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UNSYMMETRIC DEFORMATION OF THE CIRCULAR MEMBRANE*

By

R. W. DICKEY
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Abstract. If the Foppl equations for the deformation of a plane circular membrane

under normal pressure are linearized about the radially symmetric solution, it is shown

that the resulting linear theory has infinitely many nontrivial angle-dependent solutions. If

the prescribed normal pressure and the prescribed (angle-independent) boundary stress

are allowed to approach zero in the appropriate way, these nontrivial solutions are

retained. Thus the linear theory indicates that, in addition to the solution with radial

symmetry, there are infinitely many angle-dependent solutions for arbitrarily small values

of the prescribed pressure and prescribed boundary stress.

1. Introduction. In 1907 Foppl [1] suggested an approximate theory for the deformation

of plane membranes under normal pressure. In polar coordinates these equations can be

written

<t>eewrr - 2<t>grw9r + <t>rrwee , <[>rwrr wr<t>rr ,   +— + — (">)

2<t>ewer = P

rl r3 r4 h '

W0r ~ WeSWrr WrWrr _ ^ WOW0r
A<fi = E (1.1b)

r2 r r2 /• 4

where <j> is the Airy stress function, w is the normal displacement, P is the normal pressure,

h is the thickness of the membrane, and E is the Young's modulus. The independent

variables r and 0 are the radial and angular variables. The boundary conditions on (1.1)

are

wr(0,0) = w(l,0) = 0, (1.2)

bi0'0) = ^7^ I = °> (l-3a)
0F r = 0

<#>(1, 0) = 0, <f>r(1, 6) = S, (1.3b)
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where

. 19 9 1 92
A = — -%-r-r- H—- —-.

r 9r 9r r2 06»2

5 is a prescribed radial stress at the boundary (we assume-the radius of the undeformed

membrane is r = 1). The radial stress and circumferential stress are related to $ by (cf.

[2])

1 9ifi 9 2<f>
°r = 7 97' °e = 9^'

If P is independent of 6 it makes sense to look for solutions which are independent of 8.

If <f> and w are independent of 6 the Eqs. (1.1) reduce to

£(2f)-"T- <14a)
1 d d M Id d\ -E dw d 2,

U = — (l.4b)
r r dr rfr2r drr dr / \ r drK dr / ^ r dr

In the constant pressure case this problem has been studied in detail (cf. [3,4,5,6]). In

these papers it is shown that there is a solution which is independent of 0 when S > 0 and

in fact there are 6 independent solutions for some values of S < 0 (cf. [6]). Even so it

seems plausible to expect that in some circumstances there may also be solutions which

depend on 6. Indeed it is likely that in the presence of circumferential compressions the

solution which is independent of 6 may be physically unstable ([cf. [4, 11]).

2. A special solution. Although the constant pressure problem has been treated in some

detail and good qualitative and quantitative information on the solution is available (cf.

[4]) an explicit solution is not known. We will consider the zero pressure case as a limiting

situation and there is no apparent reason to begin with the constant pressure state. It is

more convenient to begin with a problem which we can solve explicitly.

It is a consequence of (1.4a) and the boundary conditions that

(2.1)

In addition (1.4b) can be integrated once to obtain

dt.

(2.2)
d 1 d d(f> E

V—r~ = --z-W,
2

dr r dr dr 2

Introducing the radial stress ar as the dependent variable (cf. (1.5)), (2.1) and (2.2) can be

written

dw

dr rirur jq
(2-3)

(2.4)
d \ d 2 _ E I dw\

dr r drr °r 2 r\dr)
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It is easily verified that the following functions are solutions of (2.3) and (2.4),

ar = A1 — B2r2, (2.5)

ae = A2 - 3B2r2, (2.6)

" = ^=-(1 -r2), (2.7)

P = ^(A2 - 2B2r2), (2.8)
vE

where A and B are arbitrary constants. Since we would like the radial stress to be

nonnegative throughout the membrane we will require that

A2 - B2> 0. (2.9)

The circumferential stress may be compressive in a portion of the membrane depending

on the relative values of A and B. The boundary condition (1.3b) requires that

A2 - B2 = S. (2.10)

3. The linearized problem. In order to determine whether 6 dependent solutions

bifurcate from the exact solution described in §2, the Eqs. (1.1) will be linearized about

the solutions (2.5) and (2.7). The function <p is determined from (2.5) to be

A2r2 B2r4 ,,
t> = —2 5-- (3-1)

We look for solutions of (1.1) of the form

Hr,e) = ̂ f-^ + eHr,0), (3.2a)

w(r,6) = ^L(l - r2) + ecc(r,6). (3.2b)
v£

e is to be a small parameter and we shall only keep terms which are linear in e. The

boundary conditions on \p(r, 6) and to(r, 6) are

£0,(0,0) = «(M) = 0, (3.3a)

*r(O,fl) = !;A*(O,0) = O, (3.3b)

*(l,0) = *r(M) = 0. (3.3c)

Placing (3.2) in Eqs. (1.1) and keeping only the linear terms, it may be shown that the

linearized equations for <f>(/\ 6) and u(r, 6) are

(A2 - B2r2)urr +(A2 - 3B2r2)— +(A2 - 3B2r2)-^- (3-4a)
r r2

- 4B I / + 4. I-WV" ~

ur , uee
A^ = 42?^£ + ^ + ^ . (3.4b)
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The 6 dependence in Eqs. (3.4) may be removed by assuming solutions of the form

to(r, 6) = co(r)cosnd, \p(r, 6) = \p(r)cosnO. (3-5)

The Eqs. (3.4) become ordinary differential equations for the determination of w(r) and

\p(r). In particular

(A2 - B2r2)(j>" +(A2 - 3B2r2) — - n2(A2 - 3B2r2)^ (3.6a)
r

4 B \L>' 2x1/— U" +
{E \ r r2

A2^ = 4 ByfE^" + y- n2^ (3.6b)

where to' = d/dr and

. 1 d d n2 , .
A = —rr~.  . (3.7)

" r dr dr v '

The boundary conditions on w(r) and \J/(r) are

co'(0) = <o(l) = 0, (3.8a)

f(0) = -^AJ | =0, (3.8b)
"r r = 0

*(1) = *'(1) = 0. (3.8c)

The Eqs. (3.6) can be reduced to a single equation for the determination of w. The Eqs.

(3.6) may be rewritten

/J2A„w - B2rU2^u" + ~ 3"~f) = ^3"9a^

A2> = 4B/EAnu. (3.9b)

Equation (3.9b) may be simplified by noting that

A„(A„i/> — 4B/Eoi) = 0 (3.10)

so that (cf. (3.7))

A„\p = 4B\[Eu + Cxr" + C2/r". (3.11)

The boundary condition (3.8) implies C2 = 0. It is also the case that if n = 1 then C\ = 0

(cf. (3.8)). However, as we shall see below, n = 1 is not a possibility.

It is convenient to solve (3.11) for \p. This is easily done by introducing the Green's

function

g(r,T) =

J_T« + i(r« - r~"),0 < t < r,

J_#.»(T»+1 _ T-""i),r < r<l,
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so that (3.11) can be rewritten

i(r) = C g(r> t)(4B\/£u(t) + Cjt") dr. (3.13)
Jo

The function ip(r) satisfies the conditions \p'(0) = xp(l) = 0. The last condition ip'( 1) = 0

requires

f1 t"+1UB]/Eu(t) + Qt") dr = 0. (3.14)
Jo

This result is obtained by differentiating (3.13) and evaluating the result at r — 1. In any

case (3.14) implies that

C\ = -%B{E (n + 1) f1 t" + 1w(t) dr. (3.15)
•'o

The Eqs. (3.9) can be reduced to a single equation for the determination of co by

combining (3.9a) and (3.11) to find

^l2A„w - B2r2[^u" + — 3n2u/r2J = 16B2u + ^S'1 r"

where C1 is given by (3.15) and w is to satisfy the boundary conditions (3.8a).

The parameters A and B occurring in (3.16) can be removed by introducing the change

of dependent variable

P = Br/A. (3.17)

Equation (3.16) becomes

(1 - p2)ii +(1 - 3p2)^-{n2 +(16 - 3n2)P2)~2 = KlP" (3.18)P pz

(• = d/dp) where

K'~W 5^c" (3,9)

Combining (3.19) with (3.15) we find

K, = -32(n + 1)|^ f*/A t" + 1w(t) dr (3.20)

where u(p) is the solution of (3.18). The boundary conditions on (3.18) are

co(0) = ai(B/A) = 0. (3.21)

If n — 1, so that — 0 (cf. (3.19)), it is easily verified that the only solution of

(3.18) satisfying (3.21) is to = 0. Thus n = 1 is not a possibility.

4. Solution of the linearized problem. It remains to decide whether Eq. (3.18) with

boundary conditions (3.21) has nontrivial solutions. For this purpose it is convenient to

transform the equation into a more tractable form. Introduce the change of variable

/ = P2. (4.1)
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Equation (3.18) becomes

,(1 - ,K +(1 - VW -(£ + - f--" (4.2)

(' = d/dt). In terms of the new independent variable, Kx becomes

Kx = -16(n + 1)(|j2" + 2/o(B/A)2 t"/2co(t) dr, (4.3)

where u(t) is the solution of (4.2). The boundary conditions on (4.2) are

w'(0) = u((B/A)2) = 0. (4.4)

In order to further simplify our problem, introduce the change of dependent variable

co = tn/2V. (4.5)

We obtain a new equation for V(t),

?(1 - t)V" +((« + 1) -(« + 2)t)V' + "2 ~2" ~ 8 V= (4.6)

where

K, - -16(« + d7 <4J»

and the boundary conditions are: V(t) should be bounded at t = 0 and

V((B/A)2) = 0. (4.8)

The solution of (4.6) which is bounded at t = 0 is

V(t) = CF(a,(i,y,t) + —r^   (4.9)
2 — n — 8)

where F(a, /?, y, t) is the hypergeometric function (cf. [7]) with

n + 1 + \/3 y/n2 - 5 n n + 1-/3 - 5 ,A ^
« = 2 ' ^ = 2 ' Y = " '''

and C and are to be determined from (4.7) and (4.8). In the case n = 2 the parameters

a and /? in (4.10) are complex. However, since they are conjugates of each other,

F(a, /?, y, t) is real even in this case (cf. [7]). For some purposes it is convenient to rewrite

(4.6) in the form

_ ,„+2)dv + »2-»-*tnV=tnKi/4 (4.H)

In order to determine Kl multiply (4.9) by t" and integrate from t = 0 to t = (B/A)2.

Thus

((B/A>2 tnVdt = C (lB/A)2 tnF(a, P, y, t) dt — ——   /'<s/-4>2 (4.12)

Jo Jo n — n — 8 Jo
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Equivalently

/"(b/a)2 t„y^ dt = C(n2 - n - 8) r(B/A)2 p y> ̂  d[ (4 13)

Jo n(n - 1) J0

so that

   <4i4»

Combining (4.14) with (4.9) we find

V(t) = CF(a, P, y, t) - Jl*/A? T»(«, /}, y, ,) </T. (4.15)

It is a consequence of (4.15) that Eq. (3.18) with boundary conditions (3.21) has a

nontrivial solution iff

F(a, fi, y, (B/A)2) - ^ 0. t) = 0. (4.16)

The relation (4.16) may be simplified by noting that since F(a, /?, y, t) is the solution of

d , „^.T\du n2 — n — 8 „ „
— (/"+1 - t"+2)— +   t"u = 0 (4.17)
dtv ' dt 2 v '

satisfying u(0) = 1 (u analytic at t = 0), we find by integrating from / = 0 to t = (B/A)2

that

J<B/A)1 t"F(a, 0, y, t) ±^)2" + 2(! - (5/^)2)f(«- i», Y, (^)2)/5| [L-{B/A))f[a,p,y,(B/

(4.18)

Thus (4.16) can be written

H,(("/A)2) - 1 + , 1.6'"^'> 8,(1 - 0.
n(n-\)(n -n- 8) F{ol, p,y,(B/A)2)

(4.19)

It remains to decide whether Eq. (4.19) has solutions for 0 < B/A < 1.

The function Hn(t) can be evaluated explicitly at / = 0 and t = 1. F(a, P, y, t) is an

analytic function of t for |r| < 1 and F(a, P, y, 0) = 1. Therefore Eq. (4.17) implies that

p<«-^'0>-25(777f (4'20)
so that

lim H (t) = 1 - 8 (4.21)
r-o n\n - 1)

In order to study the behavior of Hn(t) as t -» 1 we note that Eq. (4.17) can be written

/(I - t)u" +((« + 1) -(n + 2)0"' + "2 ~ ~ 8m = 0. (4.22)
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The equation has a regular singular point (cf. [8]) at t = 1 and the indicial equation at

t = 1 is simply

0. (4.23)r 2

Thus the general solution of (4.22) valid for 0 < 1 - t < 1 is

u{t) = CMt) + C2u2(t), (4.24)

where

00

"i(0 = 1 + E «,(' - !)'' (4.25a)
7 = 1

00

u2(t) = Mj(0ln(l - t) + E bj(t - l)J. (4.25b)
i-1

The constants are determined from the fact that u(t) = F(a, /?, /}, t). However, as we shall

see, an explicit value of Cl and C2 will not be required for our purposes. In any case

u^t) = 1 + 0(\t - 1|), (4.26a)

«2(0 = ln(l-r) + O(|/-l|), (4.26b)

so that

u(t) = C\ + C2ln(l - t) + 0{\t - 1|). (4.27)

The functions ux(t) and u2(t) may be differentiated to show

u[(t) = flj + 0{\t - 1|), (4.28a)

u'2(t) = + fllln(l - t) + bx + 0(\t - 1|). (4.28b)

We conclude that

Equivalently

so that

(1 ~t)u'(t)= -1 + 0{\t- 1|). (4.29)

lim ^= 0, (4.30)
(-1 u{t)

lim Hn(t) = 1. (4.31)
t~* 1

It is a consequence of (4.21) that Hn(0) < 0 when n = 2 or n = 3. This fact combined

with (4.31) implies that (4.19) has at least one solution when n = 2 or n = 3. Equation

(4.19) was solved numerically (F{a, /i, y, t) was obtained by solving Eq. (4.17) using a

finite difference scheme). The numerical results indicate that in both cases there is exactly

one solution. In particular the solution of H2(t) = 0 is t ~ .99 and H3(t) = 0 has the

solution t ~ .95.

If n > 4 then Hn{0) > 0 and the above argument cannot be used. Nonetheless it is

possible to estimate the number of zeros of Hn(t). Define a function E(q) to be the

integer part of q if q > 0 and E(q) = 0 if q < 0.
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Theorem. If n > 4 the function Hn(t) has at least

£((v/3\/«2 - 5 - n + l)/2)

zeros in the interval 0 < t < 1.

Proof. Hn(t) has the same zeros as

Jn(t) = F(a, p,y,t)+ j8' Y'?) (432)
- 1)(« - « - 8)

(cf. (4.19)). Assume F(a, (i, y, t) has zeros at 0 < tx < t2 < ■■■ < < 1. F'(a,/3,y,t)

alternates sign at successive zeros of F(a, /?, y, /). It follows that ■/„(?!) < 0, J„(t2) > 0, 

Therefore Jn(t) has at least one zero between each zero of F(a, (i, y, t). In addition, since

J„(0) > 0 for n > 4 (cf. (4.20)), there is at least one zero between t = 0 and t = tj. In any

case there are at least as many solutions of Hn(t) = 0 as there are zeros of F(a, /?, y, t) in

the interval 0 < f < 1. The number of zeros of F(a, /?, y, t) in the interval has been found

by Klein [9] and Van Vleck [10]. We quote the result in the form obtained by Van Vleck.

Theorem. Assume a, /?, y are real and 1 - y < 0. Let X1 = |1 - y|, X2 = |y - a - jS|,

A3 = |a - (}\. The number of zeros of F(a, /}, y, t) between 0 and 1 inclusive is E((A3 -

A2 - A, + l)/2).

Combining this result with (4.10) we obtain the result. Q.E.D.

It is a consequence of the theorem that H4(t) and Hs(t) have at least one zero and

H6(t) and H-,{t) have at least two zeros. They were found numerically to be t ~ .89 when

n = 4, t = .82 when n = 5, t ~ .76 and t ~ .99 when n = 6, and t ~ .72 and t ~ .95 when

n = 7. In any case the above results guarantee that Eq. (3.18) with boundary conditions

(3.21) has at least one nontrivial solution when n = 2 or n = 3 and at least E((t/3 Vn2 = 5

— n + l)/2) nontrivial solutions when n > 4.

Denote the zeros of Hn(t) by hnj. If we consider the situation where A1 -» 0 and

B2 —> 0 but B2/A2 = hnJ we see that there are nontrivial solutions bifurcating from the

zero stress solution. There are infinitely many such solutions. We note that when n is

sufficiently large (n > 6) there is more than one solution with the same number of ripples

(i.e., with the same n). Indeed w(r, 6) may be written

w(r,0) = r"[F(a, p,y, hnjr2) - KnJ] cos nd, (4.33)

where

for n > 2.

-Ut.-h'M,jkvT,F[a ^

n{n + 1 )h„
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