REMARKS ON SOME NONCONSERVATION PROBLEMS*

By

B. SHERMAN ${ }^{1}$

Abstract

A horizontal channel of uniform cross section has an impervious channel bed to the left of $x=0$ and allows infiltration at a constant rate to the right of $x=0$. Initially there is water at constant depth and zero velocity. There are left and right moving interfaces and, between them, water with positive velocity. At a certain time there will be a water edge to the right of which there is no water in the channel. The time history of this water edge is a free boundary. The solution of this problem, which is nonconservation because mass and momentum are carried away by infiltration, is discussed below. A single equation, which is also nonconservation, has an explicit solution. The characteristics of this single equation have a geometry similar to that the C_{2} characteristics of the channel problem.

1. Introduction. Let $u(x, t)$ and $h(x, t)$ be the velocity and depth of the cross section at x at time $t, h(x, 0)=h_{0}, c=(g h)^{1 / 2}, c_{0}=\left(g h_{0}\right)^{1 / 2}$, and α the infiltration rate (in volume/area time). There is an interface $x=-c_{0} t$ moving to the left separating moving from stationary water, and an interface $x=s(t)$ given by

$$
s^{\prime}(t)=\left(c_{0}^{2}-\lambda t\right)^{1 / 2}, \quad s(0)=0, \lambda=g \alpha
$$

moving to the right separating moving from stationary but subsiding water. Thus

$$
s(t)=(2 / 3 \lambda)\left[c_{0}^{3}-\left(c_{0}^{2}-\lambda t\right)^{3 / 2}\right], \quad 0 \leqslant t \leqslant t_{0}
$$

where $t_{0}=h_{0} / \alpha=c_{0}^{2} / \lambda$. At time t_{0} there is no water to the right of $s\left(t_{0}\right)$. Let $x=s^{*}(t)$, a free boundary, be the time history of this water edge, and let $\lambda(x)=0$ or λ according as $x<0$ or $x>0$. Then the formulation of the problem is [1,2]

$$
\begin{align*}
(u+2 c)_{t}+(u+c)(u+2 c)_{x} & =-\lambda(x) / c \\
(u-2 c)_{t}+(u-c)(u-2 c)_{x} & =\lambda(x) / c \\
u\left(-c_{0} t, t\right) & =0, \quad c\left(-c_{0} t, t\right)=c_{0} \tag{1.1}\\
u(s(t), t) & =0, \quad c(s(t), t)=\left(c_{0}^{2}-\lambda t\right)^{1 / 2}, \quad 0 \leqslant t \leqslant t_{0} \\
c\left(s^{*}(t), t\right) & =0, \quad t>t_{0}, s^{*}\left(t_{0}\right)=s\left(t_{0}\right)=2 c_{0}^{3} / 3 \lambda .
\end{align*}
$$

[^0]$u=0, c=c_{0}$ if $x \leqslant-c_{0} t$, and $u=0, c=\left(c_{0}^{2}-\lambda t\right)^{1 / 2}$ if $x \geqslant s(t), 0 \leqslant t \leqslant t_{0}$. We may change to dimensionless variables:
$$
\xi=\lambda x / c_{0}^{3}, \tau=t / t_{0}, c^{*}=c / c_{0}, u^{*}=u / c_{0}, \lambda^{*}(x)=\lambda(x) / \lambda
$$

Replacing $\xi, \tau, c^{*}, u^{*}, \lambda^{*}$ by x, t, c, u, λ, we get

$$
\begin{align*}
(u+2 c)_{t}+(u+c)(u+2 c)_{x} & =-\lambda(x) / c \\
(u-2 c)_{t}+(u-c)(u-2 c)_{x} & =\lambda(x) / c \\
u(-t, t) & =0, \quad c(-t, t)=1, \tag{1.2}\\
u(\sigma(t), t) & =0, \quad c(\sigma(t), t)=(1-t)^{1 / 2}, \quad 0 \leqslant t \leqslant 1, \\
c\left(\sigma^{*}(t), t\right) & =0, \quad t \geqslant 1, \sigma^{*}(1)=2 / 3 .
\end{align*}
$$

In (1.2) $\lambda(x)=0$ or 1 according as $x<0$ or $x>0$ and

$$
\begin{equation*}
\sigma(t)=(2 / 3)\left[1-(1-t)^{3 / 2}\right] \tag{1.3}
\end{equation*}
$$

The free boundary is $x=\sigma^{*}(t)$. The characteristics of (1.2) are

$$
C_{1}: d x / d t=u+c, \quad C_{2}: d x / d t=u-c
$$

In Sec. 3 we discuss the solution of (1.2).
The C_{2} characteristics of (1.2) have a geometry similar to that of the characteristics of

$$
\begin{equation*}
u_{t}-u u_{x}=-f(x), \quad u(x, 0)=1 \tag{1.4}
\end{equation*}
$$

where $f(x)$ is 0 or 1 according as $x<0$ or $x>0$. Let R_{1} and R_{0} be the domains in the second quadrant above and below $x=-t$, and R_{2} and R_{3} the domains in the first quadrant above and below the upper branch of $x=(t-1)^{2} / 2$. Then the solution of (1.4) is

$$
\begin{aligned}
& R_{0}: u=1, \quad R_{1}: u=-(t-1) / 2+(1 / 2)\left[(t-1)^{2}-4 x\right]^{1 / 2} \\
& R_{2}: u=-(2 x)^{1 / 2}, \quad R_{3}: u=-t+1
\end{aligned}
$$

The solution is continuous but $u_{x}(0+, t)=-\infty, t>1$. The characteristics $d x / d t=-u$ in R_{1} are a diverging fan of lines issuing from $0 \leqslant t \leqslant 1$ on the t-axis, At $t=1, u=0$, so the characteristic originating at this point is the t axis. In fact, from each point $\left(0, t_{0}\right)$, $t_{0} \geqslant 1$, there issue two characteristics: $x=0$ and, as is clear from the solution in R_{2}, $x=\left(t-t_{0}\right)^{2} / 2, t \geqslant t_{0}$. In Sec. 2 we examine (1.4) with a more general $f(x)$, which is still 0 when $x<0$ but is continuous, nondecreasing, and positive when $x>0$. This analysis shows the conditions under which we do, or do not, get the behavior of characteristics in the special case $f(x)=1, x>0$, namely a diverging fan of lines in the second quadrant originating on a finite interval on the t-axis and bounded by $x=-t$ and $x=0$.

If in (1.4) we change the minus on the left to plus and retain $f(x)=0$ or 1 according as $x<0$ or $x>0$ then, as is shown explicitly in [1], the solution has a shock originating at $(1 / 2,1)$.
2. The Equation (1.4). We consider (1.4) for the more general $f(x)$ described above. We have, on characteristics,

$$
\begin{equation*}
d x / d t=-u, \quad d u / d t=-f(x) \tag{2.1}
\end{equation*}
$$

so the characteristics are lines in the second quadrant. Between the negative x-axis and $x=-t$ these are the lines on which $d x / d t=-1$. Between $x=-t$ and the t-axis, $d x / d t=-u\left(0, t_{0}\right)$ on a characteristic line which intersects the t-axis at t_{0}. In the first quadrant we get the characteristics by solving (2.1) subject to $x(0)=x_{0}, u(0)=1$. Thus

$$
x^{\prime \prime}-f(x)=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=-1
$$

so the characteristic originating at $\left(x_{0}, 0\right)$ is

$$
\begin{equation*}
t=\int_{x}^{x_{0}}\left[1-2 F\left(x_{0}\right)+2 F(\xi)\right]^{-1 / 2} d \xi, \quad F(x)=\int_{0}^{x} f(\xi) d \xi \tag{2.2}
\end{equation*}
$$

This characteristic intersects the t-axis at

$$
t_{0}=\int_{0}^{x_{0}}\left[1-2 F\left(x_{0}\right)+2 F(\xi)\right]^{-1 / 2} d \xi
$$

On the characteristic (2.2),

$$
u=\left[1-2 F\left(x_{0}\right)+2 F(x)\right]^{1 / 2},
$$

so that at $\left(0, t_{0}\right), u=\left[1-2 F\left(x_{0}\right)\right]^{1 / 2}$. On the t-axis u is a decreasing function of t which is 1 at $t=0$ and is 0 for that $t_{0}=t_{0}^{*}$ for which the corresponding x_{0}^{*} is such that $1-2 F\left(x_{0}^{*}\right)=0$. Since F is an increasing function of x and $F(\infty)=\infty$ there will be such an x_{0}^{*}. The corresponding t_{0}^{*} is

$$
\begin{equation*}
t_{0}^{*}=\int_{0}^{x_{0}^{*}}[2 F(\xi)]^{-1 / 2} d \xi . \tag{2.3}
\end{equation*}
$$

t_{0}^{*} may be finite or infinite. Then there is a diverging fan of lines issuing from $0 \leqslant t \leqslant t_{0}^{*}$ on the t-axis into the second quadrant bounded by $x=-t$ and, if t_{0}^{*} is finite, the t-axis above t_{0}^{*}. Thus the convergence or divergence of the integral

$$
\int_{0}^{\varepsilon}[F(\xi)]^{-1 / 2} d \xi
$$

distinguishes the two possibilities t_{0}^{*} finite or infinite. If, for example, $f(x)=a x^{\gamma}, \gamma \geqslant 0$, in the neighborhood of $x=0$ then $F(x)=b x^{\gamma+1}$ in the neighborhood of $x=0$ and the integral converges or diverges according as $0 \leqslant \gamma<1$ or $\gamma \geqslant 1$. In (1.4) $\gamma=0$ so t_{0}^{*} is finite. If $f(x)=\alpha^{2} x$, so $\gamma=1$, then $t_{0}^{*}=\infty$ and $x_{0}^{*}=\alpha^{-1}$. The characteristic issuing from $\left(x_{0}, 0\right)$ is

$$
x=x_{0} \cosh \alpha t-\alpha^{-1} \sinh \alpha t .
$$

These characteristics intersect the t-axis if $x_{0}<\alpha^{-1}$ and do not if $x_{0} \geqslant \alpha^{-1}$. The characteristic with $x_{0}=\alpha^{-1}$ is $x=\alpha^{-1} e^{-\alpha t}$, which is asymptotic to the t-axis. In the first quadrant $u=-\alpha x \tanh \alpha t+(\cosh \alpha t)^{-1}$.
3. The Subsidence Problem (1.2). In [2] we obtained u and c to quadratic terms for small t in the first and second quadrants, and we also obtained u_{x}, c_{x}, and h_{x} on $x=-t$ and on $x=\sigma(t)$. We describe briefly these results: between $x=-t$ and $x=\sigma(t), h$ is a decreasing function of $x\left(h=c^{2}\right.$ in the dimensionless variables) with a discontinuity in h_{x} at $x=0$; also $h_{x x}<0$ for small t. On $x=-t, h_{x}=-2 /(4+3 t)$ and $u_{x}=2 /(4+3 t)$, valid for all t. On $x=\sigma(t), h_{x}=-1 / 2(1-t)^{1 / 2}$ and $u_{x}=-1 / 2(1-t)$, valid for $0<t<1$. Thus the water edge is initially $(t=1)$ vertical.

From (1.2) we see that $u+2 c=$ constant on C_{1} characteristics in the second quadrant. Since $u+2 c=2$ on $x=-t$, we get $u+2 c=2$ in the second quadrant. Let $\phi(t)=c(0, t)$. Then we obtain the left and right derivatives u_{x} and c_{x} at $x=0$ from the first two equations of (1.2):

$$
\begin{align*}
& u_{x}(0+, t)=\Delta^{-1}\left[-1-2 \phi^{\prime}(2-\phi)\right] \\
& c_{x}(0+, t)=(\phi \Delta)^{-1}\left[1-\phi+\phi \phi^{\prime}(2-\phi)\right], \tag{3.1}\\
& u_{x}(0-, t)=-2 \phi^{\prime} /(3 \phi-2), \\
& c_{x}(0-, t)=\phi^{\prime} /(3 \phi-2)
\end{align*}
$$

where $\Delta=(3 \phi-2)(2-\phi)$. We make the plausible assumption that $\phi^{\prime}(t) \leqslant 0$. Then, since $\phi(0)=1$, we have the two possibilities: (1) $\phi(\infty) \geqslant 2 / 3$ and (2) $\phi\left(\mathrm{t}^{*}\right)=2 / 3$ for finite t^{*}. In case (1), assuming $\phi^{\prime}(t) \rightarrow 0$ as $t \rightarrow \infty$, the second equation of (3.1) implies that $c_{x}(0+, t)$ has a positive limit as $t \rightarrow \infty$. Then $h_{x}(0+, t)$ is positive for large t, which is physically implausible. In case (2) we have, for the bracketed expressions in (3.1) at $t=t^{*},-\omega$ and $\omega / 3$, where $\omega=1+(8 / 3) \phi^{\prime}\left(\mathrm{t}^{*}\right)$. Here $-\infty \leqslant \phi^{\prime}\left(\mathrm{t}^{*}\right) \leqslant 0$, so $-\infty \leqslant \omega$ $\leqslant 1$. We have three cases: (2a) $\omega<0$, (2b) $\omega=0$, ($2 c$) $\omega>0$. In case (2c) we get $c_{x}(0+, t) \rightarrow+\infty, t \rightarrow t^{*}$, which, as above, is implausible physically. In case (2a) we get, when $t \rightarrow t^{*}$,

$$
\begin{array}{ll}
u_{x}(0-, t) \rightarrow+\infty, & c_{x}(0-, t) \rightarrow-\infty \tag{3.2}\\
u_{x}(0+, t) \rightarrow+\infty, & c_{x}(0+, t) \rightarrow-\infty
\end{array}
$$

In case (2b) $u_{x}(0+, t)$ and $c_{x}(0+, t)$ are indeterminate when $t \rightarrow t^{*}$, but

$$
u_{x}(0-, t) \rightarrow+\infty, \quad c_{x}(0-, t) \rightarrow-\infty .
$$

We have $u-c=2-3 c$ in the second quadrant. On the segment $0 \leqslant t \leqslant t^{*}$ of the t-axis, $2-3 c=2-3 \phi$ is a function increasing from -1 to 0 so the C_{2} characteristics issuing from this segment into the second quadrant constitute a diverging fan of lines coinciding with $x=-t$ when $t=0$ and with the t-axis above t^{*} when $t=t^{*}$ (because $d x / d t=0$ when $t=t^{*}$). Since the water profile is vertical at $x=0, t=t^{*}$, as indicated by (3.2), there is the possibility of shock formation beginning at this point. This possibility, suggested in [1], is not supported by an examination of the characteristic directions on the line $t=t^{*}$. As noted above, the C_{2} characteristics constitute a diverging fan along this line in the second quadrant. From (3.2) we see that $u_{x}(0+, t)-$ $c_{x}(0+, t) \rightarrow+\infty, t \rightarrow t^{*}$, which suggests that the C_{2} characteristic directions along the line $t=t^{*}$ continue to diverge as we continue past $x=0$. The C_{1} characteristic directions $u+c=2-c$ in the second quadrant also diverge along the line $t=t^{*}$. From (3.1) we get

$$
\begin{equation*}
u_{x}(0+, t)+c_{x}(0+, t)=(\phi \Delta)^{-1}\left[1-2 \phi-\phi \phi^{\prime}(2-\phi)\right] . \tag{3.3}
\end{equation*}
$$

The bracketed quantity in (3.3) goes to $-\omega / 3$ as $t \rightarrow t^{*}$, which is positive in case (2a). This suggests, as above, that the C_{1} characteristic directions along the line $t=t^{*}$ continue to diverge as we continue past $x=0$. The divergence of both characteristic directions along the line $t=t^{*}$ on both sides of $x=0$ do not support the possibility of a shock originating at $x=0, t=t^{*}$.

We can now give a plausible description of the qualitative aspects of the solution of (1.2). The solution is continuous. The interface $x=\sigma(t)$ is given by (1.3); there is stationary but subsiding water, $h=1-t$, to the right of this interface. The water profile h is, for fixed t, a decreasing function of $x,-t \leqslant x \leqslant \sigma(t)$, with discontinuous derivatives at $x=-t, x=0$, and $x=\sigma(t)$. At $t=1$ there is no water to the right of $x=\sigma(1)=2 / 3$; the water profile is vertical at this edge, and $\sigma^{\prime}(1)=0$. The free boundary $x=\sigma^{*}(t)$ begins at $(2 / 3,1)$ and is a decreasing function of t; i.e., the water edge retreats. At some finite time t^{*} we get $u(0, t)=2 / 3, c(0, t)=2 / 3, h(0, t)=4 / 9, t \geqslant t^{*}$. There is a stationary solution as $t \rightarrow \infty$ which can be obtained by deleting the time derivative terms in (1.2). For $x<0$ we have $u=2 / 3, c=2 / 3, h=4 / 9$, and, for $x>0$,

$$
(u+c)(u+2 c)_{x}=-c^{-1}, \quad(u-c)(u-2 c)_{x}=c^{-1}
$$

from which we get

$$
u_{x}=\left(u^{2}-c^{2}\right)^{-1}, \quad c_{x}=-u\left[2 c\left(u^{2}-c^{2}\right)\right]^{-1}
$$

Then

$$
u u_{x}+2 c c_{x}=0, \quad c^{2} u_{x}+2 u c c_{x}=-1
$$

and, since $u(0)=2 / 3, c(0)=2 / 3$,

$$
u^{2} / 2+c^{2}=2 / 3, \quad u c^{2}=8 / 27-x .
$$

Since $h=c^{2}$,

$$
\begin{equation*}
u^{2} / 2+h=2 / 3, \quad u h=8 / 27-x . \tag{3.4}
\end{equation*}
$$

When $x=0$ the parabola and hyperbola in (3.4) are tangent; as x increases to $8 / 27$, $h(x)$ decreases to 0 and u increases to $2 / \sqrt{3}$. From (3.4) we get

$$
h^{3}-2 h^{2} / 3+(8-27 x)^{2} / 1458=0
$$

so

$$
h^{\prime}(x)=\frac{8-27 x}{9 h(9 h-4)}=\frac{\sqrt{6}(2-3 h)^{1 / 2}}{9 h-4} .
$$

Thus $h^{\prime}(0)=-\infty$ and $h^{\prime}(8 / 27)=-\sqrt{3} / 2$. The second derivative $h^{\prime \prime}(x)>0,0 \leqslant x \leqslant$ $8 / 27$. The free boundary is asymptotic to $x=8 / 27$. A rough numerical calculation indicates that t^{*} lies between 1.0 and 1.1. The C_{2} characteristics that originate on $x=\sigma(t)$ either (a) intersect the t-axis on the segment $0 \leqslant t \leqslant t^{*}$ and are diverging lines in the second quadrant or (b) remain in the first quadrant and terminate on the free boundary $x=\sigma^{*}(t)$. It seems reasonable, in analogy with (1.4), that for $t \geqslant t^{*}$ there are characteristics originating on the t-axis and terminating on $x=\sigma^{*}(t)$. Some further evidence for this can be seen by obtaining (approximately) the C_{2} characteristics $d x / d t=$ $u-c$ for large t by replacing $u-c=\xi$ by the function of x defined by (3.4). This is

$$
\begin{equation*}
27 x=8-2 \xi^{3}-\left(4-5 \xi^{2}\right)\left(4-2 \xi^{2}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

Here x is an increasing function of $\xi, 0 \leqslant \xi \leqslant 2 / 3^{1 / 2}$ and $0 \leqslant x \leqslant 8 / 27$. For small x we get, from (3.5), $\xi^{2}=9 x / 4$, so $d x / d t=3 x^{1 / 2} / 2$ for small x. This gives the two characteristics $x=0$ and $x=(9 / 16)\left(t-t_{0}\right)^{2}$ issuing from $\left(0, t_{0}\right)$.

It will be necessary to perform numerical calculations to support, or deny, the proposed solution described above. These calculations will also give the value of t^{*}.

References

[1] B. Sherman, Free boundaries in one dimensional flow, Quart. Appl. Math. 41, 319-330 (1983)
[2] B. Sherman, A subsidence problem with free boundary, Proceedings of the Symposium on Free Boundary Problems, Maubuisson-Carcans, France, June 1984, to appear

[^0]: * Received March 21, 1985.
 ${ }^{1}$ Present address: 616 Miller, Socorro, NM 87801.

