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REMARKS ON SOME NONCONSERVATION PROBLEMS*

By

B. SHERMAN1

Abstract. A horizontal channel of uniform cross section has an impervious channel bed

to the left of x - 0 and allows infiltration at a constant rate to the right of x = 0. Initially

there is water at constant depth and zero velocity. There are left and right moving

interfaces and, between them, water with positive velocity. At a certain time there will be a

water edge to the right of which there is no water in the channel. The time history of this

water edge is a free boundary. The solution of this problem, which is nonconservation

because mass and momentum are carried away by infiltration, is discussed below. A single

equation, which is also nonconservation, has an explicit solution. The characteristics of

this single equation have a geometry similar to that the C2 characteristics of the channel

problem.

1. Introduction. Let u(x, t) and h(x, t) be the velocity and depth of the cross section at

x at time t, h(x, 0) = h0, c = (gh)1/2, c0 = (gh0)l/2, and a the infiltration rate (in

volume/area time). There is an interface x = -c0t moving to the left separating moving

from stationary water, and an interface x = s(t) given by

•*'(0 = (co_ *0V2> J(°) = 0, \ ga

moving to the right separating moving from stationary but subsiding water. Thus

HO = (2/3\)[cg - (cl - Air], 0 < t < l0)

where t0 = h0/a = Cq/X. At time t0 there is no water to the right of s(t0). Let jc = s*(t),

a free boundary,-be the time history of this water edge, and let A(x) = 0 or X according

as x < 0 or x > 0. Then the formulation of the problem is [1, 2]

(u + 2c), 4- (u + c)(u + 2c)x = -A(x)/c,

(u - 2c), + (u - c)(u - 2c)x = A(x)/c,

u(-c0t, t) = 0, c(-c0t, t) = c0, (1.1)

m(j(|), l) = 0, c(j(i), t) = (cq - Al)1/2, 0 < t < t0,

c(s*(t), 0 = 0, t > t0, s*(t0) = s(t0) = 2cq/3A.
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u = 0, c = c0 if x < -c0t, and u = 0, c = (eg - A/)1/2 if x > s(t), 0 < t < t0. We may

change to dimensionless variables:

£ = Ax/Cq, t = f/f0, c* = c/c0, u* = u/c0, A*(x) = A(x)/A.

Replacing £, t, c*, u*, A* by x, t, c, u, A, we get

(u + 2c), + (u + c)(u 4- 2c)x = -A(x)/c,

(u - 2c), + (u - c)(u - 2c)x = A(x)/c,

u(-t,t) = 0, c(-t,t) = 1, (1.2)

u(a(t),t) = 0, c(a(t), t) = (1 — t )1/2,

c(a*(?), t) = 0, t > 1, a*(l) = 2/3.

In (1.2) A(x) = 0 or 1 according as x < 0 or x > 0 and

a(/)= (2/3)[l - (1 -r)V2]. (1.3)

The free boundary is x = The characteristics of (1.2) are

C1: dx/dt = u + c, C2: dx/dt = u — c.

In Sec. 3 we discuss the solution of (1.2).

The C2 characteristics of (1.2) have a geometry similar to that of the characteristics of

u, - uux = -/(x), w(x,0) = 1 (1.4)

where /(x) is 0 or 1 according as x < 0 or x > 0. Let and be the domains in the

second quadrant above and below x = -1, and R2 and R3 the domains in the first

quadrant above and below the upper branch of x = (/ - l)2/2. Then the solution of (1.4)

is

R0: u = 1, R1:u = -(? - l)/2 + (1/2)[(r - l)2 - 4x]1/2

R2: u = -(2x)1/2, R3: u = -t + 1.

The solution is continuous but wv(0 + , /) = -oo, t > 1. The characteristics dx/dt = -u

in Rl are a diverging fan of lines issuing from 0 < t < 1 on the r-axis, At l = 1, u = 0, so

the characteristic originating at this point is the t axis. In fact, from each point (0, t0),

t0 > 1, there issue two characteristics: x = 0 and, as is clear from the solution in R2,

x = (t — 10)2/2, t 3s 10. In Sec. 2 we examine (1.4) with a more general /(x), which is still

0 when x < 0 but is continuous, nondecreasing, and positive when x > 0. This analysis

shows the conditions under which we do, or do not, get the behavior of characteristics in

the special case /(x) = 1, x > 0, namely a diverging fan of lines in the second quadrant

originating on a finite interval on the r-axis and bounded by x = -t and x = 0.

If in (1.4) we change the minus on the left to plus and retain /(x) = 0orl according as

x < 0 or x > 0 then, as is shown explicitly in [1], the solution has a shock originating at

(1/2,1).

2. The Equation (1.4). We consider (1.4) for the more general /(x) described above. We

have, on characteristics,

dx/dt = -u, du/dt = -/(x), (2.1)
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so the characteristics are lines in the second quadrant. Between the negative x-axis and

x = -t these are the lines on which dx/dt = -1. Between x = -t and the /-axis,

dx/dt = -m(0, t0) on a characteristic line which intersects the /-axis at /0. In the first

quadrant we get the characteristics by solving (2.1) subject to je(0) = x0, w(0) = 1. Thus

x"-/(x) = 0, x(0) = x0, x'(0) = -1,

so the characteristic originating at (x0,0) is

t = f" [1 - 2 F(x0) + 2 FU)]~1/2 dt, F(x) = f /(£) dl (2.2)
Jx J0

This characteristic intersects the /-axis at

/0 = f° [1 - 2F(x0) + 2F(Z)Y1/2 d£.
Jo

On the characteristic (2.2),

u = [1 - 2F(x0) + 2F(x)]l/1,

so that at (0, /0), u = [1 — 2F(x0)]x/2. On the /-axis u is a decreasing function of / which

is 1 at t = 0 and is 0 for that t0 = tfi for which the corresponding xfi is such that

1 - 2F(x* ) = 0. Since F is an increasing function of x and F(oo) = oo there will be such

an x*. The corresponding is

t$ = f* [2F(i)]'1/2 dt. (2.3)
■'o

t* may be finite or infinite. Then there is a diverging fan of lines issuing from 0 < / <

on the t-axis into the second quadrant bounded by x = -t and, if t* is finite, the r-axis

above /*. Thus the convergence or divergence of the integral

f [FU)Y1/2dt
Jo

distinguishes the two possibilities t* finite or infinite. If, for example, f(x) = ax

in the neighborhood of x = 0 then F(x) = bxy + 1 in the neighborhood of x = 0 and the

integral converges or diverges according as 0 < y < 1 or y > 1. In (1.4) y = 0 so t$ is

finite. If f(x) = a2x, so y = 1, then t$ = oo and x$ = a"1. The characteristic issuing

from (xo,0) is

x = x0cosha? - a_1sinho/.

These characteristics intersect the /-axis if x0 < a'1 and do not if x0 > a"1. The character-

istic with x0 = a-1 is x = which is asymptotic to the /-axis. In the first quadrant

u = -ax tanha/ + (cosha/)"1.

3. The Subsidence Problem (1.2). In [2] we obtained u and c to quadratic terms for

small t in the first and second quadrants, and we also obtained ux, cx, and hx on x = -t

and on x = a(t). We describe briefly these results: between x = -/ and x - o(t), h is a

decreasing function of x (h = c2 in the dimensionless variables) with a discontinuity in hx

at x = 0; also hxx < 0 for small /. On x = -/, hx = -2/(4 + 3/) and ux = 2/(4 + 3/),

valid for all /. On x = a(/), hx = -1/2(1 - /)1/2 and ux = -1/2(1 - /), valid for

0 < / < 1. Thus the water edge is initially (/ = 1) vertical.
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From (1.2) we see that u + 2c = constant on Cj characteristics in the second quadrant.

Since u + 2c = 2 on x = we get u + 2c = 2 in the second quadrant. Let <#>(?) = c(0, /).

Then we obtain the left and right derivatives ux and cx at x = 0 from the first two

equations of (1.2):

wx(0 + ,t) = A"1 [-1 - 2<#>'(2 - <#>)],

cx(0 + , /) = (<f>A)_1[l-4> + <M>'(2 - *)], (3.1)

ux(0-',/) = -2<t>'/(3<!>-2),

cx(0 - , t) = <t>'/(3<t> - 2),

where A = (3<p - 2)(2 -<#>). We make the plausible assumption that <p'(t) < 0. Then,

since <j>(0) = 1, we have the two possibilities: (1) <#>(oo) > 2/3 and (2) <£(t*) = 2/3 for

finite t*. In case (1), assuming <f>'(r) -» 0 as / -» oo, the second equation of (3.1) implies

that cx(0 + , t) has a positive limit as t -> oo. Then hx(0 + , /) is positive for large t,

which is physically implausible. In case (2) we have, for the bracketed expressions in (3.1)

at t = t*, -<o and co/3, where w = 1 + (8/3)<#>'(t*). Here - oo < <#>'(t*) < 0, so - oo < w

< 1. We have three cases: (2a) w < 0, (2b) w = 0, (2c) u > 0. In case (2c) we get

cx(0 + ,*)-» + oo, t -* t*, which, as above, is implausible physically. In case (2a) we get,

when t -* t*,

"x(° - . t) +oo, cx(0 - , t) -» -oo,

ux(0 + , t) -» +oo, cx(0 + , t) -* - oo.

In case (2b) ux{0 + , t) and cx(0 + , t) are indeterminate when t -* t*, but

mx(0 - , t) -* + oo, cx(0 - , t) -» - oo.

We have u - c = 2 - 3c in the second quadrant. On the segment 0 < t < t* of the

/-axis, 2 - 3c = 2 - 3<J> is a function increasing from -1 to 0 so the C2 characteristics

issuing from this segment into the second quadrant constitute a diverging fan of lines

coinciding with x = -t when t = 0 and with the /-axis above /* when t = t* (because

dx/dt = 0 when t = t*). Since the water profile is vertical at x = 0, / = t*, as indicated

by (3.2), there is the possibility of shock formation beginning at this point. This

possibility, suggested in [1], is not supported by an examination of the characteristic

directions on the line t = t*. As noted above, the C2 characteristics constitute a diverging

fan along this line in the second quadrant. From (3.2) we see that wx(0 + , t) -

cx(0 + ,*)-» +oo, [-*;*, which suggests that the C2 characteristic directions along the

line t = t* continue to diverge as we continue past x = 0. The Cx characteristic directions

u + c = 2 - c in the second quadrant also diverge along the line t = t*. From (3.1) we

get

wx(0 + , t) + cx(0 + , t) = (<f>A) 1 [l - 2</> - <#»<#>'(2 - <f>)]. (3.3)

The bracketed quantity in (3.3) goes to -w/3 as t -» ?*, which is positive in case (2a). This

suggests, as above, that the Cx characteristic directions along the line t = t* continue to

diverge as we continue past x = 0. The divergence of both characteristic directions along

the line t = t * on both sides of x = 0 do not support the possibility of a shock originating

at x = 0, t = t*.
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We can now give a plausible description of the qualitative aspects of the solution of

(1.2). The solution is continuous. The interface x = a(t) is given by (1.3); there is

stationary but subsiding water, h = 1 — /, to the right of this interface. The water profile

h is, for fixed t, a decreasing function of x, -t < x < o(t), with discontinuous derivatives

at x = -t, x = 0, and x = a(t). At t = 1 there is no water to the right of x = a(l) = 2/3;

the water profile is vertical at this edge, and a'(l) = 0. The free boundary x = a*(t)

begins at (2/3,1) and is a decreasing function of t\ i.e., the water edge retreats. At some

finite time t* we get u(0, t) = 2/3, c(0, t) - 2/3, h(0, t) = 4/9, t > t*. There is a

stationary solution as t -> oo which can be obtained by deleting the time derivative terms

in (1.2). For x < 0 we have u = 2/3, c = 2/3, h = 4/9, and, for x > 0,

(u + c)(u + 2c) x = -c"1, (u — c)(u — 2c) x = c'1,

from which we get

ux= (u2- c2)'1, cx = -u[2c(u2 - c2)]~\

Then

uux + 2 ccx = 0, c2ux + 2 uccx = -1

and, since w(0) = 2/3, c(0) = 2/3,

u2/2 + c2 = 2/3, uc2 = 8/27 - x.

Since h — c2,

u2/2 + h = 2/3, uh = 8/27 - (3.4)

When x = 0 the parabola and hyperbola in (3.4) are tangent; as x increases to 8/27,

h(x) decreases to 0 and u increases to 2/ ]/3 . From (3.4) we get

h3 - 2h2/3 + (8 - 27x)2/1458 = 0

l,/ ^ _ 8 ~ 27s _ V6(2 - 3h)l/2

9h(9h - 4) 9/i — 4

Thus h'(0) = - oo and /i'(8/27) = — ]/3 /2. The second derivative h"(x) > 0, 0 < x <

8/27. The free boundary is asymptotic to x = 8/27. A rough numerical calculation

indicates that t* lies between 1.0 and 1.1. The C2 characteristics that originate on

x = a(t) either (a) intersect the /-axis on the segment 0 < t < t* and are diverging lines in

the second quadrant or (b) remain in the first quadrant and terminate on the free

boundary x = a*(t). It seems reasonable, in analogy with (1.4), that for t ^ t* there are

characteristics originating on the /-axis and terminating on x = a*(t). Some further

evidence for this can be seen by obtaining (approximately) the C2 characteristics dx/dt =

u - c for large t by replacing u - c = £ by the function of x defined by (3.4). This is

1/2
21x = 8 - 2£3 - (4 - 5£2)(4 - 2{2) ' . (3.5)
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Here x is an increasing function of £, 0 < £ < 2/31/2 and 0 < x < 8/27. For small x we

get, from (3.5), £2 = 9x/4, so dx/dt = 3x1/2/2 for small x. This gives the two character-

istics x = 0 and x = (9/16)(t - t0)2 issuing from (0, t0).

It will be necessary to perform numerical calculations to support, or deny, the proposed

solution described above. These calculations will also give the value of /*.
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