik and Singh [5]

demonstrated the existence of modulational instability. The magnetic field, however,

suppresses such an instability.

The phenomenon of self-focussing or collapse has been the subject of extensive study in

nonlinear optics by Zakharov and Synakh [6], in plasma physics by Zakharov [7], and in
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two-layer Kelvin-Helmholtz instability by Gibbon and McGuinness [8], When self-focuss-

ing occurs in a medium, the wave field becomes singular at a point, called the focus, where

the amplitude of the wave packet becomes infinite, leading to the appearance of turbulent

bursts. Such an effect has been reported in various numerical and laboratory experiments

([6] and the references therein). Newell [9] has shown that this effect is possible only if the

system is multi-dimensional and that it takes place in the subcritical region. In a different

context, Zakharov and Shabat [10] have demonstrated that in the one-dimensional case,

the equation for the evolution of the amplitude is a nonlinear Schrodinger equation giving

soliton solutions.

The aim of this presentation is to examine the stability of two superposed magnetic

fluids subjected to a normal magnetic field in the subcritical region characterized by

H < Hc. The system is linearly stable, and we wish to investigate the effect of cubic

nonlinearity in this regime. In Sec. 2 we formulate the nonlinear boundary value problem,

giving the basic equations and the mathematical procedure for solving them. In Sec. 3 we

obtain the equation governing the evolution of the amplitude, which, on using canonical

transformation, results in the two-dimensional nonlinear Schrodinger equation. From this

equation, we derive the various criteria of stability and exhibit the existence of a

self-focussing mechanism in magnetic fluids. It may be noted that a similar phenomenon

also occurs in superposed dielectric fluids under the influence of a normal uniform electric

field.

2. Basic equations. We consider the three-dimensional flow of two superposed semi-in-

finite magnetic fluids. The half space z < 0 is occupied by the magnetic fluid of density p;

and permeability n1, whereas the region z > 0 contains the magnetic fluid of density p2

and permeability [i2- The fluids are subjected to an external magnetic field H(0,0. H)

acting normal to the interface z = 0. Both the fluids are homogeneous, incompressible,

and irrotational. The equations govening the flow are

V V" = 0, (/ = 1,2), (1)

vV" = 0, 0 = 1,2), (2)

where i = 1 denotes the region z < 0 and i = 2 the region z > 0. Here <\> and ip are the

velocity potential and the magnetic potential, respectively. Since away from the surface the

motion vanishes,

|v<£(1)| -» 0 as z —> -oo (3a)

and

|v$(2)| -» 0 as z -> oo. (3b)

The kinematic condition at the interface is

dt] 9<#>(,) d(p(,) 9tj 9<#>(,) dy , . /.x
it- Sr 1—H—a— = 0 at z = rj(x, y,t), 4
3r 9z 9x 9.x: 9 y 9y v '

where t](x, y, t) stands for the elevation of the interface. The continuity of the normal and

tangential components of the magnetic field across the interface requires

= V2H2n at z = Tj(x, y, t) (5)
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and

H1T= H1t at z = rj(x,y,t). (6)

Since the normal stress across the interface must be continuous, we obtain

9+ I(v<#)(i))2 _ lp(V(j)(2))2
91 p dt ' r'6'' ' 2vvr ' 2'

T / 92tj 92rj

9x* + 9y>
'i2[H2+(/i_l)H2n]j

8 irpi

(7)

where T denotes the surface tension, g(0,0,1) the gravitational force per unit mass,

p = p2/pi, and /x = ii1/ix2- As the boundary conditions (4) to (7) are given at the free

surface z = ri(x, y, t), one needs a priori information about rj(x, y, t). To surmount this

difficulty, we use Maclaurin's expansions about z = 0 of the physical quantities appearing

in equations (4)-(7), thereby reducing the conditions at the unperturbed level z = 0.

To obtain the asymptotic solution to the system of equations (l)-(7), we introduce the

three sets of slow variables tn = e"t, n = 0,1,2, xn = e"x, and y„ = e"y, where e is a small

dimensionless parameter representing the size of the perturbations. The method we use is

that of multiple scales, which relies on the fact that the wave amplitude is being modulated

slowly in space and time. We assume that

3

v(x,y,t)= E e"v„{x0,x1,x2,y0,y1,y2;t0,t1,t2) + 0(e4), (8)
n = l

3

<f>(x,y,t)= £ e"<l>„(x0,x1,x2,y0,y1,y2;t0,t1,t2) + 0(e4), (9)

n = 1

and

3

>P(x,y,t)= Y, e"ypn(x0,x1,x2,y0, yu y2; t0,tut2) + 0(eA), (10)
n = 1

h-^/k+0(,,)- (11)n = 0 n

rx- i + <12'0X 0 0X"

and

2

4-= E £"^-+ 0(e3). (13)
„f0

The expansions (8) to (13) are uniformly valid for -oo < x < oo, -oo < v < oc, and

0 < t < oo. On substitution in equations (l)-(7), we get the linear and the successive

nonlinear partial differential equations of the various orders. The solution of the problem

in any order can be deduced with knowledge of the solutions of all the previous orders.
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3. Linear theory, critical magnetic field. The travelling wave solutions of the first-order

problem with respect to scales x0, _y0, and t0 are given by

Vi = A(x0, y0,t0)exp(i6) + c.c., (14)

<t>U) = (-1 )JijA(x0, y0,t0)exp(i8 + (-\)J~1kz) + c.c., j = 1,2, (15,16)

| — j/lexp(i0 4- kz) + c.c., (17)
fi \ 1 + fi J

+?> = -//j | + j A exp(id — kz) + c.c., (18)

where

8 = lx0 + my0 - ut0, k = (I2 + (19)

Here H is the uniform part of the magnetic field in the lower fluid. All the physical

quantities have been normalized with respect to the characteristic length lc = (T/plg)l/2

and time tc = (lc/g)x/2. The solution to equations (14)-(19) furnishes the dispersion

relation

D(u,k) = -w2(l + p) +(1 - p)k + /c3 —rA20k2, (20)
H([i + 1)

where A0 is the normahzed Alfven velocity. Equation (20) yields the critical value of the

magnetic field at k = kc = (1 — p)1/2:

1/2

H =
^77jU ( jU + 1)

(M- I)2

((1 -p)Tg)i/4. (21)

This result was obtained earlier by Cowley and Rosensweig [1], It is clear from equation

(20) that H = H( is a point of bifurcation. For H > Hc, the flow is supercritical, as

examined earlier by Malik and Singh [3]. In this paper, however, we are interested in

investigating the nonlinear stability of waves in the subcritical region H < Hc-

4. Amplitude modulation of a travelling wave packet. With a view to deriving the

equation for the evolution of the amplitude, we proceed to solve the second- and

third-order problems. The nonsecularity conditions for the existence of uniformly valid

solutions in the second-order problem are

= 0 (22)
a?! ' a*! m [ '

and its complex conjugate. Here, the group velocities V, and Vm are given by

k

F =

2co(l + p)

k

2w(l + p)

!tW±£l + 2,- '
k3 k n(n + 1)

»'"■('+ "> + 2

k3 k m(m + 1)

(23)

(24)
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The quantities V, and Vm appearing in (22) could be eliminated by transforming to the

group velocity frame of reference. On substituting the second-order solutions into the

third-order problem, we obtain

„.( dA ,r dA „ dA \ „ 32A 32A n 32A Aa A ,~c\

3t2 + ' dx2 + Vm dy2) + Pl ax2 + 2 dxfa + P' 9j2 " 01 1 ' ( )

where

Pi
<o(l + p)

+ "> - 2/>) + 2 - ^ " 1)'-4°"'2
k5 /*(/!+l)A:3

| 4F>/(1 + p) 2(1 + p)
i 1 ^ ' (26)

Pi = -7 r
«(1 + p)

(27)

^ <o(l + p)
il±J^(,2-2m2) + 2-i^2/^

+
4Fmcom(l + p) 2(l + p)

(28)

2w(l + p)
4(1 — p)w2A + 4(1 + p)u2k — 3A:4 —— ^ °()U2 — 6ju + l)

M(M+ 1)

A =
2/, X ^o^-l)3

to (1 - p)

(29)

[l — P 2 A:2 ] 1. (30)
+ 1)

It is interesting to observe that equation (25) has a singularity in A for k2 = }(1 - p).

This corresponds to the case of second harmonic resonance, where the fundamental

cannot exist without the presence of its first harmonic. We should remark that the analysis

given in this paper is not valid in the neighbourhood of such a resonance. To investigate

the behaviour near this resonance, the method used earlier by Malik and Singh [11] can be

employed.

Equation (25), which is elliptic or hyperbolic according to the sign of (P2 - Pt Pi,),

initially arose in the study of Kelvin-Helmholtz instability [8, 12]. When P2 - P,P3 < 0,

it can be reduced to the two-dimensional nonlinear Schrodinger equation with the aid of

the transformations

a=y - j^x, -j-{P2- P,P3)l/2x. (31)
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Rewriting equation (25) in the group velocity frame of reference, we obtain

0.A A 92A . 92A .2 . ,

i~ae+ 2^ = qi1 ' (32)

where

P 2 \ "1/2

( = I p3 - y I v =
p

Pi-IT
\

P

-1/2

t2 — t, Ax - A2 — 1.

On the other hand, if we assume P2 - PXP3 to be positive and proceed as before, we still

recover equation (32), except that Ax = 1 and A2 = -1. Here the nonlinear interaction

parameter Q and group velocity rate parameters P change sign depending on the values of

the wave numbers /, m and the Alfven velocity A0. Following Zakharov [7], the two

integrals of motion for equation (32) are

A = ff \A\2didrj, (33)

+ \ir\ + "<34)
Furthermore, one can show by direct calculation that

^2 //(£2 + V2)\A\2 d£dif) = 8/2. (35)

Since I2 is a constant of motion, integration of (35) yields

jj U2 + y2)\A\2 d£dri = 4t2/2 + cl t + c2, (36)

where and c2 are constants of integration. From equations (34) and (35), if Q < 0 then

a wide class of initial data will render I2 negative. Since the left-hand side of equation (36)

is positive definite, the right-hand side will be negative for not too large a value of t.

When I2 is negative, it leads to a singularity at a certain time t = t0 where the solution

will cease to exist. This singularity would mean that in finite time \A\ tends to zero

everywhere except at the singular point, called the focus. This phenomenon is termed

collapse or strong focussing. For Q < 0, collapse will occur if either

A, = A2 = 1, P22 - PXP, < 0, (37)

or

Aj = 1, A2 = -1, P2 - PXP3 > 0. (38)

Berkshire and Gibbon [13] have shown that when condition (38) holds, it is possible to

have a focussing effect locally, if not an entire collapse. The nature of the singularity is a

subject of great interest. Berkshire and Gibbon [13] established a close analogy to the

Sundman results on collapse in the /v'-body problem in classical mechanics by considering

the integral in equation (36) as the moment of inertia, and went on to describe the

singularity as (t0 - t)"1/2.
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P=0for £=m
G=0forf=0.5m
0=0 for ('=0 3m

Q=0forf=0.1m

P=0 for f= 0.5m
P^Ofor f=0.3m

P-Ofor l,:=0.1m

Fig. 1. Plot of normalized Alfven velocity A0 versus wave number m. The shaded regions between the transition

curves P = Q = 0 exhibit strong focussing.
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We have computed numerically the collapse criteria (37) and (38) for different values of

/, m, ju, p, and A0. The numerical results reveal the existence of collapse for wave

numbers k > kc = [?(1 — p)]1/2. Figure 1 exhibits the sketch of m versus A0 for fx = 1.5,

p = 0.4, and various values of /. The values taken for A0 are smaller than the critical value

of the magnetic field allowed by the linear theory. The graphs outline the transition curves

across which P( = P{ - P^P^ and Q change sign, indicating the regions where nonlinear

focussing takes place. Figure 2 shows how variation of the density ratio p affects the

transition regions. We conclude that the focussing takes place at the higher values of wave

numbers. Furthermore, the effect is more pronounced when the wave numbers m exceed

the wave numbers /, implying thereby a strong directional dependence. The focussing

occurs for 0.3 < p < 0.9, and the higher the value of p, the stronger is the effect.

Moreover, part of the region which is stable in linear theory becomes unstable because of

nonlinear focussing. The transition occurs from a marginal state to an excited one for the

subcritical values of the applied magnetic field. There is a strong interaction between the

neighbouring wave numbers, which may lead to the formation of irregular patches at the

local level.

14

13

12

11

10

o
<

oJ^P=0.4, Q= 0

P-0.4

2 4 6 8 10

Fig. 2. Sketch of A0 versus wave number m for different values of the density ratio.
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