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1. Introduction. This work continues a series of papers [1,2] on the bending of thin,

symmetric plates with rapidly varying thickness. Motivated by recent developments in

structural optimization [3,4,5] we have studied plates with thickness of order e varying on

a length scale of order e". There are three different regimes, depending on whether a < 1

(the case of relatively slow thickness variation), a = 1 (when the variation is on the same

scale as the mean thickness), or a > 1 (the case of relatively fast thickness variation). Each

determines an effective rigidity tensor Maf}yS relating bending moment to midplane

curvature; in the limit as e -» 0, the vertical displacement of the midplane solves an

equation of the form

dxadxp ^ Ma^s dxydxs W F'

It is natural to ask which scaling produces the most rigid structure for a given thickness

profile. The present paper addresses that issue. We shall consider the periodic case, in

which the plate thickness is Eh(xl/ea, x2/ea), where h(T\) is a periodic function of

*1 = (^i- V2) and e is a small parameter. Our models are easily extended to plates whose

microstructure varies slowly from point to point, i.e., to those with thickness eh(xl, x2\

X\/e", x/e") [1], In that case Ma/jyS varies with x = (xl5 x2). The "slow variation" is

irrelevant for comparisons of the type performed here, hence all our conclusions apply

equally well to that case.

Our analysis begins in Sec. 2 with a brief review of the three models. As a new element

we formulate a set of dual variational principles for the effective rigidities Ma)iyS. All

comparisons will be established by using suitable test fields in these variational principles.
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Section 3 is devoted to the study of plates with one family of stiffeners. This means that

the thickness variation h is a function of one variable, e.g. h = h(th). If the three-dimen-

sional elastic law is isotropic we show that

MaPysKptyS ^ ^nfty&1 afi1 yl, ̂  ^aftyS1 afi!yS ■ (l-l)

In other words a < 1 (relatively slow variation) gives the most rigid structure, and a > 1

(relatively fast variation) the least rigid. The left inequality in (1.1) is a general fact for

plates with one family of stiffeners, valid for an arbitrary three-dimensional elastic law.

The right inequality, however, is more or less specific to the isotropic case: we shall give an

example of an anisotropic material and a class of thickness variations such that >
Ma<1
™im •

For a general thickness function h(t]l,r)2) our results are less complete. Section 4

establishes the validity of (1.1) for a rather limited class of elastic laws, including the

isotropic one with Poisson's ratio zero. We expect also the left inequality of (1.1) to fail for

some choices of the thickness variation h(r\) and the three-dimensional elastic material.

Our conclusions have obvious implications for structural optimization. It is known that

plates with rapidly varying thickness may be stronger, in some design contexts, than any

conventional, slowly varying structure [3,4, 5]. However, there are at least three different

types of rapid variation, corresponding to our models a < 1, a = 1, and a > 1 respec-

tively. For maximal strength one should choose the scaling with the largest effective

rigidity quadratic form. We shall explore this issue further and report on numerical

experiments in forthcoming papers [6, 7],

Remark. We take this opportunity to correct a misprint in [1], The second equation in

(7.3) has an incorrect factor of v, and should read

(The results in Tables 1 and 2a-d of [1] were computed using the correct formula.)

2. Variational principles. For each of the cases a < 1, a = 1, and a > 1, the effective

rigidity tensor Ma/iyS was defined in [1,2] in terms of the energies of auxiliary functions

obtained by solving certain elliptic boundary value problems. For making comparisons it

is convenient to use variational characterizations of the associated quadratic form

Ma/jyStaptyS, where t = (ta/j) is any symmetric tensor. For each case a < 1, a = 1, and

a > 1, we shall give two variational principles, involving "displacement energy" and

"complementary energy" respectively. The functionals to be extremized are the same for

a < 1 and a > 1, but the one involving displacement energy differs slightly when a = 1.

Moreover, the class of admissible test fields differs in each of the three cases. These

distinctions display rather clearly the differences between the models.

We adopt the notation of [1,2]; in particular, y = (r/1, tj2) an^ V = (Vi> ̂ 2' Tfa)-

Throughout, Q will be the rescaled period cell determined by the periodic function h( ■»]),

Q = {v- hal < La/2, |tj3| <
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where Lx and L2 are the periods of h. Its upper and lower boundaries are

3 ±Q = {17: |rjJ< LJ 2, rj3 = ±/i(i|)},

with outward unit normal vector v. We shall always assume that Q is a Lipschitz domain.

The summation convention will be used, with Latin indices ranging from 1 to 3 and Greek

ones from 1 to 2. The linear strain and stress associated with a displacement ip are

+ Mi) -

The tensor Bjjk, represents Hooke's law for the three-dimensional elastic material compris-

ing the plate. It satisfies

B,jki = Bjjki = B,,ik ~ Bkup (2-1)

in addition we require

Ba/3y 3 = 0 an<^ ^a333 =

so that the horizontal planes are planes of elastic symmetry. We assume that the form

B,jkie,jeki is positive definite on symmetric tensors (e,7). The inverse of Hooke's law will

be denoted by Aijkl:

^ij = ^ijkl^kl ** Eij = Ajjki^kl-

As in [2], I"" denotes the displacement field

1 , 1 2B33yS 32 (1 \]

-'3333 u'lyu,l8

Its key role is due to the fact that it produces the linear stress

2^(1°*) = -ViKeys, 23y(r^) = 0, (2.2)

with

BafiyS = Bc>i8yS ~ ( ^a/333 ^yS33/^3333 ) ■

Finally, for any symmetric tensor t = (/Q/S) we define T' = Ta^tap.

2A. The a = 1 model. Our variational principles for Ma/3ySta^tyS express it first as the

minimum of an elastic energy functional over a suitable class of displacements ip =

(\p1, ip2, *p3), and then as the maximum of the corresponding complementary energy over

a suitable class of stress fields 2 = (2,- ■).

The space of admissible displacements for a = 1 consists of all \p which have finite

strain energy and are periodic in tj with period L:

+ e Va=l if f Z (>p)E (4,) dn < 00 and
jq - - -

ipiv! + Lx, rj2, 1J3) = t?2 + L2, tj3) = yp(r]i, ij2, tj3).
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The space Wa = l of admissible stress fields contains periodic, symmetric tensors 2

which have finite energy and are equilibrated:

2 e W"~x if ( |2| d-q < oo, div 2 = 0,
JQ

2 • v = 0 on 9±(), 2,y = 2J(, and

2(rji + Lu tj2, r/3) = 2(tj15 tj2 + L2, tj3) = tj2, ij3).

The dual variational principles for M^s are these:

Manys'afitys = min f 2,.(t + I')E,.(xp + r) dn
^1^2 JQ

(®a= l) = maX tV/ (220£iV(I')-^,7A-2*/)^-
i 2 ■'e

To justify (52u=1), we recall the definition of given in [2]:

Ma/)yS = -71rf ^„(^ + r'i)E,J{fs + Ps)dV, (2.3)
1 2 •'g

where the auxiliary functions <t>a/i e Ka = 1 are chosen to satisfy

ral3)Eu{±)dV_=0 V G Va=1. (2.4)

Contracting (2.4) with one sees that the right side of is stationary at

xp = <t>a^tafj. By convexity this must be a minimum, and (2.3) leads to (5aa_1).

The dual principle (2t!a_1) is just the principle of maximum complementary energy

adapted to the present context. To prove it we consider the pointwise inequality

AijkPtPki > 2?ijEu - B.wEijEu, (2.5)

valid for any symmetric tensors 2 and E. If 2 e Wu = 1, we take E = E(((j>aP +

and note that

J Z.jE.jdv = J 2ijEu(T') dy (2.6)

by Green's formula. Therefore integration of (2.5) over Q in combination with (2.4) gives

j i J (22,jEjy(r') — At■ ^/2(^2^) Jtj < M^y\ta/3t s. (2.7)
L1L 2 Q

To complete the proof we observe that equality is achieved in (2.5) and hence in (2.7) by

2 = 2((0°^ + TaP)ta/3), which is admissible by virtue of (2.4).

2 B. The a > 1 model. For the a > 1 model, we define a modified stress 2 by ignoring

the transverse shear:

2i3(^) = 223(^) = 0, 2,..(^) = 2,..(i£) otherwise.
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The space Va>1 of admissible displacements for the a > 1 plate consists of \p for which

\p3 depends only on ?]3, and which have finite energy ignoring the shear:

\p e Va> 1 if f li-(^)EiJ(^) di] < oo,^3 = tp3(v3),
Jq

HVi + Li-li'Vs) = }P(Vi,V2 + L2,^) = ^(TJi,rj2,Tj3).

This is not a subset of Va = 1, because Ea3(xp) may not be square integrable.

The space Wa>l of admissible stresses contains fields with zero shear, equilibrated on

each slice as far as the plane stresses are concerned, and for which 233 averages to zero on

each slice.

2 e Wa>1 if 2a3 = 0, J |2|2 dr? < oo, = 0,

^■apvH = 0 on 3 ±Q, f s33 df\ = 0,2,. • = 2;, and
JQn{ 13='}

2(ijj + L2,t)2,tj3) = 2(ih,V2 + L2,v3) = 2(tj1,t)2,t)3).

It is not contained in W=1, because 233c3 may be nonzero on 3±£) and 9233/3tj3 may

not vanish.

The variational principles are similar to those for a = 1, except that we use 2 instead of

2 in (@a>1y.

{&<,>i) MZpygtaptyS = min -tK- ( %j{t + I')£/+
ipe ya>l 12 JQ

(®a> l) = max tV / (2¥i)(^)"ViA')<'!!'
ve n/"'1 JQ

The justification of (^a>1) follows the pattern of the preceding case. The definition of

'pys 1given in [2] is

KpyS = ~rr I Kit"" + + r8) dV, (2.8)^1^2 JQ

in terms of auxiliary functions e V"'1 for which

( + ra/J)£,7(^) dj)_ = 0 e Va>1. (2.9)

Q

Contraction of (2.9) with ta/j shows that \p = ^tap is stationary for (^aa>1); by convexity

it must be a minimizer. Evaluation of the integral by means of (2.8) leads to (^a>1).

The proof of (^fl>1) is parallel to that of (S>a=l). We again integrate (2.5) with

E = E((<t>aP + rafi)tap), this time using the auxiliary functions defined by (2.9). Since

2((<£°^ + TaP)ta/3) e Wa>1 (cf. [1]) and since (2.6) remains valid for 2 e Wa>l, the

argument used before leads directly to (3>a>i).
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2C. The a < 1 model. The space Va<l of admissible displacements is formed using the

ansatz of standard Kirchhoff plate theory:

^er1 if f ±(t)E(xp) d-q < 00 and
JQ

I 0x 9x1 2 B"lm 92X
± = ' ~rl3W-,X + WV3' for some

dVl' 9tj2' 2 £3333 9rja9r7/j

function x e #p2er([ -Lx/2, Lx/2] X [ -L2/2, L2/2]).

The space of admissible stresses is also formed using the Kirchhoff ansatz:

2 <= Wa<1 iff |2|2 J17 < co, 2,-3 = S3l. = 0, and 2a/S = -ij3wai8(Ti)
JQ

for somem^ = with d2(h3ma/})/dr]advp = 0

and + Lu rj2) = mafi(rh,Ti2 + L2) = wQj8(tj1,t/2).

The dual variational principles involve the same functional as for a > 1:

(^»<l) MZf>y\'apty8 = 111111 / Sy ■ ( ± + I') . ( >// + T' )
|/"<1 l'11-2 JQ

= max 7~V / (22,7^7(1') - d-n.
j£r<' 1 2 •'e

To justify (£?a<1), we reformulate slightly the definition of given in [1]:

Kpy\ = TTS + r"/J)Ej9rS + IyS) dr,, (2.10)
^1^2 JQ

where the auxiliary functions e Va<1 are chosen so that

J + T^E^) dv = 0 V^ e Va<1. (2.11)

(Formulas (3.3) and (3.2) of [1] are obtained from (2.10) and (2.11) by doing the

integrations in r)3 explicitly.) Arguing as in the other two cases, one verifies that

\p = <t>aptap is the minimizer for (^a<1), and that 2((<f>a^ + ra^)fajS) is extremal for

3. Plates with one family of stiffeners. This section investigates the case when h is a

function of a single variable; without loss of generality we shall take h = h(77x). It was

conjectured in [1] that

^a/lyS^a/l'yS ^ ^a/SyS1 afl1 yS ̂  ^afiyS1 ccfi1 yS (3-1)

for any isotropic material. The validity of this assertion is a consequence of Propositions

3.1 and 3.3. The left inequality is rather easy, and it actually holds for any choice of the

elastic law. The right side is more difficult, and our proof applies only to the isotropic

case. Proposition 3.4 gives a simple example of an anisotropic material and a thickness

variation h(ijj) for which the right of (3.1) is false.
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If M and N are rigidity tensors, we shall say that M < N whenever Ma/iyStalityS <

Nnfjyf)ta/jtyS for all symmetric second order tensors t.

Proposition 3.1. Ifh = h(ri1) then Ma>l < M"=l for every choice of the elastic law Bijkl.

Proof. When h = hi/q^ the auxiliary functions <f>"^ for the a > 1 model can be written

explicitly (see [1] for the isotropic case). One finds that 233(<#>a^) = 0, and therefore that

the extremal 2((<#>°^ + r°^)faj8) for (&a>l) is in Wa=1. Use of this stress in the variational

principle (@)a=l) yields the desired conclusion. •

Comparing A/""1 and Ma<1 is more subtle. As a first, relatively easy step we compare
Ma=l anH Ma<l1212 dnu 1212'

Proposition 3.2. Ifh = h(ri1) and the elastic law satisfies Bul2 = 0 then

Proof. Under this hypothesis the auxiliary function $12 for a < 1 is equal to (0,0,0).

Since 2a3($12 + T12) = 0, use of $12 as a test function in (3ga=1) establishes the proposi-

tion. •

We recall that the elastic law Bijk/is called isotropic if

Ban = A + 2 n,

Biijj ^ ji

BijU = ' ■* j

(no summation convention), with all other Bijkl equal to zero (except those determined by

the symmetries (2.1)). The parameters A and \i are the Lame coefficients, given in terms of

Poisson's ratio 0 < v < | and Young's modulus E > 0 by

Ev E
A =  —: —- , fx =

(1 + p)(l - 2v) ' r 2(1 + v) '

For an isotropic elastic law and h = h(ih) it is not difficult to compute that

(K7,S ~ K7yS)'a/j'yS

(Mlm ^nn )(?n + vt22) + 4(My2\2 M"2u)t
(3.2)

This relation arises because the auxiliary functions <#>n and <f>22 are linearly dependent, cf.

[1], Since M"2l\ < ^nn by Proposition 3.2, we see that M"~l < Ma<l for an isotropic

law if and only if This last relation will be proved by projecting the

minimizer of (3>a = x) into Wa<1, then using the result as a test field for (3a<1). The

relevant projection is defined by the following lemma.

Lemma 3.1. Ifh e C1 and 2""1 is an element of Wa = 1, then the field defined by

= f T|3A-3(i,)/* 2^(1,,-M ^ ' (3.3)

2n<1 = = 0

is contained in Wa<1.

Proof. Since 2^* = -y3ma/j(r\) with

-3.-*, , rh
map = —h 3(v)j_h
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it clearly suffices to prove that

<3-4>

We may assume that is odd in tj3, since the integral vanishes for its even part. A

simple calculation gives that

rh

dVo(f'0 \ J -h

Since div 2" = 1 = 0 and 2""1 • v = 0 on d + Q this last expression equals

~f\ ^2:3-1(t|,0«^ + 22^1(h ,h)h^-

= j"h s-Hr), i) dt - h)h + 22-Hti, h)h£j-

fh

'-h

Thus to verify (3.4) we must show that

Calculating as before we obtain

/* 2^1(t1,0^-
J -U

4(/_\ «)««)- 0 « * axjr'U i.);3*

-22S3-1(i,,A) + 2223-1(ii,/l)^r = 0,

Ma

dh

9l?a

precisely the desired conclusion. •

Proposition 3.3. If h = h{ijj) e C1 ««<:/ //ze elastic law is isotropic then Ma = 1 < Ma<l.

Proof. Choosing ta/3 as fn = 1, f12 = r22 = 0, let 2""1 be the maximizer for (0a = 1), and

consider its projection 2U<1 defined by (3.3). It is not hard to see that

/ 2f/1£,7(r11) dV_ = f 2f/1£,v(r11) dVJ (3.5)

the verification uses (3.3) and the relation

/ 2£,= 1i)3 di\ = 0,JQ

which follows from (2.4) with ip = (0,0, ?i}3). We shall show that

/ A^f^'di,< / A^^T'dV- (3.6)
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Using this, (3.5), (3a=1), and (3a<1),

Mini1 = TTj (22f"l£/y(lU) - dV
Isll^2 JQ

V/ (zsr/^-d11) - dV < m-1.
1-^2 •'O^1^2 ■'C

As explained earlier, this inequality suffices to establish that Ma = l < Ma<1.

The proof of (3.6) relies heavily on the form of h and the elastic law. Since h depends

only on rjj, both 2a=1 and 2a<1 depend only on rjj and tj3. Also, since tu — 0,

= 0, and indeed 2a=1 = 2(<j>n + T11) where <#>u = (cf^1, 0, c^1) solves a

problem of plane strain elasticity on the domain

Q* = {(1?i>173): M < Li/2> \v3\ < h(vi)},

cf. [1], Because <J>n is independent of rj2 it follows that

S22=1 = "(^lT1 + 233=1)- (3-7)

For fixed Tjj, is the L2-projection of onto the line of multiples of tj3. Therefore

2 22^ = "(2rrx +2 33)' (3.8)

were 233 denotes the L2-projection of 2f3=1 onto multiples of tj3 (note that S33 is in

general different from = 0). Using (3.7) and (3.8) we find that

a ( s? a=l^ a=l  
^ijkiy^ij ^kl i j ^kl )

1 + " [(Sfr1)2 + 2(2fa-1)2 +(2S3-1)2 - "(2n=1 + 233=1)2

\2 tt^nc 1 . e, \2 . V \ 2

E

— (211<1)2 - "2(2 iV1 + 233 )2 + Y^((1 + (/)2ll<1 + V±33j'

1 - v2 \2 . /„„ = 1\2 V2

L (211=1)2 _(2n<1)2 +(2 33=1)2 - ^ ~ ~2 (2 33 ) 2 + 2(213=1)2 drj > 0,

(Zfr1) -(Sfr1) +(2f3-1)   -(S33)2 + 2(2^)2
1 — V

+ 2y(1£+y)[(sf3-i)2-2fr1sg3-1]- (3-9^

The constant v2/(\ — v1) is always less than '. Therefore the integral of the first term of

(3.9) is nonnegative,

v2 +Cs?rM2 - i "2 2

using the fact that and S33 are L2-projections of 2",= 1 and 233_1 respectively.

The proof will be completed by showing that the second part has integral zero:

/ [(Sff1)2 - dr, = 0. (3.10)

To this end we represent 2 if1, 2j3=1 and S33=1 by means of an Airy stress function

<KVi, V3)-

ya-i = ya,i d2<p ] 32<fr ,

drj2' 13 977,9773 ' 33 3t)2 " (3'Uj
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Such a <p exists because the domain Q* is simply connected. The field 2a=1 is contained in

Wa = 1 and therefore

o = + 2^-s = - a^"3

o = + 233=1"3 = - + ijf3

on d ±Q* = {(•»)!, rj3): |tjx| < Lx/2, tj3 = ±/i(i?i)}- It follows that

and are constant on 3 + (2* (and 3_<2*)- (312)

From (3.11), (3.12) and the fact that 2a = 1 is periodic in tjx we conclude that <#> has the

form

<p(v i,v3) = <f,(Th>Tb) + l(vi)>

where <j> is periodic in r/j and / is a linear function in r}v This immediately leads to

and are periodic in rjx. (3-13)
3^i 3tj

Using (3.11), (3.13) and integration by parts we get that

H~"L- £&(£)*■ (314)
where 3/3/ denotes the derivative tangent to 3 ±Q* (clockwise) and ds is surface measure.

The right hand side of (3.14) vanishes on account of (3.12), and this establishes (3.10). •

The rest of this section is devoted to showing that the opposite inequality

is possible for some choices oi h = h( rjj) and some anisotropic elastic laws. Our method is

again to use the complementary energy variational principles. This time, however, we shall

use an extremal stress for (2a< j) to construct a test field for use in (2)a_l).

Consider any 2 e Wa<1. By hypothesis it has the form

2 =

with

0 0

0N

0"0 (3.15)

32

dVadyp

We define an associated test field 2 e Wa=1 by

2 =

{h^map) = (3"16)

2l 8 2

\

8 2

G

(3.17)

with

9 h2)map)> G=~C 9^_ga(T1'^) ^3-18^
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To be in W"~x, 2 must satisfy the six equilibrium conditions

3^2,; = °. v> =0 on9±e-

The first five follow by direct computation from (3.17) and (3.18). The sixth is a

consequence of (3.16), since that equation implies

0 ■ s^(/o* " *>■>*») - £rSl«g-drh)

- *-w. +1 W.drh'

This gives 23 ,.i>. = 0 on the upper boundary 9 + Q, and the same follows for 9 _Q by

symmetry.

Lemma 3.2. Assume that h = h(rj1) e Cl. Given t = (ta/3), let 2a<1 be the maximizer for

(2a<x), and let 2""1 be the associated element of Wa=1 defined by (3.17)—(3.18). If

J Aijkft-^°kTl dT)_< f dr, (3.19)

then it follows that

MafiyS1 a/31 yS > ^a/iyS1 ap!yS •

Proof. We recall that since 1 e W" \

/ ^%dV_ = J 2f,-1£,7((o,o,^))^ = o,

and therefore

/ ^%J{r)dj] = / 2-^.(1')^.JQ J Q

It follows from the variational principles and (3.19) that

Majy\taPtlS = -L-/ (2^;%(r) - AIJkl2f;lzi?1) dV
^1^2 JQ

<TTS (22u'%j{r) - dr\ < M^y\taf3tyS.
L-'\L-,2 JQJQ

Now consider an elastic law of the form

B,ui — A. + 2/i.,

Bi,jj = X' ' *h (3.20)

^1212 = ^1313 = ^2323 = M >
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(no summation convention) with A, /i, jli' > 0. The other components Bijkl are zero, except

of course those determined by the symmetries (2.1), and the complementary energy

quadratic form is

AIJkl^kl = ~{12U + 2Z2n + + 2323) + 1(223 +

(2U + S22 + 233) .2ju(2jli + 3A)

An isotropic law corresponds to /x = /j,'. but for the present purposes we require instead

that ft' be sufficiently large compared with ju.

Proposition 3.4. Consider the thickness function

h(i\) = /z0(l + £Cos277tj1)

with h 0 constant. If

"3 fi I, _L \ T.\

- 77" 2/z Q c -— — (3.21)
fx' 7 4- 3A) 2jii(jU + A)

in the elastic law (3.20) then for e sufficiently small.

Proof. Of course we shall apply Lemma 3.2. When h = /i^i) the extremal stress for

(3>a<i) is easy to express in closed form. Taking ru = 1, tu = t22 = 0, and arguing as in

[1], we see that it has the form (3.15) with

m«p = ch~%t311.

where c = (Jq h'3 d-q^'1 is the harmonic mean of h3 and

- + A) ~ 2nX - _
"1U1~ 2fi + X ' _ 2ju + A' *1211 U'

Substitution in (3.18) gives g2 = 0,

c ~ 3
gl = ~ h2)h 3),

and

G ~ 2
c - rV] d2

J hid2-^)h->\di
J0 07] j

{r]]h-2{h" - 2h-\h')2\ - Ji\h-*[h" - 4h-l(h')2} },-

with /?' = 8/7/3t)j. It follows with some computation that

fl ch , . . 4 -
f / g;dii3d7i 1 = tBuh^/ioE2 + 0(e3),

J0 J -h D

J* f ^ G1dt\idrll = -^B2in<ir4h70e2 + 0(e3),

f Jh Gh'^i d7]3d-ql = - ~BnuTr2hle2 + 0(e3).
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Now taking Q = {tj: |tjJ < |tj3| < /?(tj1 )}, we obtain that

/ A,jkl{^'^ - dr, = I + II + III,
J Ci

with

1 = ^ 1$Q8*dl]-= 5^^nnfl1') V/^e2 + <9(e3)

11 " if1 " vhl)/e ^®;»V(2",+X3A)"4'',»eJ + °('!)

HI = ^^2ju + 3X) c(^llu ^22U^ In ^ ^3^1

4 -
5^1111(^111 + ^n) ^(2^+ 3A)7r2/!o£2 + °(£3)-

One computes that

I + II + III = e2~hlBlni
12 32 n + \ 2i 2

ju' 7 ju.(2/i + 3A) 0 /i(/x + A)
+ 0(e3),

and (3.21) is exactly the condition that this be negative for sufficiently small e. When that

occurs the desired conclusion follows from Lemma 3.2. •

We note that (3.21) can be satisfied for any fixed ^ and A by taking ja' sufficiently large

and h0 sufficiently small. But it is never satisfied when ju' = ju, the case of an isotropic

material, which is consistent with Proposition 3.3.

4. A result without geometric restrictions. When the thickness function h depends on

both variables r/j and r)2 we do not expect the inequality Ma> 1 < M"=1 < Ma<1 to hold

in general, even for an isotropic elastic law. It is true, however, in case Ba/j33 = 0; this

includes an isotropic law with Poisson's ratio set equal to 0.

Proposition 4.1. If -8a/333 = 0 then Ma> 1 < Ma = l < Ma<l for every choice of the thick-

ness function h.

Proof. With this hypothesis on the elastic law 2a3(^ + F') = 0 for all \p e Va<1.

Therefore use of the minimizerof (^a<l) as a test function in a = l) yields Ma~x < Ma<1.

To obtain the other inequality, we observe that the maximizer of (,@a>1) has 233 = 0

when Baf333 = 0—for if not, then setting 233 equal to zero would preserve admissibility

and increase the value of the functional. Therefore this tensor is admissible for (S>a=x) and

it follows that Ma>1 < Ma=l. •
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