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Abstract. The existence of a unique weak solution for the two-dimensional water-wave

radiation problem arising when a floating rigid body oscillates on the free surface is

established for all but a discrete set of oscillation frequencies. The body boundary is taken

to be of <^*'a class (see Sec. 2) and the body boundary condition is satisfied in the

L2-sense. The proof relies on an expansion theorem (Athanassoulis [1]) and on the

property of the associated water-wave multipoles being a Riesz basis of L2(-w, 0), a fact

which is established in the present paper. Under stronger geometrical restrictions on the

body boundary it is proved, using a method due to Ursell [10], that the weak solution is

actually a classical one; that is, the velocity field is continuous up to and including the

body boundary.

1. Introduction. This paper is concerned with the study of the boundary value problem

arising when a two-dimensional body floating on the free surface of an unbounded,

infinitely deep, incompressible, and inviscid fluid performs time-harmonic oscillations of

small amplitude about a fixed mean position. This problem is to be studied under the

additional assumption that energy is radiated in both directions toward infinity, in which

case it is usually called a radiation problem.

The solvability of the water-wave radiation problem for either two- or three-dimen-

sional floating obstacles of general shape has been studied by John [2], Beale [3], Lenoir

and Martin [4, 5], and Lenoir [6], John [2] reduced the problem to a Fredholm singular

integral equation of the second kind and treated the three-dimensional case assuming

uniform finite depth; however, his results are also valid in the two-dimensional case for

either finite or infinite depth. He established the existence and uniqueness of a classical

solution when the wetted surface of the floating body satisfies certain geometric condi-

tions, namely it is of class #2, it intersects the free surface perpendicularly, and it is

intersected by every vertical line in at most one point. Beale [3] proved the unique weak

* Received July 1, 1983.

©1987 Brown University

601



602 G. A. ATHANASSOULIS

solvability of the same problem for all but a discrete set of oscillation frequencies,

removing John's geometric restrictions. Lenoir and Martin [4, 5] treated the case of

three-dimensional bodies floating in a fluid of infinite depth. Using the limiting absorp-

tion principle, they proved the existence of a generalized solution for all oscillation

frequencies for which uniqueness holds. They also provided a general uniqueness theorem,

which however, as pointed out by Martin and Ursell, was not correct (see the discussions

of a paper by Euvrard et al. [27]). Lenoir [6] treated, by the same method, the two-dimen-

sional case for either finite or infinite depth.

For the two-dimensional case with infinite depth, Athanassoulis [1] showed, using a

method due to Ursell [7, 8] and the conformal mapping technique, that if a solution of the

radiation problem exists it can be expanded in an infinite series of special functions, called

water-wave multipoles.

In the present paper this multipole expansion is to be used to establish the weak

solvability of the radiation problem for all but (possibly) a discrete set of oscillation

frequencies (Theorem 5.3) provided the body boundary is sufficiently smooth, i.e., it

belongs to the class (see Sec. 2) and, as a consequence, it intersects the free surface

perpendicularly. It is worth mentioning that in our approach John's convexity condition is

no longer necessary. Subsequently, under stronger geometric restrictions on the body

boundary, it is proved that the unique weak solution is, in fact, a classical one; i.e., the

velocity field is continuous up to and including the body boundary. Moreover, it is

established that the multipole expansion coefficients of the velocity field are of order

0(\/m2) (Theorem 6.1).

The idea of using relevant multipole expansions to prove the solvability of water-wave

radiation problems goes back to Ursell (see Ursell [9, 10] and Yu and Ursell [11]), who has

treated the case of a semicircular floating body. Ursell reduced the question of the

solvability of the radiation problem to that of an infinite linear system and studied it by

using Fredholm theory for compact operators. In our treatment the proof of the weak

solvability theorem, presented in Sec. 5, makes use of the basis property of the water-wave

multipoles, which is also established in the same paragraph, while the proof of the

regularity theorem, presented in Sec. 6, is along lines due to Ursell [10].

In establishing the basis property of the water-wave multipoles we need some elements

of the spectral theory of compact operators analytically dependent on the spectral

parameter. The pertinent background material along with the needed elements of the

theory of bases in Hilbert spaces is summarized in Sec. 4.

2. Notation and terminology. A Cartesian coordinate system Ox2Xt, is introduced with

the x2-axis on the mean free surface, the x3-axis directed vertically upward, i.e., in the

direction opposite to that of the acceleration of gravity, and the center O inside the

floating body. A point in the (x2, x3)-plane is denoted by x = (x2, x3), or w = x2 + ix3

in complex notation.

The mean fluid domain D is defined by D = {x; x3 < 0, x £ Ds), where DB is a

compactum in the lower half-plane, intersecting the x2-axis and representing the floating

body. The mean free surface of the fluid, i.e., the part of the x2-axis lying outside Z)fi, is

denoted by 3DF, and the mean wetted surface of the floating body, i.e., the common
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boundary of D and DB, is denoted by 3DB. The symbols 3DB, DB , D+ denote the point

sets which are symmetric to 3DB, DB, D with respect to the x2-axis; see Fig. 1. We also

define

dD£ = dDB U dDB , D* = D U D + U WF, DB = DB U D +

The class of quadratically Lebesgue-integrable, complex-valued functions, defined al-

most everywhere in (a, b), is denoted by L2(a, b). The scalar product and the norm in

L2(a, b) are denoted by (/, g) and ||/|| = (/, f)1/2, respectively.

The space L2(-tt,0) is decomposed into two orthogonal subspaces: the subspace L2A,

spanned by (1, cos#}, and the subspace L\ = (L^)x, in which {cos(md)}f forms a

complete orthogonal sequence.

Some smoothness requirements are needed for the body boundary 3DB.

We shall say that 3DB belongs to the class if 3D% is a simple closed curve,

described parametrically by equations

X2 = x2(d), x3 = x3(0), [-77,77], (2.1)

and the functions x2(0), x3(8) have the following properties:

(i) They are continuously differentiable and their first derivatives satisfy a Holder

condition with exponent a e (0,1].

(ii) Either a > 1/2 or the first derivatives of x2(d) and x3(6) are of bounded

variation.
dx2(0) , dxAO) ,

M ( de ) + ( d6 ) * 0 for every 6 e [-77,77],

The above conditions are needed to ensure the validity of Lemma 3.1 below.

_ p?cma w — picme.

Fig. 1. Geometric description.
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More restrictive assumptions on the body boundary will be introduced in Sec. 6, where

the regularity of the radiation problem will be studied.

Two noninteracting imaginary units j and / are used, making necessary the distinction

between the y-complex numbers a = a + j/3(a, /3 e R), and the /-complex numbers

z = y + iS(y,d e R). Products of j- and /-complex numbers also occur, leading to

objects of the form

a + jfi + iy + ij8, a, /?, y, S e R, (ij = ji),

which are called /y-complex numbers. The sets of j-, i- and y-complex numbers are

denoted by €;, C,-, and Crespectively. The basic notations and operations in C, are

defined below.

Let A, As, s = 1,2, be /j-complex numbers. They can be represented in the form

A — z + jw, As = zs + jws, where z, w, zs, ws g C,. Then we define:

Equality: At = A2 <=> z1 = z2 and wl = w2, (2.2)

Addition: Al + A2 = (zj + z2) +y(w1 + w2), (2.3)

Zero element: 0C = O + jO, (2.4)

Multiplication: Ax ■ A2 = (z1z2 — H'jus) + j{zxw2 + ZjwJ, (2.5)

Unit element: lc = 1 + jO, (2.6)

Scalar multiplication: \A = (Xz) +j(\w), A e C;, (2.7)

Absolute value: \A\c0= (|z|~ + Ivvf)1'". (2.8)

The subscript C,y in the definition of the zero and unit elements and the absolute value

will be omitted in the sequel whenever no confusion is likely to occur.

The system (C+, •, 0,1) is a commutative ring, which, however, is not a field (there

exist nonzero, noninvertible elements). Furthermore, | ■ |c is a norm, and the set C

equipped with the operations (2.3), (2.5), (2.7), and the norm (2.8), becomes a commuta-

tive Banach algebra. For a rather complete study of the algebraic and topological structure

of C jj see Athanassoulis [1, appendix I].

Finally, if A = a + jfi + iy + ijS e C ,• •, we define

Re, A = a +j/3, l A = y + jS,

Rey A = a + iy, Im^ A = /3 + iS.

3. Formulation of the radiation problem and some preliminary results. Under the

assumptions made in Sec. 1, the fluid motion is described by a velocity potential

<t>(x,t) = Re/{<|)(x)eya"},

where <f>(x), the j-complex amplitude of <#>(*, /), satisfies the Laplace equation

<t>,22(x) + 4>,n(x) = 0, xeD, (3.1)
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and the boundary conditions

K0<t>(x) - <p3(x) = 0, K0 = ur/g, xg3 Df, (3.2)

= "„(•*)> x^d Db, (3.3)

l<Mx)l S = 2,3, x3->-co, (3.4)

and

1 _ jK0(f>(x) -» 0, x e Z), |x2| -* oo. (3.5)
0|X2 |

Here and below, « is the frequency of oscillation, g is the acceleration due to gravity, and

3/3n denotes differentiation along the normal n = (n2,n3) of 3DB, directed outward

with respect to the fluid.

Introducing the //-complex potential

F(w) = 4>(x) + iif'(x),

where 4>(x) is the j-complex amplitude of the stream function x/^(x, t), Eqs. (3.1)—(3.5) are

transformed to

F(w) be /-analytic in D, (3.6)

/dF(w)
lm'{d^ + iKoF^} = 0' *eaZ>F, (3.7)

Re,{n ̂ ~chP~) " u"(w)' w G 9Z>»' ^3'8^

-> 0, x3 —> -oo, (3.9)
dF(w)

dw

and

F(w) -> A±(l + ij)e~ik<>w, A±e C ,, w e D, x2 -* +oo, (3.10)

respectively.

Relations (3.5) and (3.10) are two forms of the radiation condition. For a discussion of

this condition see, e.g.. Stoker [12, Sees. 4.3, 6.7] and Athanassoulis [1, Sees. 2, 4],

A conformal mapping w = /(£) is now introduced, transforming the exterior of the unit

circle {£: |f| > 1} in the f-plane onto the domain D* in the w-plane. Such a function

always exists, provided that has at least two boundary points (Riemann's mapping

theorem) and may be chosen so that the point sets 3KB = {£: Im, r<o, | = 1},

dKF = {£: Im,-f = 0, |f| > 1}, and K = {f: Im,f <0, |f| > 1} in the f-plane are to be
transformed to the point sets 3DB, 3DF, and D in the w-plane, respectively (see Fig. 1).

Finally, we define

K= {£: Im,-f 0, \t\> 1} = ^U3^U3X{.
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If dDB belongs to the class C#'a, then:

1. The function /(?) can be extended in the region {?: |f| >1},

establishing a one-to-one and bicontinuous correspondence

between the regions {?: |f| > 1} and D* U dDg (Osgood-

Caratheodory theorem).

2. The function /(?) is continuously differentiable and its

derivative df{{)/d^ does not vanish in {£: |? | ^ 1} (Kellogg's

theorem).

3. The function /(£) is expanded in a Laurent series of the form

00

m = e c,r2-', Cl>o,ifi>i. (3.H)
/=1

where all c/s are real numbers, since the domain D* is

symmetric with respect to the x2-axis.

4. The equation

00

w(6) = f(e,e) = £ c,ei(2-')e (3.12)

1=1

realizes a parametric representation of the boundary 3Dg

such that the functions x2(d) = Re({w(0)} and x3(9) =

Im,{w(0)} satisfy conditions (i), (ii), (iii) introduced in the
'l..definition of the class.

Using the change of variable w = /(£), we may transform Eqs. (3.6)—(3.10) into the

equations

) be /-analytic in A', (3.13)

dFS) , d/(n
Im + = fG0 kf, (3.14)

b. (3-15)
I df(0M\

<&s(S)
0, Im,-f -» -co (3.16)

Fs(S) -* A±(l + ij)e~iK«J, A±e C,, f e K, Re,? -» + oo, (3.17)

where ) stands for F(/(f)).

It should be noted that the complex potential Ff(f) also depends on the parameter

K0 = u2/g. To emphasize this fact we shall often write Ff(f; K0) instead of F?(f )•

The three sets of equations (3.1)—(3.5), (3.6)—(3.10), and (3.13)—(3.17) are mutually

equivalent under the assumption 9DB e In the present paper we shall work with the

third formulation and, for the sake of brevity, Eqs. (3.13)—(3.17) will be collectively

referred to as the radiation problem K0).
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We shall now state an expansion theorem for the wave potential A"0), which is of

fundamental importance for the subsequent treatments. This theorem provides an exten-

sion of the multipole expansion introduced by Ursell [26] for body boundaries symmetric

with respect to the vertical axis.

Theorem 3.1. (The expansion theorem; Athanassoulis [1, Sec. 4].) A function K0)

satisfies conditions (3.13), (3.14), (3.16), and (3.17) if and only if it may be represented in

the form
00

F^-,K0) = A0G0{f(n-,K0) + A1G1{f(n-,K0)+ £ dmMm(^,K0), (3.18)

where

A0, Aj, d„ g C

00 (2 — l)c
MM-, K0) = rm - >K0 I K ',_m , m = 2,3,..., (3.19)

/= l z '

G0(w; K0) = \{\ - ij)K0e-K°» - K0), (3.20a)

Gx(w; K0) = i(l - ij)K0e-K°» - *o). (3.20b)

/W

u'seiK"udu, 5 = 1,2, (3.21a)
o + /0

and the path of integration in the last integrals is taken to be in the lower half-plane.

Remark 3.1.1. The functions G0( w; K0) and G,(w; A^0) represent free surface flows which

are, respectively, symmetric and antisymmetric with respect to the axis Ox3.

Remark 3.1.2. The function Fx{w\ K0) can be written in the following alternative form:

FX(W- K0) = + In(,K0w) - ln(-l) + £ (3.21b)

where y is Euler's constant. With the aid of the above expression we see that F^w: K0) is,

for each w ¥= 0, an analytic function of K0 in Q c C ., where Q is any open, bounded,

simply connected region of C ■ containing a part of the positive real axis but not

containing the origin. Moreover, the function K0Fx{w\ K0) tends to zero as K0 -» 0 for

each fixed w =£ 0. Since

. . 1 , JF (w; Kn) 1 . .
F2(w,K0) = -- + iK0F1(w,K0), Adw = — -iK0Fs(w,K0), s = 1,2,

it follows that F2(w, K0) and dFs(w\ K0)/dw are also analytic functions of K0 e Q and

they remain bounded as K0 —> 0, for each w + 0.

Now introducing (3.18) into (3.15) and differentiating term by term, we obtain

/ °o ( jK 00

rJa0h0^-k0) + a1h1(^,k0)+ z (mdjlrm + -rZ(2-/)^2-'-
m = 2 \ m 1=1 I 1 i~e'e

= V(0), 0e[-77,O],

(3.22)
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where #,(£; K0) = -fc/G,(/(£); K0)/dS, s = 0,1, F(0) = U„(0M(e'V#i, and w„(0)
stands for un(f(e'6)).

The termwise differentiation in (3.22) is justified, in the sense of pointwise convergence,

if the series E|2 - /| |c,| and L\mdm\ converge. The convergence of the first series is a

consequence of the body boundary smoothness assumption 3DB e (see Lemma 3.1

below). The convergence of the second series will be considered in Sec. 6, where it will be

established that dm = 0(l/m3), provided that /(f) is represented by a finite Laurent

series and that 3D% is a simple, closed curve with continuous tangent. However, if the

left-hand side of (3.22) is interpreted in a limiting sense, that is, as the limit when

|f| -* 1+ , the weaker condition T\mdm\2 < oo is sufficient to make (3.22) valid in the

L2-sense. This point of view will be adopted in Sec. 5, where the weak solvability of the

problem <P(K0) will be proved without restricting /(f) to be a finite Laurent series.

Now setting

<pm(0;^o) = Re,{//„,(e"';/:o)}, m = 0,1, (3.23)

K. 00
K0) = cos(md) H   E (2 ~ /)c/sin(/ + m - 2)6, m = 2,3,..., (3.24)

m /= l

A 0=D0, Al = Dl, mdm = Dm, m = 2,3,..., (3.25)

we can rewrite Eq. (3.22) in the form
OO

E Dm<pm{0; K0) = V(6), Nh,0]. (3.26)
m = 0

The central question is now the following: Under what conditions and in what sense

may the function V(8) = un(8) ■ \df(e,e)/d$\ be expanded with respect to the sequence

{<P„,(0; A-,,)}??
It should be noted that the forcing term V(ff) may also depend on the parameter K0, as,

for example, in the diffraction problem. But this fact does not introduce any further

complication.

We now state a lemma on the conformal mapping coefficients of a e€\,a boundary,

which is often used in this work.

Lemma 3.1. If dDB e and {c,} are the Laurent expansion coefficients of the

conformal mapping function /(f) [see Eq. (3.11)], then
OO

E |2-/||c,|< 00.
i=i

The proof of this lemma is based on two classical theorems on the absolute convergence

of Fourier series (Zygmund [13], Theorems 3.1 and 3.6, pp. 240-241) and the Denjoy-Lusin

theorem on the absolute convergence of the series of Fourier coefficients (ibid., p. 232).

Finally, we collect, in the form of a theorem, some properties of the functions

Gs(ftf);K0), s = 0,1, Mm(f; K0), m = 2,3,..., and <pm(0; K0), m = 0,1,2,..., which
will be needed in Sec. 5.

Theorem 3.2. Suppose that 3DE e -a. Then

(i) Gs(/(f); X0), i = 0,1, are continuously differentiable with respect to f e K for

any fixed K0 e Q. They are also analytic functions of K0 g Q, for each f e K.
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(ii) A/m(£; K0), m = 2,3,, are uniformly bounded with respect to m and continu-

ously differentiable with respect to f s {f: |£| > 1}, the infinite series contained being

termwise differentiable.

(iii) <ps(6\ K0), s = 0,1, are continuous with respect to 9 e [-w,0] for any fixed

K0 e Q. They are also analytic functions of K0 e Q. for each 6 e [-w, 0],

(iv) cpm( 0\ K0), m = 2,3,..., are uniformly bounded with respect to m and continuous

with respect to 6 e [-it, it].

The proof of this theorem is easily carried out with the aid of Lemma 3.1.

4. Background theory. In this section we present some definitions and theorems

underlying the proof of the solvability theorem, given in the next section. The materials

presented concern the spectral theory of compact operators analytically dependent on the

spectral parameter and the theory of bases; they are given for the Hilbert space case,

although they can be properly generalized for Banach or even, in some cases, for linear

topological spaces (see Harazov [22] and Singer [14]).

Let £ be a separable Hilbert space and B( E) be the set of all bounded linear operators

in E. By (•, •) and || • || are denoted the inner product and the induced norm in E,

respectively.

Definition 4.1. Let T(X) [resp. g(A)] be an operator-valued (resp. vector-valued)

function defined on a simply connected region Q c C, with values in B( E) (resp. E ). We

shall say that T(A) [resp. g(A)] is analytic in Q if the scalar-valued function (T(X)x, y)

[resp. (g(A), x)] is analytic in Q for any x, y e E.

This apparently "weak" notion of analyticity is actually equivalent to the "strong" one,

based on the existence of a Frechet derivative with respect to X. (See, e.g., Taylor [24, p.

205] or Hille and Phillips [25, p. 93].)

Theorem 4.1. (Gohberg and Krein [23, p. 21].) Let T{ X) be an operator-valued function,

analytic in an open, simply connected region ^cC, and suppose that all values of T( X)

are compact operators. Then, for all points X e Q \ 2, where 2 is a set of isolated points

of Q, the number t(A) of linearly independent solutions of the equation

x — T(X)x = 0, x e E,

is constant, i.e., t(A) = n. For A e 2 we have t(A) > n.

In particular, if t(A) = 0 for at least one point in Q, then for all A e g\2 the

operator I — T( A) has a bounded inverse.

Definition 4.2. Let {xn}, {yn} be two sequences with elements in E. Then:

(a) The two sequences {xn}, { v„} will be said to be quadratically near each other if

00

E \\Xn -yn\\2 < 00. (4.1)
n = 1

(b) The two sequences {xn}, {yn} will be said to be equivalent if there exists an

automorphism T such that y„ = Tx„.
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Theorem 4.2. (Higgins [15, p. 75].) Suppose that {x„} and {yn} are two equivalent

sequences in E. Then, {x„} is a (Schauder, Bessel, Hilbert, Riesz) basis of E if and only if

{>'„} is a (Schauder, Bessel, Hilbert, Riesz) basis of E.

We shall now state and prove a theorem providing a criterion for the equivalence of a

sequence in a Hilbert space £ to a complete orthonormal system of E. This theorem can

be considered as an extension of some relative theorems of Bary (see Bary [16] or Kato

[17, pp. 246-266]).

Theorem 4.3. Suppose that {xn} is a complete orthonormal system of a Hilbert space £,

and {.y„(A)}, A e Q c C, is a family of sequences in E defined by

y„(x) = x„ + (4-2)

where g„(A), n = 1,2,, are analytic vector-valued functions of A e Q, with values in

E. Suppose also that

E IU„(M II" < B < . <4-3)
n = 1

where B is a positive constant, independent of A, and that B ■ |A| < 1 for at least one

point of Q.

Then the sequences {xn}, {J„(A)} are equivalent for all A e Q \ 2, where 2 is a set of

isolated points of Q. Moreover, {j„(A)} is a Riesz basis of E for all A <= Q \ 2.

Remark 4.3.1. The set 2 may be countable, finite, or even empty.

Remark 4.3.2. Condition (4.3) is equivalent to the quadratic nearness of the sequences

{xn} and {^„(A)}.

To prove Theorem 4.3 the following Lemma is needed.

Lemma 4.1. Suppose that {a„} is a complete orthonormal system of E and {g,,} is a

sequence in E such that £||gj|2 < oo. Then the operator T\ E -* E defined on {xn } by

Tx„ = gn can be linearly extended on the whole £ as a compact operator.

Proof. To start with, let us extend the operator T on the whole E. If only a finite

number of an in the expansion Y,anxn of an element .y e E are different from zero, then

we define Tx = JLanTxn = Y.angn. The same definition remains valid when the series

Ea„x„ has infinite terms, provided that the series E angn converges in E. This is indeed

the case since (N > M),

N N

< E l«*l • E llgj,
n=M n=M

N

E <*ngn
n = M

and the series E|a„|2 and E||g„||2 converge. The compactness of the operator T follows

from the condition E||7x„||2 = E||g„||2 < oo. See, e.g., Smirnov [18, Sec. 138],

Proof of Theorem 4.3. We introduce the operator T( A) defined on {xn} by T(X)xn =

gn( A) and extend it on the whole E by means of the definition
OO OO

T(X)x = X) where x = E
n = 1 n = 1

According to Lemma 4.1, T(A) is a compact operator for each A e Q.
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Now consider the operator A(\) = I + XT(X). Obviously, A(X)xn = y„(A); thus the

equivalence of the sequences {;*:„} and { V„(A)} is equivalent to the invertibility of the

operator A (A). Since

30 2

!|Ar(A)|| = |A|||r(A)||<|\| £ ||g„(A) || < | A | • B,
n = l

it follows that there exists a point A = A0 in which ||A0r(A0)|| < 1; this ensures the

invertibility of A(A0). Accordingly, applying Theorem 4.1, we conclude that A(\) is

invertible for all Ae Q\2. Finally, invoking Theorem 4.2, we see that {y„(X)} is a Riesz

basis of E for all Ae Q\%- This completes the proof of the theorem.

Remark 4.3.3. Since ^(A)jt = £^=1a„j„(A), where x = L^=1 a„x„ and £"=1|a„|2 = ||x||2

< oo, the invertibility of the operator /1(A) is equivalent to the condition

00 2 °°

Y, |a„ I <oo and £ ««>'«(A) = 0 => an = 0 for every n G f^l, (4.4)
n=1 n=1

i.e., the /2-linear independence of the sequence {^„(A)}. In the application to the

radiation problem, condition (4.4) is, in fact, a uniqueness theorem.

5. The weak solvability of the radiation problem. The main tool in establishing the

solvability of the radiation problem @(K0) is the basis property of the sequence

{<pm(8; A^o)}? the space L2(-77,0). Let us note that the functions <pm{9\ K0) depend

analytically on the parameter K0 G C , which corresponds to the A parameter in the

general theory of the preceding section.

Lemma 5.1. Suppose that 9DB g a, K0 g C /( and consider the multipoles

K 00
<pm(6\K0) = cos(md)   £ (2 _ /)c/sin(/ + m - 2)6, m = 2,3,— (5.1)

m i=i

Then,

(0 tp„,(f; a:0) g l2(-77,o), w = 2,3 

(5.2)
(ii)

whereby it follows that

£ (2 — l)c[Sin(l + m — 2)6
i=i

= tE(2" 02C/2 < 00,
2/=>

..2
£ ||V(II(0;Ao)-cos(»!0)|| <00. (5.3)

m = 2

The proof of the above results is straightforward, so it will be omitted.

According to (5.3) the sequence {<pm(6; K0)}f is quadratically near to the system

{cos(m6)}f, which is an orthogonal basis of the Hilbert space L\. However, we cannot

deduce any completeness or basis property of {<pm(6\ K0)}f from this fact, since in

general <pm(0; K0) £ L\, m = 2,3,....

To proceed, we shall modify the multipoles <pm(6\ K0) in such a manner that the

modified multipoles, say <pm(6; K0), (i) belong to L2B and (ii) satisfy a condition similar to

(5.3).



612 G. A. ATHANASSOULIS

Let us set

tj0;Ko) = q>Jff;Ko)-AomVo(ff;Ko)-Alm<p1(0;Ko), m = 2,3  (5.4)

and try to determine the constants Aby means of the relations

Vomi^o) ~ ^m<Poo(^o) ~ ^m'Poi(^o) =

9lm(^o)-<«Plo(^o)-^m«Pll(^o) = 0, (5.5)

where <psm(K0) = (cos(s0), cpm(0; K0)). Relations (5.5) are equivalent to the condition

im(0; K0) g L\.
The system (5.5) is uniquely solvable for each m, provided that

A(K0) = (fn(Ko)<Poo(Ko) - <Pio(Ko)<Poi(Ko) * 0*. (5.6)

(In any case, since A(AT0) is an analytic function of K0, it may have only isolated zeros in

Q. Consequently, we can, if necessary, modify the region Q, excluding from it the zeros of

A( A"0)). Then, the constants A°J can be expressed in the form

A°ml=A°m\K0) = ^y(K0), m = 2,3,..., (5.7)

where

and

&°(K0) = (0o*<Pu(*o) - d>lJVoi(Ko))MKo),

0>(KO) = (-(90m<Pw(K0) + 0lm<pn(Ko))/A(Ko), (5.8)

C,„- f !(-!)""•'-1)P ,)''(/ + " (5.9)
/=i (/ + m — 2) — s

The infinite series in (5.9) converges, provided that 3DB G From Eqs. (5.8) and (5.9)

it is easily seen that

\P*\K0)\< B°\ m = 2,3  K0^Q. (5.10)

We can now state and prove the following

Lemma 5.2. Suppose 9DB G ^l'a, A(K0) ^ 0, K0 G Q, and consider the modified multi-

poles

>Pje-,K0) = cos(m6) + K0gje-,K0), m = 2,3,..., (5.11)

where

1 00 1
gM *o) = - £ ( 2 - l)c, sin(/ + m- 2)6 - -0>2(Ko)<po(O-, K0)

-^(Ko)Vl(0;Ko). (5.12)

*The geometric meaning of this condition is that the projections of the functions <p0(6\ K0) and cp^S: K0) in

the subspace L2A form a basis of l?A.
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Then,

(i) ,U0;Ko)eC([-W,O])and

\gm(0-,Ko)\< D < cx, « = 2,3  «6kO],«0£fi, (5.13)

(ii) tj0;Ko)eL2B,m = 2,3,...,

("0 £ ||gm(0;A-o)||2<*<oo, (5.14)
m = 2

where B is a positive constant independent of K0.

Proof. The proofs of (i) and (ii) are straightforward, hence will be omitted. To prove (iii)

we observe that

|gm(0;*o)N^ Yj (2 — /)c,sin(/ + m — 2)6
1=1

+ ^\^(K0)\-\\n{e-K0)\\

+
mJ:|^4(^o)|-|l<Pi(®;^o)ll-

Now using (5.2), (5.10), and Theorem 3.2(iii), we obtain

1
\gJ0:Ko)\\^B m

whereby the desired result (5.14) follows and the proof of the lemma is complete.

Let us recall that the set Q c C is a bounded, open, simply connected region

containing part of the positive real axis but not containing the origin. Since, however,

inequality (5.14) remains valid as K0 -» 0 (see Remark 3.1.2), we can take as Q a region

containing a point K0 such that |AT0| = B/2, in which case B ■ \K0\ < \. Defining Q c C,

in this way and using Lemma 5.2 and Theorem 4.3, we arrive at the following

Theorem 5.1. Suppose that 9DB e #*•", A(Jf0) # 0, K0 e Q c C;. Then, for all K0 e Q

\2, where 2 is a set of isolated points of Q, the sequence {^m{0\ K0)}^ is a

(nonorthogonal) Riesz basis of the Hilbert space l?B, equivalent to the orthogonal basis

{cos(m0)}^.

Remark 5.1.1. K0 e 2 if and only if there exists a sequence of scalars {am }f such that

00 00

0 < L l«J < 00 and £ amiPm(0; K0) = 0. (5.15)
m=2 m=2

(See Remark 4.3.3.) Clearly (5.15) is a nonuniqueness condition for the radiation problem

P(Ko\
In the remaining part of this paper we shall simplify the notation by neglecting K0 from

the arguments of various functions. Accordingly, we shall write <p„,(0) instead of <p„,(0; K0),

cpsm instead of cpsm(K0), and so on.

We can now prove the basis property of the sequence {<p„,(^)}o 'n L2(-tt,0).

Theorem 5.2. Suppose that 3DB e A # 0, and A"0 e (?\2. Then, the sequence

is a (nonorthogonal) Riesz basis of the Hilbert space L2(-vr,0).
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Proof. Let V(8) be an arbitrary element of L2(-77,0). In the first place we seek two

scalars d0, dx such that

u(e)= v(o) - d0<p0(o) - dl9l(e) e l\. (5.16)

Condition (5.16) is equivalent to the system

dtfPoo + ^i<Poi = V0,

d0cp10 + dl(Pn = Fi, (5.17)

[F9 = (cos(s9), V(6))\, which is always solvable defining uniquely d() and dj, since A ¥= 0.

Since U{6) e L2B and the sequence is a Riesz basis of L\ (Theorem 5.1), there

exists a unique sequence of scalars { Dm }f such that

U(0)= t D„tJ6) in L\, t IAJ2<oo. (5.18)
m= 2 m=2

Using (5.16) and (5.18), we obtain the following expansion of V(8) in terms of <p„,(0):

V{6) = £ Dmcpm{0) in L2(-w,0), £ |£>J2 < oo, (5.19a)nfrm \w > 111 ^ \ I I

2 = 0 m — 0

where

A>.i = <*o.i -K0t (5.19b)
m = 2

The series on the right-hand side of (5.19b) is absolutely convergent, since according to

(5.10), (5.18), and the Schwarz inequality, we have that (A/ > 2)

< W £ -T £ lA„l1 < 00. (5.20)
M D

III £2)0,1

m m
1 = 2 m" m = 2

Thus, the proof of the theorem has been completed.

We shall now state and prove the main result of this work.

Theorem 5.3 (The weak solvability theorem). Suppose that 3Dg e A ¥= 0, u„(9) e

L2(-77,0), and K0 e <2\2. [In the physical problem A'0 e (0, oo).] Then there exists a

unique weak solution of the radiation problem 0>(KQ)\ that is, there exists a unique

complex potential F^(t) such that:

(i) it is continuous throughout K = {£: Im,-f < 0, |f| > 1};

(ii) it satisfies conditions (3.13), (3.14), (3.16), and (3.17); and

(iii) if ) is its first derivative, the limit

lim F(a\re'6)
&-»i +

exists for almost all 6 e [ 77,0] and defines a function F,(1>(#) e L2(-7t,0), satisfying the

boundary condition (3.15) in the L2-sense.

Remark 5.3.1. In fact, the limiting behavior described in (iii) remains valid as f

approaches e'9 along any path lying in K which is not tangent to the unit circle.
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Proof. Under the stated hypotheses the function V(6) = un(6 )|df(e'e)/d$\ belongs to

L2(-7t,0), and the sequence {<pm(0))o is a Riesz basis of L2(-77,0). Therefore, there exists

a unique sequence of scalars {Dm}o such that

OC OC

V{0)= E Djpm(d), E |DJ <00. (5.21)
m=0 m—0

It should be noted that the values of the functions un{6) and V(0) as well as the values

of the scalars Dm are j-complex numbers. Accordingly,

= K+jD'^ (5.22)

Now consider the function

00 D

Fr(0 = D0G0(/(0) + 0iGi(/(O) + E ~MM)- (5-23)
m = 2

(i) F-At) is continuous on K. To establish this fact it suffices to prove the continuity of

the function

00 D -

m)= E (5.24)
m = 2

Since the sequence Mm($) is uniformly bounded on A-, the series (5.24) is dominated by

the series Y.Dm/m, which is absolutely convergent [see Eq. (5.20)]. Accordingly, the series

(5.24) converges uniformly on K, defining a continuous function there.

(ii) F^(^) satisfies conditions (3.13), (3.14), (3.16), and (3.17) because of Theorem 3.1.

(iii) It remains to prove that the function Ff(1)(j) = dF^)/d$ converges for almost all

9 e [-7r,0] as |f| -> 1+ , defining an L2-function which satisfies the boundary condition

(3.15). Differentiating (5.23), we obtain (|f | > 1)

^(1>(0 - D^{f )] + Di dGliJ^)) + (5.25)

where

, *»>({)-£ ,5.26,
<tt „-2 m <K

H«\$) can be also written in the form

//(1)U) = -E Dm{r(m+1)+l4ruM)\, (5.27)
m = 2

where

00

nma) = E (2 - l)c£1-,+m. (5.28)
/= l

First, we study the function H{1\e'e), 6 e [-77, 77]. According to (5.21)

^-m=2 Dme~'(m+X)e g L2(-it, 77), while £"_2( An/W)nm(e'9) represents a continuous

function, which can be proved in a manner similar to that used to prove the continuity of

H(£) in (i). Consequently, Hm(e'6) is an L2-function on the unit circle.
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Now we study the limiting behavior of the function //(1)(f) as |f| -» 1+ . Note that

this function is univalent and /-analytic throughout the open domain {f: |f| > 1}.

Furthermore, we have

2

|ff(1)U)|c„<2 E ^mr(m+1)
m = 2

+ 2
c,(

2

E DJ-(m+1)

m = 2

o° D

T — n (f)
, mm

m = 2

E ^r(m+1)
m = 2

2

+

00 JJ

y —n (n
. m

m = 2

E A'„T<m+1)

m = 2

(5.29)

= E E (^;A; + (5.30)
m=2 n=2

2

m=2 \m=2
<*?( E E lAJl = *22< +00, (5.31)

where

E |2 - /(* Ic,| < + oo.
/-i

Using the above relations, we find

f\H(1)(re'e)\2d6 < 4tt( £ IAJ2^2""^ + )>
\m = 2 I

whereby, in conjunction with Abel's theorem (see, e.g., Goldberg [19, Sec. 9.6]), we obtain

lim f\Hw{re'e)\2d6 Y. \Dm\2 + Bj\. (5.32)
D-1+ ~7T \ m = 2 I

The last condition characterizes the function as a Hardy function of class S?2; see

Hoffman [20, p. 39] and Walsh [21, Sees. 6.10, 6.11]. Since H(l\re'e) is harmonic and

satisfies (5.32) and H(X){e'9) is an L2-function of the unit circle, we conclude, applying

Fatou's theorem [20, Chapter 3], that the limr^1+ H(1)(re'e) exists for almost all 6 e

[—77, 7T] and the equality

lim Hm{reie) = Hw(ei9) (5.33)
r— 1 +

holds almost everywhere in [-77, 77]. In fact, (5.33) is valid as the point f = re'e approaches

e'e along any path in the open set {f: |f | > 1} which is not tangent to the unit circle.

Now using (5.25), (5.26), and (5.33), we see that the limFj.(1)(f) exists for almost all

6 e [ -m, 0] and

lim Ff(1)(f) = Fsm(e") e L2(-t7,0)

for almost all 6 e [-77,0] as f approaches e'e nontangentially.

The function F^l)(e,e) satisfies the boundary condition (3.15) in the L2-sense since, by

construction,

Re^'VHe'*)} = E OjpJO)
m = 0
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and, by the definition of {Dm }g ,

oo

v(0)= E Dm<pm(0).
m = 0

This completes the proof of the theorem.

6. Regularity of solution. Let us introduce the following geometric assumption:

(A) The body boundary 9D$ is such that the Laurent series of the conformal mapping

function /(f) has only a finite number of terms.

In the present section we shall prove, using a method due to Ursell [10], the following

regularity result:

Theorem 6.1. (The regularity theorem). Suppose that 9D% is a simple, closed curve with

continuous tangent, satisfying assumption (A). Suppose also that un(9) G C2([-w,0]) and

that A =£ 0, K0 G Q \ 2. Then, the unique weak solution of the problem @>(K0) given by

expansion (5.23) is actually a classical one; i.e., the velocity field is continuous throughout

D U 9Df U 9DB. The coefficients Dm of expansion (5.23) are of order 0(\/m2).

Remark 6.1.1. Under the assumptions stated, the curve 9D% is actually an analytic one.

Proof. According to Theorem 5.2 [see Eq. (5.18)]

00

U(0)= E Dmtm(0) in L2b, (6.1)
m = 2

where U(9) = V(6) - d0cp0(6) - V(0) = un(6)\df(e'e)/d£\, and d0, d1 are

given by (5.17). Equation (6.1) is equivalent to

9 2 K 00

-U, = DS + -^ E gsmDm, 5 = 2,3,..., (6.2)
m = 2

where Us = (cos(sd), U(0)) and gsm = (cos(s9), gm(9)). Multiplying (6.2) by 5 we obtain

-sUs = sDs + ^ E ( — )(mDm), 5 = 2,3  (6.3)TT s S TT A m J
m = 2

It can be proved, with the aid of assumption (A), that

Sgsm 2 _ C

m = 2
mE — <^7 (6-4)

s2

(see appendix). Moreover, since 9D$ is analytic and un(9) e C2([-w,0]), U(6) has a

continuous second derivative, from which it follows that Us = 0{\/s2). Thus { sUs} g I2.

Now consider (6.3) as a functional equation in I2. Because of (6.4), the solution of Eq.

(6.3) must be in /2, that is,

00 2

E lmAJ < b < 00. (6.5)
m = 2
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-sU. - sD
7T S S

2 4K2 ™ 2 £ , ,2 4K2CB 1

Using (6.3), (6.4), (6.5), and Schwarz's inequality, we obtain

SJL
m

,2

V2 m = 2

®E — E \mD,
< l°V

^2 .2 '
m = 2 ™ s

from which it is concluded that Ds= 0(1/s). The termwise differentiability of the

expansion (5.23) and the continuity of dF^{$)/d{, throughout D(JdDFUdDB now

follow at once. Thus, the proof of the theorem is complete.

Remark 6.1.1. Ursell [10] has studied the existence, uniqueness, and regularity of the

solution of the radiation (heaving) problem for the semicircular boundary based directly

on Eqs. (6.2) and (6.3), i.e., without resorting to the basis properties of the water-wave

multipoles, developed in Sec. 5. This more effective approach can be easily extended for

body boundaries satisfying assumption (A), and this was essentially done in the present

section. However, the author has not succeeded in proving inequality (6.4) when the

nonzero conformal mapping coefficients are infinite.

Appendix. Here we shall sketch the proof of inequality (6.4). Since, in the present case,

gm(0) = ^ E (2 - /)c,sin(/ + m - 2)6 - 1^(0) - 1^(0),

it follows that

^ r, -I \s+i+m (2 - l)c,(l + m - 2)s  QS(PsO

m

V I7_i\s + l+m _ i \ v 1 JLi\l ^ ^ ^
^ lA l> J _2/, , _ , „ _ *)\/l , _ _ 0
/=1 m2(l + m + s — 2)(/ + m — s — 2) m mrn yi ~r rn ~r s — jL}\i ~r rri — ,s — z.) rr*2

I s — m 4- 2

(Al)

Using (5.10) and the inequality

N

E an
n=\

N E
n = 1

we obtain

sm

m

2 |2 — / | |c/| (/ + m — 2)V

<A(N) E —-1  \2/ " ^+K
/=i m (/ + m + ,y — 2) (I + m — s — 2)

I ¥* s — m + 2

*<Ps 0

w2

2

+ A
-^i

2m

2

(A2)

where A(N), K, and A are positive constants. Moreover, <po(0) and <Pj(^) have

continuous second derivatives; hence <psa = 0(1/s2), a = 0,1, and consequently

sip.
E 2

/4 00 1 R

<-f E — = "*, « = 0,1. (A3)
... . ■? m = 2 ™

Each term in the sum appearing on the right-hand side of (A2) is dominated by the

quantity

 4 T.
m~(m — s + at) (m + s + at)
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where a, = I — 2. Following Ursell [10, p. 295] we can easily show that

,2
bl

2
E — '~r ";<4. (A4)

m = 2 m (m — s + a,) (m + s + a,) s

Now using (A2), (A3), and (A4), we obtain

2

m

A,(N)

s2

which is the required inequality. Since ^(iV) -» oo as TV -» oo, this proof breaks down if

the number of nonzero coefficients c, is infinite.

Note added in proof. A fairly general uniqueness theorem for the two-dimensional

radiation problem has been recently established by Simon and Ursell [28].
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