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Abstract. A simplified model for the solidification of an ingot being cast continuously

by withdrawing it from a mould at constant rate is studied via the variational inequalities

approach. Existence, uniqueness and regularity results are given for this one-phase Stefan

type problem, together with a detailed analysis for the free boundary (the solid-liquid

interface) particularly with respect to the asymptotic behavior as time r T co where the

steady state is attained.

1. Introduction. We consider a simplified model of a one-phase Stefan problem with

transport representing the solidification of an ingot by the continuous casting process. The

portion of ingot taken into account includes the solid-liquid interface 4> and occupies a

cylindrical open bounded domain S2 = T x ]0, /[ of R3, where T c R2 is a domain with

Lipschitz boundary 3T representing the section of the ingot and / > 0 is the height of the

lateral mould. We set T0 = T X {0}, = 3F X ]0, /[ and T2 = T X {/}; we denote

X = (x, y, z) e £2, the gradient by v = (3X, 3,,, 3.), so A = v -V, the time derivative by

3, and we set QT = £2 X ]0, T[, rr = Y X ]0, T[ for any 0 < T < oo.

If the free boundary at each instant is given by $(?) — {A e £2: z = y, t)} for a

smooth function <£: T X [0, T[<-* [0,/[ and if we consider the temperature 0 = 6{X,t)

renormalized such that 0 — 0 in the liquid part and 6 > 0 in the solid one, the classical

formulation of the continuous casting problem in a fixed frame and with casting velocity

given by V = bz (for a given constant b > 0) can be stated as follows (see [Br] and [R4]

for more details).

Problem (C). Find two smooth functions 6 = 9(x, y, z,t)^0 and <#> = <#>(*, y,t)> 0

defined in £2 X[0, T] and T X [0, T], respectively, such that

3,0 - A0 + R0 = 0 if (Ar,t): z > <t>(x,y,t); (1.1)

0 = 0 if (X, t): z < <j>(x, y, t)\ (1.2)

3.0 - 3.V03V«J> - dYdd ft> = \{b - 3,</>) if (X, t): z = <j>(x, y, t); (1.3)
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8 = 0 on ro and 8 = h(x, y, t) on T2 for t > 0; (1-4)

-90/9n = a(8 - p) on Tj for t > 0; (1.5)

6(X,0) = eo(X) for*e S2 at t = 0. (1.6)

Here A and a are positive constants denoting respectively the latent heat and the

cooling coefficient, h > 0, p > 0 and 9(} > 0 are given functions representing known

temperatures, compatible with the one-phase model in a sense to be made precise. By the

maximum principle, from (1.1) one concludes that it must be 8 > 0 for z > <p(x, y, t). We

remark that in (1.3) the Stefan condition at the free boundary establishes the balance

between the flux of heat and the velocity of propagation of the interface in the ingot; also

from the maximum principle one finds that 9,<J> < b, which is physically admissible.

There is an important analogy between this model and the free boundary problem

representing the nonsteady filtration of a compressible fluid through a rectangular porous

dam (see [T3]), which is a quite different physical phenomenon. Therefore our mathemati-

cal treatment will follow similar techniques, but since the boundary conditions are

essentially different we have a new problem with interesting features as was already

observed in [Br] and [R4]. Of course one could also consider a two-dimensional model in

this framework.

The formulation of Problem (C) contains, in particular, the formulation of the sta-

tionary case in which 8 and <f> are time-independent.

In Section 2 we transform Problem (C) and we consider the parabolic variational

inequality approach with nonclassical boundary conditions, according to [Br], where a

combination of the method of Baiocchi for the dam problem [BC], with its extension by

Duvaut to the one-phase Stefan problem [D], was introduced in a way similar to the works

of Torelli [Tl, 2, 3], We derive a new existence theorem and we obtain several properties

which are in fact analogous to the evolution dam problem.

In Section 3, we study the steady-state problem, namely the regularity of the solution

and, by means of comparison arguments, we discuss the existence of the free boundary

and the equivalence between the initial problem (C) and its transformed problem. It turns

out that for small velocities b and a large lateral cooling near T0 there is no free boundary

and Problem (C) is consequently ill-posed. Nevertheless, one can assure its existence by

imposing natural compatibility assumptions on the physical data. In this case we can give

a new stability result for the free boundary which, in particular, is important for the study

of its asymptotic behavior as t —> oo. We extend the comparison and stability results to the

evolutionary case in Section 4. In particular, these properties provide sufficient conditions

to the analysis of the free boundary in Section 5, namely the local C1 regularity for <p(x, t),

as in the compressible dam problem [K], and the equivalence between Problem (C) and its

variational inequality formulation.

In the last part of this paper we study the asymptotic behavior as t -» oo, and in Section

6 we state several results on the order of convergence for the variational solutions and for

the free boundaries, respectively in L2(S2), C\ H£,<.(&) and in L^T). Finally, in

Section 7, we establish the strong stabilization of the free boundary, locally in Holder spaces

together with its rate of convergence.
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2. The variational inequality approach. The condition (1.3) induces a discontinuity of v8

across the free boundary and it can be formally condensed, together with (1.1) and (1.2)

into a single equation in the sense of the distributions 3)\QT).

Proposition 2.1. Let x + = X+(8) denote the characteristic function of the set

2 + = {(*,0 e QT- z > *(x,y,t)} = {8(X,t) > 0}.

If 8 and <f> are smooth (say <j> e C^Tt-), 6 e C°(Qt) with v8 e C1(Q+U 3>)), then (1.1,

2, 3) are equivalent to

3,0 -A8 + bdz8 = -X(3, + bdz)X+(8) in ®'{QT). (2.1)

Proof. Let $ = U0<(<7-$(0 and v = l(dx<f>,dt4>, -l,3;(/>) be the outward normal to

n dQ+, with l~2 = (3x<f>)2 + (3V.^>)2 + 1 + (3,<f>)2. For any ip e S>(QT) and remarking

that

((3, +bd:)x\t)QT= -/ (3t + bdM= -I HM-bV,
J Q+ •'(J)

(A8,t)Q =f 8Aip = - f v8 ■ vt
Jq+ Jq +

= f \pA8 — f ip(dx8dx<f> + 3V03V<£ — 3,8)1
Jq+ J®

one easily concludes that (1.1, 2, 3) are equivalent to

(3,8 - A8 + bdz8, *>0r = -X<(3, + bd:)X\ +)Qr. □

In order to "regularize" the right side of (2.1) we transform the problem by introducing

the new function [Br]

u(X,t) = b[ 8(x, y, z + b(r — t), r) dT, X e 12, t > 0, (2.2)
Jo

being 6 = 8(X,t) extended by zero for - oo < z < <f>(x, y, t). In an equivalent way one

can write (2.2) in the form

u(X,t) = fZ 6(x,y,S,t + XeU,r> 0, (2.3)

where v + — max(u,0). Remark that, if 8 is time-independent, for / > l/b one obtains the

Baiocchi transformation (see [BC]). The inverse transformation is given by the following

proposition.

Proposition 2.2. If 8 e one has

3,u/b + 3,u = 8, a.e. in QT. (2.4)
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Proof. Let ip e Qt) an^ recall that QT = T X ]0, /[ X ]0, 7*[. Denoting \p(x, y, £,r,t)

= ip(x, y, f - b(r — /), ?) one has

dz(u,dtyf//b - d,ip) = f dt f dxdy f dr f 6(x, y, z + b(r — t), t)[3,^ - bd,\p]( X, t)
J0 Jr ' J0 J0

= fT dt f dxdy f dr (l+hiT " 0(x, y, t)d,xp(x, y, t, t) d£
Jo Jr Jo Jb(T-t)

= (T dr ( dxdy (' d£6(x, y,£,t) fT d,ip(x, y, f, t,/) dt
j0 •'r Jo jt

= - f e^dXdt
Qt

since xp = 0 for f < b(r — t) and for f > / + b(T — t), 0 < x < t < T. □

Assume that the initial position of the free boundary, which is determined by the initial

temperature 0O, is given by a positive continuous function <j>0, so that 3>(0): z = <£0(x, y).

Set

0= {(A\ t) e Qt\ z > <t>0(x,y) + bt) (2.5)

and remark that for / > l/b one has 0 n {r = /} = 0 and, since in Problem (C) one

must have 3,(f> < b, 0 c Q + also.

Denoting by Xa = X<p(^ 0 the characteristic function of 6, we introduce the following

functions

f(x,t) = b60{x,y,z-bt)xo-hb[l-xo], X e / > 0, (2.6)

g(X,t) = f~ p[x,y,$,t + lEril(>0. (2.7)

Proposition 2.3. If 6 is a solution to Problem (C) with <J>(x, y, t) > 0 for (x, y) e T,

t > 0, then the transformation (2.2) implies

u{X, t)>0, XeSl,t>0; Q + = {(X, t) e QT: u{X, t) > 0}; (2.8)

3tu - Am + bd:u = fXq* a.e. in QT; (2.9)

u = 0 on ro, t > 0; (2.10)

— 3u/dn = a(u — g) on rif t > 0; (2.11)

dru/b + 3,w = h on T2, / > 0; (2.12)

u( X, 0) = 0, (2.13)

Proof. From the preceding propositions the only condition which requires an additional

argument is (2.9). We distinguish between 0 and QT\ G.
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Since <9 c Q+, for (X, t) e 6 one has

A u(X,t) = bf A6(x, y,z + b(r - t), t) dr
Jo

— b f [9,9 + bd,6](x, y, z + b(r - t), t) dr
Jo

= b[0(x, y, z + b(t - t), t)]^Zq = bO(X,t) - b60(x, y, z - bt)

= d,u + bd,u - b60(jc, y, z - bt).

On the other hand, from (2.1) and (2.4) one has

(3, + bd:)(dlu — A u + bd.u + A^Xg+) = 0-

which implies that 3,u - Au + bd:u + Ab\Q+ is equal to some constant function along

the straight lines z — bt = C\ since, by assumption, u = Xq*= 0 for 0 < z < <p(x, y, t), it

follows that (2.9) holds in QT\(9. □

Now, integrating by parts, it is classical to conclude that u verifying the conditions

(2.8)-(2.13) should be the solution to the following parabolic variational inequality for a.e.

t > 0:

u(t) e K, m(0) = 0; (2.14)

(d,u(t),v - u(t)) + a(u(t),v - u(t)) > (L(t), u - u(t)), V»eK (2.15)

where we have introduced the following notations:

F={fe//1(S2):t; = Oonroj; K={t>eF:!;>0inS2}; (2.16)

a(u,v) = I Vu ■ Vi) + b / d.uv + a uv (u, v e F); (2.17)
Ja Ja * Jr,

(u,v) = f uv + — f uv (u,v G V)\ (2-18)
Ja b Jr2

(L(t),v) = ( f(t)v + a f g(t)v+f h(t)v (vgV). (2.19)
Ja Jrl Jr2

We observe that the nonclassical boundary condition (2.12) has been included in (2.18),

but it requires the additional regularity dtu(t) 6 V for a.e. / > 0. Therefore we must

consider the existence of strong solutions to (2.14) and (2.15) in the abstract framework

V c H c V (see [LI]) where H is the Hilbert space obtained from V with the inner

product (2.18).

Lemma 2.1. We have the following isomorphism

H = F< - > = [L2(£2) X L2(T2)].

Proof. By continuity of the trace operator one has H c [L2(fl) X L2(r2)] and it is

sufficient to show that its orthogonal H1 reduces to {0,0}. If (t^, v2) £ H1, one has

f UjWj + t f V2W2 = for all w ~ { Wj, w2} e H\
Ja b Jr
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taking w G ^(0) c //, one finds first vx = 0; afterwards with an arbitrary w G V c //

one concludes o2 = 0. □

Next we make the following assumptions on the data in order to apply the existence

and regularity theory for abstract variational inequalities of evolution:

4>o e C°(r), <t>0(x, y) > 0 for all (x, j) g T; (2.20)

0oeC°(n), dz0o<=L°°(Q)with{0o>O} = {z > <f>0(x, y)}; (2.21)

h g Hl(0, T- L2(T2)), h > 0; (2.22)

peH\0,T\ L1^)), p> 0. (2.23)

Theorem 2.1. Under assumptions (2.20)-(2.23) there exists a unique solution to the

variational inequality (2.14), (2.15), verifying

u e Hl(0,T; V) n Wl-x{0,T\ H) n W™(Q') n C°((£2 U r0) x[0,T]) (2.24)

for any p < oo with Q' = £2' X ]0, T[ for any open set £2' such that Q' c £2 U T0.

Furthermore, u verifies the equation

9,ii - Am + bdzu =/x(„>()} a e- in QT. (2.25)

Proof. The first part follows immediately from the general theory (see [LI]) provided

one assures L(0) G H and L G Hl(0, T\ V). Since h(0) g L2(T2) and for any v g Kone

has

(L(0),v) = ( b0o(X)v-\b( [1 -x«(0)]tf+ ( A(0)u = (L(0), v),
Ja Ja Jr-

by density one concludes L(0) G H. The other condition follows at once from the

assumptions, which imply d,f G L2(0, T; V) (see Lemma 2.2 below).

Since / G LX(QT), the local regularity is standard from the corresponding results for

parabolic equations [LSU] and its extension to variational inequalities [L2]. Then

Wp X(Q') c C°((?') for p > (3 + 2)/2 and (2.24) follows. Finally, in the open set

{(X,t)^QT\ u(X, 0 > 0} the equation 3,m - Au + bd,u = / is verified and in its

complementary set {u = 0} one has 3,w = Aw = d,u = 0 a.e. □

Lemma 2.2. Under assumptions (2.20) and (2.21) one has

9,/, 3,x®GL"(0,oo; F')nL°°(0, oo; W^O)), V/> < oo. (2.26)

(3, + H)/= (3, + M,)Xff=0. (2.27)

Moreover, if we also assume

d,0o>O a.e. in 12, (2.28)

we have

9,/ < 0 and d,f >0 on QT. (2.29)

Proof. Since x<p(0 = 0 for / > l/b we can limit ourselves to the finite interval ]0, 7"[,

with l/b < T < oo. From the definition of / one considers the terms /0 = 90(x, y, z -

bt)xc(X,t) and Xe>- Recalling that f0 G L°°(0, 7; L°°(fi)) c &'(0, T\ V) =
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J?(3(0, T), V), its derivative is given by

a,/o(*)= - (Tfo(t)nt)dt, v^e^(0,T).
Jo

Therefore, in the duality (V, V) one has, for u e V

(dJo(t)'V) = -</r/o(0f(0 dt, v) = - f dxdyf (' 60(x,y,z- bt)vdz\
Jo Jr Jo \J<t>0+bt )

= -[ vi f" 4'o)/h {d,(0o(x,y,z - bt)^(t)) + bdz0o(x,y,z - ^)^(/)} dt) dX
Ja \Jo ' >

= —[ dxdyf +(,)!{ bd,60(x, y, z — bt)v dz\dt
•r Jo I <f>f)+N I

dt,= - ( <H0 f bxe(t)9A(x,y,z- bt)vdx
Jo |/fi

and analogously

f ( ft -r — th~ \ /h \ r rl I 7. — \

dz~ f'iOdtj dX= dxdyf\$

= — f dxdyf^ <J>0>// \p(t)v(x, y, bt + <{>0)bdt
Jr J-*a/b

= —( dxdy(( <l'"^ \p(t)(v(x,y,H)-[ 3,v(x, y,z) dz\bdt
Jr J<\ I J hi + a. . " I

= Jj ^^\bfQ dt - J%(t)l^bJ^ Xo(t)vj dt.

Whence one concludes that 3,/„ and 3,Xo can be identified with the applications that for

each t e ]0, T [ map into the elements of V given, respectively, by

9,/o(0:t>~ ~b( xAOWo(x,y,z - bt)v,

and

9,X<p(0: v -> b f xM)ty ~ b f Xo{t)v,
Ja jt1

from which (2.26) follows. Taking u e W{j-p (ft) and arguing with the duality

W^p\Q,)) one concludes the last assertion of (2.26).

To prove (2.27) we approximate Xo by smooth functions xE(^>0 = <7f(*> y> z — bt),

which verify (3, + ^3.)xE = 0- Since (3, + bdz)8(x, y, z — bt) = 0 also, (2.27) follows

easily.

Recalling that Xo = 1 if z > 4>o(x' y) + bt and x® = 0 if z < <t>o(x> y) + bt, one has

that Xt>(X>0 > Xo(X,t + T)> Vt>0 (resp. Xe(x, y, z, 0 < X®(*> J. z + T- 0) implies

3,X£j < 0 (resp. 9.x o > 0) from which (2.29) follows easily provided that (2.28) holds. □
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3. The steady-state problem. If we assume the free boundary stabilized with respect to

the mould and the temperature time-independent, we have an elliptic problem whose

classical formulation is given by (1.1)—(1.6) where all the references to t are neglected. As

we have already remarked, the Baiocchi transformation (2.3) now takes the form

"oc(x) = [ Ox(x>y>Z)dt> (jc,v,z)efi, (3.1)
•'o

(the subscript "oo" stands for the steady-state functions) and we obtain the following

elliptic variational inequality [Br]:

"oo e K; a(ux,v - «J > (Lx,u - ux), VneK (3.2)

with the preceding notations and

(LX>U) = ~Xbf V + af g°cV + f h°cv' V *= V (3-3)
Ja -t, Jr2

(here hx = hx(x, y) > 0 is given and gx(z) = /0" for a given cooling temper-

ature px = p00(z) > 0). One has the following results.

Theorem 3.1. Let e IM(0,/), hx e C0-1(r2) be compatible in the sense that

— dhx/dn = a(hx - px) on 3r2, which we assume of class Cip. Then the unique

solution to (3.2) is such that

ux e W2'p{St) n C1-^^) O H^°°(fi), VI </7 < oo, VO < y < 1. (3.4)

Moreover, we have 8X = d,ux > 0 in S2 and the solid region is given by a supergraph

[z > $x(x, y)} = {9X > 0} = {ux > 0} and the free boundary, given by

$00 = 9{"oo > 0} n = { x = (-*, y, z)- 2 = <t>oo(x, >')}. (3-5)

is an analytic surface whenever <px > 0. In this case, (0x-<i>x) is the classical solution to

the steady-state continuous casting problem.

Proof. The existence, uniqueness and local H^^-regularity for the solution follows

from the general theory (see [BC], [KS] or [F]). The regularity up to the boundary was

proved in [Rl] and it is based on the compatibility condition and the analogous regularity

for the corresponding linear mixed boundary-value problem. The relation between the

solution ux and the temperature 0X requires a further analysis and it has been discussed

in [Rl] (see also [CR]). If <j>x > 0 (we shall see below sufficient conditions to have this

property) we can apply the theory developed for the analysis of the free boundary in the

Baiocchi dam problem (see [BC], [KS] or [F]) to get the conclusions (see [Rl]), in

particular to conclude the existence of the classical solution 9X. □

Remark 3.1. The C2 ^ regularity for 3T is only necessary in order to assume the global

W2-p n Cl a smoothness for the variational solution ux. The second part of Theorem 3.1,

being essentially local in nature, still holds for any 3T Lipschitz continuous. □

One advantage of the variational approach is the possibility of obtaining easily quite

natural monotonicity results for the solution and for the free boundary, together wth some

a priori bounds, by the well-known techniques of the weak maximum principle.
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Proposition 3.1. If u and u denote the solutions to (3.2) with data b, h, g and h, h, g,

respectively, then b > b, g < g, and < A imply u < u and <t> > <j>. Furthermore, if

4> > 0, 0 < 8 also.

Proof. Set w — u — u and take v = u — w+e K (resp. v = w + w+e K) in the varia-

tional inequality for u (resp. u). We have, taking the hypothesis into account,

f \/w-v(w + ) + b[ d„ww + + a f \w+\2+(b — b)f 9 ,uw +
Ja Ja ' •r, Ja

< —A(b — b) j w + < 0.

Recalling that 9,u > 0 and since

f d,WW + = }r [ d,(w + )2 = \ [ (w + )2> 0,
Ja 1 Ja 1 Jr2

one obtains

/ I v(w + ) |2 = 0,
hi

which, together with w = 0 on ro implies u - u = w < 0. Then <f> > $ follows im-

mediately. Finally, we conclude 8 < 8 by applying the classical maximum principle in the

open set {8 > 0}. □

In order to get an a priori frame for the free boundary, let us assume

0 < m < hx i? M < px(l) and p'x < b(\ + px) for 0 < z /. (3.6)

Set N = I — m/[b(A + M)\ and define

, x _ / 0 ifO < z < N +

° " °{Z) ~ [b(\ + M)(z - N + )2/2 if ^ + <z</. (3'7)

Proposition 3.2. Assuming (3.6) one has

0 < a < ux < gx in S2. (3.8)

Consequently, if px = 0 for 0 < z < d < I one has a lower bound for the free boundary

given by 4>x>d> 0. On the other hand, the upper bound 0 < <j>x < N+ implies the

nonexistence of the free boundary if N+= 0, i.e., if 0 < b < m/[l( A + M)\.

Proof. Take o = uto + w£Kin (3.2) for w = (ux - gx)+ and w = (a - ux)+. In the

first case we get

f \vw\2 + bf dzww + af w2 < f (p'x - bpx - \b)w + f {hx - px(l))w < 0
Ja Ja •'r, Ja Jr2

from which we obtain ux < gx, and in the second one

)w < Y

with

( | V w|2 + b f 9.ww + a I (gx — ux)v
Ja Ju JTi

Y = f b{b(\+M){z - N+) - M}w + ( {{b(\ + M))(l - N+) - hx}w.
J{:>N+) -T,
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From assumptions (3.6) one finds Y < 0 and, using the first part, one concludes ux ^ a,

proving our statements (note that px = 0 for 0 < z < d implies also gx = 0 there). □

Remark 3.2. These types of comparison results have been already considered in [Br] in

the particular case of hx = px = 1 and with respect to the coefficient a: if a < a then

u < u. One could also prove that A ^ A implies u < w, which is still a natural property

from the physical point of view. However, the possibility of nonexistence of the free

boundary for the solution of the variational inequality raises the question when the

problems for 6X and for ux are equivalent. It turns out that for data verifying (3.6) the

Problem (C) may be ill-posed for small velocities b < m/[l( A + M)\. Nevertheless, one is

able to show that for b large the free boundary always appears, as well as under additional

assumptions on the cooling temperature at z = 0. □

Theorem 3.2. Under conditions (3.6), for any (x, y) e T there exists b* = b*(x, y) such

that <t>h(x, y) > 0 for every b > b*, where <j>b denotes the free boundary for the velocity b.

Furthermore, if

p^O) = 0 and p'00(0) < Ab, for any fixed b > 0, (3.9)

then we have d,ux = 0 on T0 and <px(x, y) > 0 for any (jc, y) e T.

Proof. The first part has been shown in [Rl] by constructing a supersolution rj to (3.2)

(i.e., t) > gao on 812 and -Arj + 69,17 > -Ab in U) such that 17 vanishes in a small

neighborhood of (x, y) e T in £2.

For the last part, introduce S = T X ] — /, /[, f\ = 3T X ] - /, /[ and f0 = rx { —/}

and let u be the solution in of the variational inequality analogous to (3.2) with

«(•,■), K, and Lx defined analogously with g = gx if z > 0 and g = 0 if z < 0. Then, as

in Proposition 3.2, one has u < g and consequently m|s = ux and u = 0 in \ £2 implies

= 0 on r0, since u e C1^). The free boundary is <J> = 3{i/>0}n£2={z =

<t>oc(x' y)} with <j>x > 0 and analytic in F.

Assume, by contradiction, that 4>x(x, y) = 0 for some (x, y) g T. Then X = (3c, y, 0)

e$nT0 and ux being smooth up to $, one finds

3)?uJX) = AuJX) - bd:ux(X) = Xb > 0.

Since gx(0) = px(0) < Ab and gx > ux, one has > 0 in some neighborhood of

X in [ux > 0}, where

M"oo - goo) - K("oo - ^00) > 0

holds. Whence, by Hopfs Lemma, one must have

3r(«oo-0(*)<0

which contradicts d:(ux - g^X^) = p(0) = 0. □

The next result is a quantitative result on the stability of the free boundary in terms of

the given data. It is based on a technique of Brezis [B] and it extends a result of Caffarelli

[C2],
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Theorem 3.3. Let </> and <j> be the free boundaries corresponding to the solutions u and u

for the data b, g, h and b, g, h, respectively, under the assumptions of Theorem 3.1.

Then the following estimate holds:

l<#> - <#>l< + \h ~ h\ + \b - ft|jf (2A +|9,m|)|. (3.10)

Proof. Since u is smooth (see (3.4)) one knows that it verifies

-Am + bdzu - A6x{„_o} = ~hb a.e. in 12

and u an analogous equation. Thus w = u - u verifies

-A w + bd2w — \b(x ~ x) = f ~ f a.e. in 12, (3.11)

where we have denoted x = X(u=o}. X = X{£,-o} and

f-f=(b- b)(x\ - X + a.w).

Now multiply equation (3.11) by the function

/ -1 on{w<w}u{x>x}

J=(0 on{w = M}n{x = x}, (3.12)

(1 on{M>«}u{x<x}

and obtain

hbf |x — XI =f (f-/)s+f(Aw-bdzw)s
Ja Ja

= f (f-f)s + f (Aw - bdzw) sign(w)
Ja Ja

</ I/-/I+"/ \g~g\+f \h-h\.
Ja Jrl Jr2

The last inequality follows if we integrate by parts and approximate the sign(r) by

smooth functions ae(r), e > 0 satisfying |oe(r)| < 1, a'(r) > 0, at(0) = 0 and ajr) —>

sign(z-) as e 10. In fact one has (with Sc(r) = Io°e > 0)

/ (Aw - bd2w)ac(w) = - f |vw|2af'(w) - bj 9zSf(w) + J JZa,(w)
Ja Ja Jrlur2 6n

<~bf Sr(w) - af waf(w) + a ( (g ~ g)ae(w) + f (h - h)ae(w)
Jr2 Jr, Jrl Jr2

< «/ \g~ g\ + J \h - h\.
ij r2

To finish the proof we remark that

( l<#> - <#>1 = f Ix - xl- □
Jr Jo
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4. Comparison and stability results. Next we consider the monotonic dependence of the

evolutionary solution with respect to the data.

Proposition 4.1. If u and u denote the solutions to the parabolic variational inequalities

(2.14) and (2.15) with data g < g, h < h and 0O < 60 then also u ^ u in QT.

Proof. As in the proof of Proposition 3.1 one gets for w = w(t) = u(t) - u(t) and a.e.

/ > 0

( 9(wu' + + — f 3,ww + + f Vh' ■ V(w + ) + f 0.H'w + + a f
Jsi b jt2 Ja. * Ja

since 0o < 9{) implies / < /. Therefore, integrating between 0 and /, one finds

|w>+ \" < 0
a

2 < 0

r2

from which the conclusion follows. □

As for the elliptic problem one could also obtain frames for u(t) as in Proposition 3.2,

but it is perhaps more direct to compare it with steady-state solutions. As a corollary of

Proposition 4.1 one gets the following result.

Proposition 4.2. Let («,<£) be a steady-state solution with data p and h verifying the

assumptions of Theorem 3.1 and (3.6)-(3.9). Suppose that the evolutionary data are such

that

p(r)<p, h(t)^h for t > 0, and 60 < d2u in £2. (4.1)

Then the evolutionary free boundary $(0 = 9{w(0> 0} 's bounded below for all

t > 0 by the free boundary <£ and it never touches the fixed boundary T0.

Proof. From Theorem 3.2 one knows that <#> > 0 in T and applying the transformation

(2.3) to the function 9,u one obtains a function u(t) which is a solution to (2.14) and

(2.15), coincides with u for all t > l/b and is such that {w(0 > 0} = {« > 0} for all

t > 0. Applying Proposition 4.1, one sees that u u and this implies the conclusion. □

Remark 4.1. If we assume that the evolutionary data verify the conditions

p(t) > p, h(t) ^ h for / > 0, and 90 ̂  9.w in S2 (4.2)

for some steady-state solution u corresponding to the stationary data p and h compatible

in the sense of Theorems 3.1 and 3.2, one obtains as in Proposition 4.2 that {«(0> 0}=>

{u > 0} and therefore one gets an upper bound for the evolutionary free boundary.

Consequently if both (4.1) and (4.2) hold one can translate (3.8) for the evolutionary

solution. □

To extend Theorem 3.3 to the parabolic case we need some information on the

evolutionary free boundary, namely that for each t > 0 one has

<!>(?) = {(.x,^,z)eJ2:0<z = 4>(.x,}>,r)<<|>o(.x,^) + Z>/} = 9{«(?)>0} n

(4.3)

for any (x, y) eT, t > 0. This will be proved in the next section under appropriate

compatibility conditions on the data.
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Theorem 4.1. Let $ and <J> be the evolutionary free boundaries for the solutions u and w

for the data g, h, 60 and g, h, 60, respectively, both verifying (4.3). Then the following

estimates hold:

/„' /r if - *i< xj{«/0' fr i« - *i+/07r; i* - *i+'/a i#» - +*'/r ioo - ioi},

(44)

r' i k "-"+r V"-h]
+ \(u - w)(OI + l/r |(w - «)(0lj (4-5)

respectively for all t > 0 and all t > l/b.

Proof. Recalling (2.25) and letting w = u — u one has

9,w - Aw + bd,w + q~q=f~f a.e. in QT (4.6)

where / and / are defined by (2.6) and

9 = 9(0 = /(0x(0 = -hbx(t) and q = -Xbx

with x(0 and x(0 being the characteristic functions of the sets {«(?) = 0} and

{u(t) = 0} respectively (recall that (4.3) implies {z > <f>0(x, y) + bt} c [u > 0} and

therefore xxo = analogously xXe = 0)-

Multiplying equation (4.6) by the function s given in (3.12) and integrating on

£2 X ]0, /[, one concludes (as in the proof of Theorem 3.3)

f f IX — XI = f ( (f ~ f)s + (' f (Aw - bd .w - 9,w)j
J0 JQ J0 JQ J0

^ bI'/' / 0Xc>\+ XhJl/h J \Xe>~ X0I + "/' / \g-g\+('( \h ~ h\,
Jo Ju Jo Jo Jr, Jo Jr2

since we have for the new terms, for any r > a > 0,

f f d,ws + j- f f d,ws = f f 3,w sign{w) + t f f 3,wsign(w)
Ja Ja b a Jr2 Ja JQ D Ja JV2

= / (I w(r) I - |w(ct) I) + t/ (|w(t)|-|w(o)|)
Ja 0 Jr2

> ~fQ M<OI~ lfr |w(ct) | (4.7)

and w(0) = 0. To show (4.5), integrate in S2 X ]/, t + 1[ and recalling that / = / = -Ab

for all t > l/b, use (4.7) with a = t and t = t + 1, and conclude as before. □

As for the steady-state case we need to know in what sense the inverse transformation

(2.4) can be performed in order to obtain the solution of the initial Problem (C). A first

step is to show that the temperature 6 = d,u/b + d,u is a nonnegative function. This fact

has important consequences in the further analysis of the free boundary, namely that

0<z{u> 0}.
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Theorem 4.2. Under the assumptions of Theorem 2.1, one has

9,u + bd,u > 0 a.e. in QT. (4.8)

Proof. We need the following family of approximating solutions ue to the solution u of

(2.14) and (2.15):

9,wf - Awf + bd,ue + Pe(ue) = / in QT, ue(0) = 0 in S2; (4.9)

"E|r„ = - 9"e/3"lr, = «("e ~ g), + 3,"Jr2 = 0, for t > 0

(4.10)

where e > 0 and is a one-parameter family of smooth functions such that

/?f(r) = 0 for r > e, &(0) = -Xb and /?/(/■) > 0 for r < e. (4.11)

By classical monotonicity techniques (see [LI]) one can obtain the existence of a unique

solution ue in the same spaces as for u (see (2.24)) and that ut -* u as e -» 0. An

important step is to show ue ^ 0 in QT (therefore -Xb < Pe(ue) < 0). In fact, multiply-

ing (4.9) by — u~ = min(w£, 0) and integrating over X ]0, t[ one concludes u~ = 0 from

\j l«r(OI2 + jbf l«r(')l2 +/' / lv«.-|2 + f/7 l«rl2 + «/7 l«r\2
2 lt> JT1 J0 •'n 2 ■'o -t2 •'o -T,

= // (/-A(««))(-«;)-a/7 g«r - /' / hu7 <
{ Uf <0} 0 ri 0 r2

since g, h ^ 0 and -/?E(«£) > Aft in the region where me < 0.

Now it is enough to show that w = d,uc + > 0 for any e > 0, which we shall do

by remarking that w satisfies the following linear equation with df(X, t) = p'e{ut{X, t)) >

0,

d,w — Aw + bd„w + dtw = 0 in QT, (4.12)

and the following conditions for a.a. t > 0,

w = bd,ue >0 on ro, w = bh ^ 0 on T2, (4.13)

—9w/9« = a(w — bp) on (4.14)

and from (4.9) the initial condition

w(0) = 9,ut(0) =/(0) + Xb > 0 in 0. (4.15)

Then multiplying (4.12) by — w~ and taking the conditions (4.13)—(4.15) into account,

one obtains w > 0 from

\ f \w~(t) | + f f |vw~ |2 + f f dc\w~ |2 + a f f \w~ |2
1 Jsi Jo Ja Jo Ja Jo •'r,

= a f f p( — h>) <0. □
J0 -T,

5. Analysis of the evolutionary free boundary. The analysis of the regularity of the free

boundary associated with a parabolic unilateral variational inequality was done first by

Caffarelli [CI] for the one-phase Stefan problem (see [F], particularly Ch. 2, §9, and also
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the earlier special case of [FK] with a star-shaped geometry). More recently Kroner [K] has

extended that analysis to the free boundary of the nonsteady flow of a compressible fluid

through a porous dam, where the existence of a monotonicity property in one direction

allows important simplifications in the proofs. Since our problem presents an analogous

feature, we discuss in this section how their arguments can be applied to the continuous

casting Stefan problem.

First we assume that the free boundary to (2.14), (2.15) exists and does not touch the

fixed boundaries T0 and T2:

3 { u(t) > 0} D ro = 0 and 3 { u(t) = 0} n T2 = 0 for all t > 0. (5.1)

We have seen in the preceding section how it is possible to assure (5.1) by means of

comparison arguments and reasonable assumptions on the data. We also remark, as in the

steady-state problem, that if u(t) > 0 in £2 the equivalence between u and 6 loses its

sense, since then conditions (1.2) and (1.3) are excessive.

Together with the inequality (4.8), another crucial property that we shall consider is

3zw 3= 0 in S2, forallr>0. (5.2)

This condition is more delicate to show than in the steady case of Theorem 3.1 and we

shall give in Proposition 5.1 below sufficient assumptions to obtain it. That allows us to

define the function <f> by

<f>(x, y,t) = inf{z: u(x, y,z,t) > 0} for all (x, y) e T, t > 0, (5.3)

which, by the continuity of u, is an upper semicontinuous function in T, for each fixed t.

Theorem 5.1. Under the conditions of Theorem 2.1, assume the initial free boundary

<f>0 G C^O and that (5.1) and (5.2) hold. Then the free boundary is represented as a

graph (seee (4.3) and (5.3)) of a function <f> e C^Ty-), for each T < oo, with 3,<f> < b.

Moreover, (6, <p) is the classical solution to Problem (C).

Proof. Since the proof is essentially the same as that of Theorem 1.5 of [K] we refer only

to the main steps and the necessary adaptations to our situation (see Remark 7.1).

First, observe that 3,u + bdzu > 0 implies 3,</> < b. In fact, introducing the transforma-

tion

S: T x]0,/[ x]0,7'[ 3 (x, y, z, t) —> (x, y, z — bt,t) e T x] — bT, I — bT[ x]0,T[

and defining accordingly

v(x, y, z,t) = u(x, y, z + bt,t) and ip(x, y,t) = 4>{x, y, t) - bt,

one finds 3,u 3* 0 and {X: v(x, t) > 0} = {X: z > \p(x, y,/)}; hence \p(x,y,t)^

*p(x, y, t) for t > t and 3,<j> — b = d,\p < 0.

Now consider for any P c c T, 0 < a < t < T, the subsets

G = {(x, y,z,t): o < t < t,(x, y) <= T', \P(x, y,t) < z < I - bt},

* = {(*, y,z,t) e G: z = ip(x,y,t)}

and, using the regularity of u, one has v,w e C°(G), v may be extended by zero in a

neighborhood 6 of G U t such that v e Wp2 l(G), \f p < oo, and it verifies

d,v — An = — \b < 0 in G,

v = | Vf | =0 in^,

v > 0, 3,i» > 0 and 3,u >0 in G\<fr.
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Moreover, it is possible (see Theorem 2.5 of [K] or Proposition 6.1 below) to prove the

local boundedness of 3so also

sup 13,u | < M
G

and we can apply Theorem 3.1 of [K] (see also Remark 7.1 below) in order to conclude the

local Lipschitz continuity of the function \p both in space and time variables.

Consequently <p e C^(r7>) and the further regularity of <#>, as well as the local

continuity of the temperature 6 and its derivatives up to free boundary, follow by the

arguments of Caffarelli (see [CI], [F] or [K], §4). Finally, by Proposition 2.1, one concludes

the existence (and uniqueness) of the solution for Problem (C). □

Remark 5.1. The assumption <f>0 e C^T) and the argument of Lemma 2.2 of [K] allow

us to conclude that in fact

4>(x,y,t) < <t>0(x,y) + bt, for all t > 0, {x, y) e T.

Moreover, since at / = 0 one has 0(0) = 3,w(0) = 3,u(0), the argument of Lemma 9.3 of

[F] yields the continuity of the temperature at the initial instant. □

To discuss the condition (5.2), we recall that the boundary condition (2.12) for u on I\

requires 3tu < bh there. So, in general, we can not choose the boundary temperatures

arbitrarily but they must satisfy some appropriate conditions.

Proposition 5.1. Let, in addition to the assumptions of Theorem 2.1 and (2.28), the

following compatibility conditions hold:

d,h — Axvh>0 in rr, h(x,y,0) > sup 60(x,y,z) in T, (5.4)
0 < z < /

dh/dn + ah > ap(l,t), p(0,/) = 0 on 3T and 3.p > 0 for t > 0. (5.5)

Then one has

3,u ^ bh and 3,u ^0 in QT. (5.6)

Proof. As in the proof of Theorem 4.2 we shall use a family of approximating solutions

ut for the variational inequality (2.14), (2.15) in the form (4.9), (4.10), but now with /8f

replaced by with /3f(r) = /?f(r + e), so that y8f(0) = 0, with = — e and / replaced

by some regularization ft-*f as e|0 with 3Jt < 0 and /e(0) < /(0) (see Lemma 2.2).

Since iie —* u also, it is enough to prove that 3,«f < bh in QT. Now w = 3,uf is the

solution of the linear mixed problem

3tw - Aw + bd:w + dtw = 3,/f in QT, w(0) = /t(0) in S2 (5.7)

w|r„ = 0, — 3w/3«|r, = a(w — d,g), 3,w + ft3.w|ri = /)3,/i, t > 0, (5.8)

with de(x, t) = fc(uc(X, t)) = fic(ut( X, t) + e) > 0. Again by the weak maximum princi-

ple, it is easy to see that a function v satisfying the conditions

v ^ 0 in Qt, d(0) ^ /(0) in 12,

3,f + Au + bd,v >0 in Qr, (5.9)

dv/dn + au|r, > a3,g and d,v + />3zf|r, > bd,h for / > 0

is a supersolution to (5.7), (5.8), so that it verifies v > w in QT.
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Clearly v = bh satisfies (5.9), since (5.5) implies, in particular,

dr f p(x, y, z + b(r — t),T) dr = p(x, y, z, t) — b I 3.p(x, y, z + b{r — t), t) dr
Jo Jo

<p(x,y,l,t). (5.10)

Next, we use a similar argument to prove that 3,u ^ 0. As in the proof of Theorem 4.2

(now arguing with (uf + e)~) one can show that ue > — e in QT and therefore 9A > 0

on r0 (since = -e). Hence f = d,ue satisfies

a/- A? + bdj + dS = 3Je > 0 in Qt, f(0) = 0 in £2,

f|r0ur2 3* 0 and 3f/3n + a?|r, > 0 for t > 0

by recalling (2.29) and (5.5), which last part implies 3zg > 0.

Once more by the weak maximum principle one finds f > 0, concluding the proof of

(5.6). □

6. Asymptotic behavior as t -» + oo. Another advantage of the variational formulation

to the continuous casting problem is the possibility of the direct application of the general

results to the asymptotic behavior of strong solutions to monotone parabolic variational

inequalities (see [R3]). This fact, which has already been observed by Briere [Br] in a

particular case, immediately yields various stabilization results of the variational solution

of (2.14), (2.15) with respect to the stationary one of (3.2), depending on the correspond-

ing assumptions on the data, namely on the quantities

*(/)= S'+1 / ls(T) -8°°\2 +/'+1 / \h{r)-hj, (6.1)
Jt -T, Jt Jr2

V(t)=f'+1 f |3,g(T)|2 + /'+1 / |3,A(r)|2. (6.2)
Jt •'r, Ji Jr2

Furthermore, one has the stability results for the free boundary, particularly (4.5) for

u = ux and <t> = <j>x for / > l/b, or under the stronger convergence when 3,u(t) -* 0 in

L2(fi) X L2(T2) as / -> oo the estimate (3.10) with <f> = <j>x, $ = <j>(t), g = gx, g = g(t),

h = hx, h = h(t) — d,u(t)/b, b = b and the additional term fa |9,i/(/)| on the right side,

that is, considering the parabolic problem for large t as a perturbation of the elliptic one.

Hence if we assume <px > 0 and <j>(t) > 0 for all large t one obtains not only the

asymptotic stabilization of the free boundary but also its order of convergence. Therefore,

taking into account Theorems 1, 2, and 3 of [R3] and Theorems 4.1 and 3.3, one can state

the following results.

Theorem 6.1. Let (u(t),<p(t)) and (u00,<f>cc) be the solutions and the free boundaries for

the evolutionary and stationary problems, respectively. One has the following asymptotic

results for t -* oo:

(i) If {(f) 0 (resp. £(') = 0{ra) or £(f) = 0(e a')) then

u(t)-> in H = L2(tt) X L2(T2) and J'+' ^ |«#>(t) - <t>x | -» 0; (6.3)

+ /r MO0(ra/2) (resp. 0(e~P')) (6.3')
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for any a > 0 and for some p > 0, /3 < a.

(ii) If ju(?) = £(/) 4- t](t) -* 0 (resp. fi(t) = 0(t") or ju(t) = 0(e~c")) then

u(t) —* ux in V n 7/^.(12), 9,w(?) -> 0 in H and J |<J>(0 - <j>x | -» 0; (6.4)

||«(0 - KoJrnwJ, +||3,«(0I||/ + fr |<f>(0 - <#>001 = 0(t-a/2) (resp. 0(e~y'))

(6.4')

for any a > 0 and for some y > 0, y < a. Of course, the results on <J> require <j>x > 0 and

<M0 > 0 for t large. □

Remark 6.1. In the case (ii) we also have the asymptotic convergence of the temperature

as t -* oo:

0(r) = d,u(t)/b + 3zm(0 -» d7ux = 9X in L2(£2), (6.5)

and, naturally, also the corresponding rates for the L2-convergence. □

In the proof of Theorem 5.1 we referred to the need for local boundedness of 3(w which

can be proved by local estimates as in [K], However, in our case, with some mild

additional assumptions on the data, namely

d,h e L°°(r, X]0, oo[) and p, 3,p e L°°(r, X ]0, oo[), (6.6)

one can give a global L°° estimate for 3,w, which can be used to improve the asymptotic

convergence of the temperature and the free boundary, and has an intrinsic interest in

view of the boundary conditions (5.8).

Proposition 6.1. Under the assumptions of Theorem 2.1, if in addition (6.6) holds, one

has

e,«eL°°(fix]0,oo[). (6.7)

Proof. We consider again the linear mixed problem (5.7), (5.8) where we have chosen

3,/f given for any v e V by (see Lemma 2.2)

<a,/f(0,«> = ~b2 f vqc(t)d,60(z — bt) + Xb2 f qt(t)d,v - Xb2 f qe(t)v (t > 0),
Ja Jr2

0<9f(0<X<p(0<l being a family of regularizations of the characteristic function of

the set 0 defined in (2.5). Since 3,/f(0 = 0 for any t 3s l/b, we estimate first the L°°-norm

of w = d,ue in the finite interval [0, I*], Tn = l/b and then the L°° estimate in the

remainder [T* , oo[ will follow easily. Using the fact de > 0 in (5.7), the estimates we get

are independent of e.

The method of proof is classical and is essentially discussed in [LSU], Ch. Ill, §7, and

so we only sketch it, making the necessary changes in order to take into account the mixed

boundary conditions (5.8) (compare with the elliptic version of this estimate in [MS]).

Notice that assumptions (2.21) and (6.6) imply the existence of a constant C0 > 0,

independent of e and t, such that

ll/,(0) |L-(0> + ||3,g(0 IU»(r.) + ||3,M0 IU-(r2, « Q- (6.8)
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Now we consider wk = (w - k) + and wk = —(w + k)~ for k > C0; we multiply them

by the equation of (5.7) and we integrate in Qr. Taking (6.8) and (5.8) into account, we

have for any t > 0

j J 9,ww* + —J j 'dtwwk + J J [vw-VwA: + bd,wwk + dtwwk }
0 Q, 0 r2 0 S2

+ a f f (w - k)wk
J0 •T,

= t>2J' J (A q$,wk - qed,0owk} + «/' / (3,g - k)wk + J' J (9,/j - A b2qe)wk.
o o r*j o r*2

Denoting Ak(t) = {X e £2: w(t) > k) and observing that

II I d'wwk + /' / ^wwk = Jbf + /' / ~ k)>°
o r, o ^ ̂  (o

one obtains (recalling |?t| < 1 and the Schwartz inequality)

/ (wk)2(t) + /' / |Vvv*|2 + \j' j (wk)2 + af'f (wk)2
Jsi Jo Ja z Jo Jr2 Jo Jri

</'/ b\\2+C2C2) + \ f / (A: + C0)2
J0 JAk(t) a Jo Jr1nAk(t)

2
+ bf / (Co + Aft2)2

0 y0 r2n/l4(;)

where C\ is Poincare's constant (i.e., ||u||t2(a) < C1||Vu||z_2(fl), Vi> e K).

Now we can finish the argument as in [LSU], pp. 184-185, since from (6.9) and

Holder's inequality one obtains an estimate of the type

|w*|2qt.~ sup f (wk)2(t) + fT* f jvwkj2 ^ Ck2/j,2(1+y)//r(k)
0<r<T, o Ja

for k = max(l, C0) and where

/*(*) = fT* {mes tf*Ak(t) + mes r/0<[Ak(t) n I\] + mesj$[Ak(t) n T2]} dt

for some appropriate numbers r,q ^ 2 and y > 1. Then using the inequalities of Ch. II,

§6 of [LSU] one can deduce that w < M for a certain constant M > C0 depending on

fixed quantities. Analogously one concludes w > — M.

Finally, considering the function v = v(z) = Mz + M, from (5.9) one immediately

finds that o is a supersolution to (5.7), (5.8) in £2 X ]T*, oo[. Since —v is also a

supersolution in that set, one concludes that w = 3,uc is bounded in Qx independently of

e and therefore (6.7) is proved. □

Corollary 6.1. If in addition to (6.6) one has ju.(/) -> 0 in Theorem 6.1, one has for

t -* oo

u(t) -* ux in Wfc?(Q) n Cla(Q), < oo, VO < a < 1, (6.10)

and the temperature 8(t) -» 6X in £^.(52) (see (6.5)).
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Proof. Since d,u(t) -> 0 in L2(fi), from estimate (6.7) one has the uniform integrability

in £2 of |9,m(/)|p for any p < oo and t > 0 and hence also d,u(t) —> 0 in Lp(Sl). Now

(6.10) follows from (6.4), the linear L''-elliptic estimates and the Rellich-Kondratchoff

theorem. □

7. The strong stabilization of the free boundary. The results of Theorem 6.1(ii) give a

stabilization of the free boundary in L'(r)-norm. In view of the regularity results of

Theorems 3.1 and 5.1, one easily conjectures a stronger convergence. Actually, we show in

this section how an interpolation argument can give a convergence in C0 a(r), provided

one assures a local L00 estimate for the spatial gradient of <#>(/)> uniformly in /. This

technique has been used already in [R2] to discuss the stability of the free boundary in the

incompressible evolutionary dam problem, where that estimate was simpler to obtain. In

the next proposition we shall adapt the technique used by Kroner [K] and already evoked

in the proof of Theorem 5.1. (See also [A], [KS], p. 255, or [F], p. 177.)

Proposition 7.1. Under the conditions of Theorem 5.1 and Corollary 6.1 one has

sup sup
t>l/b (x,y)er

{|9*<K*.^OI + I9/K*..m)|} < c (7.1)

for some constant C = C(T') > 0 and any open subset PccT.

Proof. For any T' c c T, let f' be an open set such that f c f' c T with d(Y', 9T)

> 0 and d(T', 3f') > 0, and define for 8 > 8 > 0, arbitrarily small,

fl' = f'x]8,/-8[ and fl' = r'x]J,/-J[.

Taking into account the assumptions on the free boundaries, it is not restrictive to

assume that for 8 small enough and for all r > 0

{ X e fl: z = <p(x, y, t), (x, y) e Y'} c 12' c

Denote

G = {(X, t) e x ]l/b, r[: z > <j>(x, y,/)},

4> = {(X, t) e fl' X ]l/b, oo [: z = </>(x, y, t)j,

L = 3G\4>,

F = {(A', t) e il' x]l/b + 6,oo[: z ^ 4>(x, y, t)},

and remark that FcGU$ and d(F, L) > 0.

Now we claim that there exist fixed constants A0, e0 > 0 independent of t, such that

w = u + edxii + e9vM — Adzu <0 in F, VA > A0, |e| < e0. (7.2)

Fix a constant m > 0 such that

-w(3,?-Af + Mif)<^ inG (7.3)

for some function f e C2(R3 X R + ) verifying f > 0, f = 0 in F and f > 1 on L (m

depends only on 12', Hi', and 5).

Recalling (2.25) and / = - Xb for t > l/b one has

3,w — Aw + bd,w = —Xb in G.
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Since u = |V w| = 0 on 4>, also w = 0 on $ and if we show that

w < m on L, (7.4)

then by the maximum principle one has w - m$ < 0 in G and (7.2) will be proved.

Next let us recall that by the assumptions

«(/) -» i^inC^Q'), V0<a<l, (7.5)
t —» 00

and since u, |v«| £ C°(G U 3G) one has

sup u + sup | V u I <k, (7.6)
C G

and

y(e) = inf{3,w(X,t): (A',/) e G and u(X,t) > e} > 0. (7.7)

Indeed, if y(e) < 0 one finds a sequence G 3 (Xn, tn) -* (X0, t0) £ G U 3G if the tn are

bounded, such that u(Xn, tn) > e and 3,u(Xn, tn) —> y(e) < 0, hence u(X0, t0) ^ e and

d,u(X0, t0) = y(e) < 0 which is a contradiction of 3,u > 0 whenever u > 0; if t„ -> oo

and Xn -» X0, by (7.5) one gets ux(X0) > e and d„ux(X0) = y(e) < 0 which is also

impossible by the same reason (see Theorem 3.1).

Now we can show that (7.4) holds by letting

VYl k.
e0 = Y + 2k and A° = (see(7-6) and (7.7)),

because if (X, t) e L and u(X, t) < e0 one gets

w < e0 + 2e0k < m (since 3,u > 0),

or if (X, t) e L and u(X, t) > e0 one has

w < k + 2e0k — v40y(£0) < m.

Finally, (7.2) implies that the directional derivative 77 ■ Vu{t) > 0 in F, where tj =

(e, e, A), with |e| < e0 and A > A0\ therefore Ffi (r = /) verifies a cone property

uniformly in t, which proves (7.1). □

Remark 7.1. These arguments are actually very similar to the proof of the local

Lipschitz continuity of rp both in space and time, which is based on the local property

v + 63,v 4- edxv + edvv — Ad2v < 0 for 0 < 8 < 50, |e| < e0 and A Js A0, where ifs and v

are the auxiliary functions introduced in the proof of Theorem 5.1 (recall d,v > 0). □

Theorem 7.1. Assume (7.1) and under the notation of Theorem 6.1, if ft(J) —> 0 (resp.

Iu-(0 ~ 0(t~a) or n(t) = 0(e~°")), one has the asymptotic behavior for t -> 00:

<*(/) -» <f>x inC0,"(r') (for any 0 < v < 1) (7.8)

or

lk(0-^llc-«r,= O(/^) (resp. 0(e~y')) (7.8')

for any smooth T', T' c T, any a > 0 and some (S = /?(e, F') e]0, a[ or y = y(v, T')

e]0,«[.
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Proof. The results follow easily by interpolating (6.4) or (6.4') with (7.1). Indeed for any

function / e C01(r') one has the inequality of Gagliardo-Nirenberg [N] (recall P c R2):

ii/>< Qlv/LII/ll, +c2||/||„ Vu£ [0, l] and \/p = (1 — a) — a/2,(7.9)
where, if l/p e [0,1], || • ||p stands for the Lp(P)-norm and, if l/p e [-1/2,0[ for the

Holder semi-norm [/],, = sup^ y[|/( X) - f(Y)\/\X - Y\v] with v = -2/p, and where

Cj, C2 are positive constants depending only on P. Using Young's inequality with e > 0

one finds

< (c2 + + Ci|llJ:j£3/(, + 2)||v/|U (7 1Q)

where p = — 2/v for 0 < v < 1 and p = oo for v = 0.

Now take / = <j>(t) - <f>x and choose e appropriately, according to the cases (6.4) or

(6.4'), to complete the proof. □
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