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Abstract. Perturbation techniques are a very useful tool also in the theory of lubrication.

Two typical situations are rigorously discussed in this paper: the bifurcation for the

"shoe-bearing" and the asymptotic analysis for a finite gas slider bearing of narrow

geometry. Furthermore the mathematical basis of a new application of the Reynolds

equation is briefly treated.

Introduction. This paper deals with various perturbation problems arising in the theory

of lubrication. The main analytic tool of this branch of fluid mechanics is the Reynolds

equation [1], [5] which reads

^-vp) = 6U(pH) x. (1.1)

In (1.1), P( X), X = (x, y) is the pressure in a thin film of lubricating fluid of density p

and viscosity fi. H{ X) is the film thickness and U the ^-component of the velocity of the

moving surface.

A bifurcation problem motivated by the study of the so-called "shoe-bearing" is

examined in Section 2. For this kind of bearing the thickness of the film is not fixed

because the upper surface (the shoe) is freely pivoted; thus the equilibrium positions under

load need not be unique. The occurrence of bifurcation is proved with elementary analytic

means.

In Section 3 we are concerned with a singular perturbation problem for the nonlinear

Reynolds equation of gas-lubrication. We take into account the width of the occurring

boundary layer and prove a result of convergence previously stated without proof by

Diprima and Shepherd (see [4]).
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A. B. Tayler has proposed in [9] a new mathematical model based on the theory of

lubrication for describing the impregnation of a sheet of absorbent material with a viscous

fluid. A theorem of existence and uniqueness is given in Section 4 for the relevant

nonlinear elliptic boundary value problem.

2. An elementary problem of bifurcation for the "shoe-bearing". Let £2 be an open and

bounded subset of R2 with a regular boundary 3S2. We suppose in this section p = constant

and take for brevity 6t/ju = 1; thus equation (1.1) becomes

v(H\P) = Hx in 12. (2.1)

As boundary condition we assume

P = 0 on aa. (2.2)

Now suppose

H( X; e, a) = h0 + a(x — e), h0> 0, (2-3)

to be the equation of the pivoted bearing surface free to rotate around the axis x = e with

e and a small parameters. By the Lax-Milgram lemma for every a and e sufficiently small,

there exists one and only one solution P(X; e,a) of problem (2.1), (2.2). On the other

hand, when a = 0 (case of the parallel bearings surfaces), we have for every e the trivial

solution

P(X-e, 0) = 0. (2.4)

When a + 0 the pressure is also different from zero and for a steady situation the

following equation of equilibrium, expressing the balance of angular momentum

$ (e,a) = f (x — e)P( X; e, a) dX — 0, (2.5)
J O

must hold. Our goal is to study equation (2.5) in a neighbourhood of the point (0,0) in the

plane e, a. We shall prove that under assumptions largely verified in practice, there exists

locally a second branch of solutions starting from (0,0) in addition to the trivial ones for

a = 0. All our arguments shall be quite elementary.

Let us suppose 3S e C3, and assume symmetric with respect to the y-axis. Moreover

suppose

{(jc,j), |x|<|x0|, J =J0} c (2-6)

when (x0, j^) e 3S2. Define

fl + = {(jt, >>) e fi, jc > 0}, 3S2 + = {(x,j) g x > 0}.

Clearly we have

$(e,0) = 0 (2.7)

for all e, |e| < e0. Let us differentiate (2.1) with respect to a and set a = 0. Since by (2.4)

VP( X\ e, 0) = 0,
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with a straightforward calculation we get, recalling (2.2)

APa(X; e, 0) = 1 /h\ in 8, (2.8)

Pa(X; e, 0) = 0 on 38. (2.9)

From (2.8), (2.9), it follows that Pa(X\ e,0) does not depend on e. Differentiating (2.1)

two times with respect to a and then putting a = e = 0 we get by (2.8)

-APaa(X-,0,0) = 6x/h< + 6(Pax(X-,0,0))/ho in 8. (2.10)

Paa(X;0,0) = 0 on 98. (2.11)

Further properties of the solutions to problems (2.8), (2.9) and (2.10), (2.11) are given in

the following

Lemma 2.1. If Pa, Paa are respectively the solutions of problems (2.8), (2.9) and (2.10),

(2.11) then

Pa< 0 in 8, (2.12)

pa(x,y) = Pa{-x,y) in 8, (2.13)

Pax(x,y) = -Pax(~X>y) infi> (2-14)

Pax > 0 in 8+, (2.15)

paa(x,y) = -Paa(~x,y) in 8, (2.16)

Paa > 0 in 8+. (2.17)

Proof. Inequality (2.12) is a consequence of the maximum principle.

Since 8 is symmetric with respect to the >>-axis and the left-hand side of equation (2.8)

is an even function, (2.13) and (2.14) follow easily.

By (2.14) Pax(0, y) = 0. Moreover if (x0, y0) e 38 + we obtain by (2.6)

Pa(x>yo) < 0 for 0 < x < x0,

hence Pax(x0, _v0) > 0. Thus Pax satisfies

APax = 0 in 8, Pax > 0 on 38+. (2.18)

This implies (2.15) by the maximum principle.

By (2.14) the right-hand side of equation (2.10) is an odd function in jc; taking into

account the symmetry of 8 we obtain (2.16). From (2.15) we obtain 6x/hg + 6Pax/h0 > 0

in 8+; moreover we have, recalling (2.16), Paa = 0 on 38+. Again by the maximum

principle (2.17) follows. □

Now we have

«fa(0,0 )=fxPa(X)dX. (2.19)
JS2

On the other hand by (2.13) xPa(X) is an odd function in x. Hence recalling the

symmetry of 8

<U0,0) = 0. (2.20)

For every e sufficiently small we have (2.7), therefore

4>f(0,0) = 0. (2.21)
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By (2.16) xPaa( X) is an even function with respect to x. Hence the symmetry of implies

*..(0,0) = / xPaa(X) dX =2/ xPaa(X)dX.
J a J a*

Therefore from (2.17)

^a(0,0) = m2>0. (2.22)

We want to compute

*™(o,o) = f [xPjx-0,0)- pa(x-,o,o)]dx.
Ja

Differentiating (2.8) and (2.9) with respect to e we get

APea = 0 in 12, Pra = 0 on 3fi,

thus Pea(X; 0,0) = 0 in S2. Hence by (2.12) we have

^ea(0>0) = I2 > 0. (2.23)

Finally from (2.7) we obtain

<U0,0) = 0. (2.24)

Using Taylor's theorem we can write

$(e,a) = (1/2)a(m2a + 2l2e) + higher order terms.

We conclude that there exists a nontrivial branch of solutions starting from (0,0) with

tangent in the e, a plane given by a = - 1l2e/m2.

Physically realistic solutions occur when e > 0. In fact only in this case is the pressure

generated by the bearing positive and can sustain a loading.

3. A boundary layer problem for the nonlinear Reynolds equation of gas-lubrication. R.

C. DiPrima and J. J. Shepherd study (see [4]) with a perturbation technique the following

boundary value problem for the nonlinear Reynolds equation valid for compressible fluids

e{H3PPx)x+(H'PPv)y = e(HP)x in R, (3.1)

P = 1 in aR. (3.2)

In (3.1) e is a small positive parameter and R = {(jc, y)\ 0 < x < 1, \y\ < 1}.

In this section we try to clarify in which sense the asymptotic development in e

P{X\ e) = 1 + eP^X) + e2P2(X) + •••

constructed by DiPrima gives an approximation to the exact solution of problem (3.1),

(3.2). The interest of the problem lies in the nonlinearity of equation (3.1) coupled with the

boundary layers which occur at the leading and trailing edges x = 0 and x = 1 of the

bearing. Our discussion is valid in the case of the converging wedge bearing, i.e., when

Hx(X)< 0 in R. (3.3)

In addition to (3.3) we make the standard assumptions

H(X)> H0> 0, H(X)&Cl(R). (3.4)
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If (3.3) and (3.4) hold true it is possible to prove (see [2], [3]) that there exists a unique

solution to problem (3.1), (3.2) which satisfies

P> 1 in R. (3.5)

Define Q = P - 1. Problem (3.1), (3.2) can be rewritten as

£[//3(i + e)e,];t + [//3(i + 0)0v]v = 4^(i + e)]„ m (3.6)

Q = 0 on dR. (3.7)

Let us consider the formal development

Q(X;e)= Q0 + eQ1(X)+ •••. (3.8)

Substituting (3.8) in (3.6) and equating terms of equal power in e, we obtain Q0 = 0 and

{H'Qly)y = Hx. (3.9)

The solution of (3.9) which satisfies the boundary condition Q{(x, ± 1) = 0 is given by

Ql(x,y) = Fl(x,y)-^j^jrF1(x,y), (3.10)
^2\X' U

dt ds,

and

where

Fi(x,y)=f H~\x,s) f Hx(x, t)
J-\ I/O

Fi(x,y) = ( H~\x,s)ds.

It is easily seen that Qx{x, y) in general does not verify the boundary condition (3.7) on

x = 0 and x = 1. On these sides of R we expect to find, when e —> 0, boundary layers

where the pressure adjusts from the value 1 on the boundary to the value given by

1 + e.Qv We want to make precise this rather vague remark.

First of all we recall the following Poincare like

Lemma 3.1. If u e H1(R) and u = 0 on the side x = 0 then

II"IU2 < C\\ux\\L>.

Similar results hold true if u vanishes on the other sides of R.

Let us consider the problem

e{H\)x+(H\.)y = 0 in R, (e > 0) (3.11)

<P = Ql on 3R. (3.12)
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We have the following

Lemma 3.2. When e -» 0 the solution cf>(X; e) of (3.11), (3.12) gives a boundary layer of

width e° (0 < a < 1) near x = 0, x = 1. More precisely the following estimates hold true:

eaf tfdX^C, f tf.dX Ce1"", (3.13)
JR, Rr

f <t>2dX < Ctl~a, (3.14)
R,

where Rt = {(x, y) e R\ ea < x < 1 - e"}.

Proof. Suppose f(x) e C2[0,1], f(x) = 1 when ea < x < 1 - ea and 0 < f(;c) < 1 in

[0,1], Moreover let ?(0) = f'(0) = f(l) = TU) = 0. By (3.11) we get

£[tf3a<#>)x]x + [//3(^)v] v = e{H%<t>)x + e^xH\. (3.15)

Let us multiply (3.15) by £<j> and integrate by parts over R. Recalling that <f>(x, +1) = 0

we have

ef H\$<S>)\dX + ( H3(&)],dX= e [ H3fy2dX. (3.16)
JR JR JR

Define Se = R - Re. Applying the maximum principle (3.11) yields

0 < <[> < maxC?,. (3-17)
a R

From (3.16) and (3.17) it follows

ef H^dX+f H3<j>2dX < Me f ^dX, (3.18)
JR, JR, JS,

where M = H? max]RQl. Consider a regular function A(z), z £ [0,1] such that A(0) = 0,

A'(0) = 0, A(l) = 1, and A'(l) = 0. Let
oo

(A'(z))2= £ ckzk.

k = 2

Set jc = eaz and define ^(jc) = h(x/ea). Whence

OO k
2 v- X*(roor = e k „a(2 + k) "

k — 2 e

Choose in (3.16) £(x) in the following way

I£(x), 0 < jc < ea

£(*)={l, ea^x<l-ea

U(l-x), l-ea<x<l.

From (3.18) we obtain

ef H3<t>2xdX+f H3<f>ldX^ 4M£r° {t\x))2 dx < Ce1"", (3.19)
JR. JR, J0
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where C does not depend on e. From (3.19) we arrive to (3.13). The estimate (3.14) is a

consequence of Lemma 3.1. □

Since the unique solution of problem (3.1), (3.2) satisfies P ^ 1 we can make the

substitution U = P2. We get from (3.1)

e(H3Ux)x +(H3Uv)v = 2e(H}fu)x in R, (7=1 on dR (3.20)

and U S* 1 in R.

Lemma 3.3. Let U(X) be the unique solution of (3.20); the following estimates hold true:

||t/Ji2<Ce, \\UX\\L^ Ce1/2, ||l/- l||i.2 < Ce (3.21)

\\U,y\\Li < Ce, ||1/J|l2< Ce1/2, ||14Jl2<C. (3.22)

In particular if H does not depend on y we have

||t/xJt2<C£, ll^cxlli2 ̂ Ce1/2.(1) (3.23)

Proof. Multiplying (3.20) by U — 1 and integrating by parts over R we get

11^111' + 7IIuvto < c(\\Ux\y +\\UX\\Y>2), (3.24)

where use has been made of the inequality ||£/ - 1|| Li < C||t/J|L2. Whence

l|t/|U2 < C, fll/J^C, \Uy\Ll < Ce1/2. (3.25)

Again from (3.20) we have

ef H^UX dX + ( H3Uv2dX=-2e[ \HjU + ~^=H W - 1) dX.
JR JR JR \ 2\jU I

Since U > 1 and ||t/ — 1|| Li < C||C/y|| L2, we obtain using (3.25)

e\\Ux\\2Ll+\\UytL2 < Ce(\\U\\Y>2 +||I/Jt2)||l/j£2 < Ce\\Uy\\L2-

This gives (3.21). From (3.20) we get

,U„ + V„ - -3- 3%-U, + + (3.26)

Let us multiply both sides by Uyv. After two integrations by parts, recalling that

Uxx(x, +1) = Uv(0, y) = Uv( 1, y) = 0, there results

II2 , ll„ II2 „     II , -llrrll1/2
y I

Whence by (3.21)

e||tu;2 +\\UvJl2 < c(e||I/J£> + ||£/Jl2 + e\\U\\Y*2)\\UjL2. (3.27)

£ll^xvlli,2 II Uyy II [2 ̂  Ce || Uyy || £2 .
Thus (3.22) j and (3.22)2 follow. In a similar fashion multiplying (3.26) by \JXX we get

e\\Uxx\\[>+\\Uxy\\2L2^Ce\\Uxx\\L2. (3.28)

(' )The various C's denote constants generally different which do not depend on e.
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Therefore (3.22)3 holds true. When Hv = 0 the second term on the right-hand side of

(3.27) disappears and instead of (3.28) we have the better estimate

elllUi.* + WJ* < Ce3/2||l/J|,2. (3.29)

This gives (3.23). □

Since ||U — 1||L« < ||t/xv,|lt2 from (3.22)2 we infer

||t/- l||t- < Ce1/2. (3.30)

Moreover when Hv = 0, (3.23)x implies

||l/- 1||/.- < Ce. (3.31)

Since U = (1 + Q)2, similar estimates can be derived for Q. Recalling that Q ^ 0 and

Qx = 1UJ{\ + Q), Qy = 2Uv/(l + Q)

we have from (3.21)j and (3.21)2

\\QjLi* Ce1/2, ||<2.J|L2 < Ce. (3.32)

Moreover ||(2llt« < \\U - 1||£_<=, thus by (3.30)

110lit- < Ce1/2 (3.33)

and when Hv = 0,

IIQlit- < Ce. (3.34)
We are now in a position to give the main result of this section.

Theorem 3.1. Let Q{X\ e) be the unique solution of problem (3.6), (3.7) and Q^X) the

solution to the limit problem (3.9) given by (3.10). If (j>(X;e) is the solution of the

boundary layer equation (3.11), (3.12) and W — Q — e(Ql — <p), then

||Wv||L2 < Ce3/2, \\WX\\L2 < Ce, ||W||t2 < Ce3/2. (3.35)

Moreover when Hv = 0

\\WV\\0 < Ce2, \\Wx\\L2 Ce, ||*F||t> < Ce2. (3.36)

Proof. From (3.6), (3.9), and (3.11) we obtain by difference

e{H'lVx)x+{H3Wy)y = e(HQ)x-e{HiQQx)x-{H'QQ¥)y-e2{H'Qlx)x.

(3.37)

Let us multiply (3.37) by W and integrate by parts over R. Since W = 0 on dR we get

4Wx\\2l> < CefllCMI^Ht' + ellGlU-llGJt'Mt'

+ H0llt»||(2,IL2||^|lt2 + e2||^||t2).

Thus by (3.32) and (3.33)

*\\WxfLi +11 Wy \\2l1 < c(e2|| Wx ||t2 + e3/2|| ||l2). (3.38)
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Therefore (3.35) holds true. When Hv = 0, instead of (3.38) we have

4Wx\fLz +\\Wv\\2l2 < Ce2(\\Wx\\L> +\\Wy\\L2) (3-39)

and (3.36) follows. □

A regular perturbation problem useful in the applications in which the boundary layer

does not arise is the following

V •[//3(Ar;e)Pv/>] = [#(*; e)P]x in 12 (3.40)

P = 1 on 912. (3.41)

Now 12 is an open, arbitrary and bounded subset of R2 with a regular boundary 912.

Suppose

H(X\e) = H0 + eh(X), H0> 0.

If e is sufficiently small, h{X) e C'(12) and hx < 0, problem (3.40), (3.41) has one and

only one solution P( X\ e)> 1 in 12 ([2], [3]).

Let us consider the asymptotic development

P(X\ e) = P0 + eP^X) + ■■■ .

By direct substitution in (3.40) we find P0 = 1 whereas Px(X) is given by the solution of

problem

V ■(H^vPl) = (hx + H0P1)X in 12, (3.42)

Px = 0 on 912. (3.43)

We have the following result of approximation.

Theorem 3.2. If P(X,e) and P^X) are respectively the solutions of (3.40), (3.41) and

(3.42), (3.43) then

||P-(1 + e/,i)||#f. < Ce2. (3.44)

Proof. Let Q — P — 1 and W = Q — eP1. From (3.40) and (3.42) we get by difference

with an easy calculation

IIV W ||z.2 < C(e||vellL2 +IIGIU-||V0||lO-

I f we prove

I|v0||t2 < Ce, ||e|U-<Ce, (3.45)

(3.44) will follow. Define <f> = P2 — 1. Recalling that P > 1 in £2, problem (3.40), (3.41)

becomes

V •[(//„ + e/z)3V«^] = 2[(//0 + eh)^ + 1 \x in 12, (3.46)

<f> = 0 on 812. (3.47)

From (3.46) we deduce ||V<J>||L2 < C. Hence 2hx{§ + 1)1/2 is bounded in the Lp norm

independently of e. Moreover because <f> > 0 in 12 we have 2(H0 + eh)/(\ + <J>)1/2 < C

where again C does not depend on e. Thus by a well-known result (see [6] and [7], page
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203) the solution to problem (3.46), (3.47) satisfies

IklU^Ce. (3.48)
From (3.48) we get easily (3.45). This completes the proof. □

4. Existence and uniqueness for a new boundary value problem of the theory of

lubrication. In an interesting paper [9] A. B. Tayler introduces a modified Reynolds

equation to describe the impregnation of a sheet of absorbent material (usually paper)

with a viscous fluid. The paper is fed through a couple of rollers rotating in opposite sense

using the fluid as a lubricant. A rapid impregnation is produced by the high pressure

developed in the gap.

Since the paper is compressible, the film thickness is no longer a given function, but

depends on the pressure. Tayler proposes the simple relation

H(X,P) = h(X) + cP(X), (4.1)

where c is an elastic constant. Moreover the paper is porous. Thus a new term of the form

kP (k a porosity coefficient) must be added on the right-hand side of equation (1.1). We

obtain a boundary value problem for the modified Reynolds equation which, apart from

inessential constants, reads

X7 {(h + PfvP] = (h + P)x +P in £2, (4.2)

P = 0 on 3£2. (4.3)

Problem (4.2), (4.3) does not seem to have been studied before.

Lemma 4.1. Let h(x) e C2(£2), h(X) > h0 > 0 and hx < 0 in £2. If P(X) e C2(£2) is a

solution to problem (4.2), (4.3) then

P(X)> 0 on £2. (4.4)

Proof. We first prove the weaker result P + h > 0 in £2. Define 4>(X) = P(X) + h(X)

and suppose by contradiction <p( X) = 0. Since <p = h on 9S2, we have X — (x, y) e £2.

Let X be such that <p(X) > 0 when X e A = {(x, y) e £2, x* < x < x, y = y} with

(x*, y) e 8S2. If X e A, we can write

4>2AP + 3<t>v<t> ■ VP - P/<t> = 4>y<t>-

Near X we have P(x, y) < 0 because P(X) = -h(X) < 0. Hence recalling P e C2(£2)

we get

liminf (<^>2AP + 3<pv<p ■ VP - P/4>) > - oo.
XeA,X-> x-

On the other hand since log<;>(x, y) -> -oo when jc -» x~ we have

liminf ^7—= liminf (log <f>(x, y)) x = -00.

It follows

P + h > 0 in £2. (4.5)
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Suppose now P( X) = inffl P < 0, X e 12. Setting X = X in (4.2) we get, since hx< 0

and VP(X) = 0,

(h + P)3\P = hx + P < 0.

But by (4.5) we have (h + />)3AP > 0. This contradiction completes the proof. □

Our result of existence and uniqueness is stated in the following

Theorem 4.1. If h(x) satisfies the hypotheses of Lemma 4.1, there exists one and only one

solution P{ X) e C2a(l2) of problem (4.2), (4.3).

Proof. Uniqueness. Suppose Px( X) and P2( X) are both C2-solutions of (4.2), (4.3).

Define Wi = (i> + h)4, i = 1,2. We have from (4.2)

AW: = 4v \W^4vh) +{Wi1/4)x + W,1/4 - h in 12, (4.6)

W, = h4 on 312. (4.7)

From (4.6) we obtain by difference and integration by parts

( v(Wi - W2) -v<t>dX+ 4 ( (w\/4 - Wy4)<j>dX
° ° (4.8)

= 4 I (w*/4 - W23/4)vh ■ v<t>dX + 4 f (W?/A - W2/4)<f>xdX,
Ja Ja

for all <t> e H&Q). Let W = Wx- W2 and set <j> = (W - e)+/W, e > 0 in (4.8). We get

ef ^rdx+4J W~w2l/4)dx
JA W JA

= 4 ef
J A

Wl/4 _ Wl/4

1 - dX
W

+ 4ef (W?/4 - W23/4)vh ■ ̂  dX + 4ef (W//4 - W21/4)-j^dX,

(4.9)

where A = { X e 12; Pf > e}. In Awe have by Lemma 4.1, Wx > W2 > h%. Applying the

mean-value theorem it follows from (4.9)

VW |2 f W
ax

(4.10)

e ( 1 1 dX + [ ~j^dX
JA W J A |3/4

dX , f Vh VfV f Wx
dX.

c ax „ r vn VW r
= e —— +3 e —— • —— dX+e

Ja £3/4 K n1/4 W JA

Since £ > h0, -q > h0 and

W ,v n f dX
JA |3/4 > ' jA £3/4

we get from (4.10), using the Cauchy-Schwartz inequality

,2 \ 1/2

f c If 1 -m
J A W \ •> A W I
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where the constant C does not depend on e. It follows

f IZlLL dX<c. (4.11)
J,\ IV2

By the Poincare inequality we have

r \vW\ r I W r I
/A^^-/Jv,ogT dx>ci l041 +

(w- e)
2

dX.

Combine this and the previous inequality and then let e -> 0. If A has a positive measure

when e — 0, we arrive to a contradiction with (4.11); thus W+= 0. In a similar way we

prove W = 0.

Existence. Define the following sequence of linear problems: P0 = 0,

Pe//,}(«), V -[(h +Pn_1)3vPn\ = (h +P„)x +Pn in fi. (4.12)

By the results of the linear theory, {/^(A')} is well-defined. Moreover P„(X) > 0 in by

the maximum principle since hx < 0. According to a theorem of G. Stampacchia (see [8]

and [6]) the following estimate holds true

llPj,,!., < C, (\ < p < oo) (4.13)

where the constant C depends only on the lower bound of (h + Z3,, x)3, £2, h(X), and

h v( X). Since

(h + Pn_xf

we get from (4.13)

IKIL» < c,
where C does not depend on n. Hence (h + T5,,_ j)3 is also bounded from above

independently of n. We infer, using the usual Lp estimate [7],

II P/1 II H2-!' ^ C■

Then we can extract from {i°„} a subsequence weakly convergent to a function P(X) g

Hl p({2). Passing to the limit for n -» oo in (4.12) we complete the proof. □
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