A RESPONSE BOUND FOR HYSTERETIC SECOND ORDER SYSTEMS*

BY

N. MOSTAGHEL

University of Utah

The behavior of many engineering systems is governed by the second order differential equation

$$\ddot{u}(t) + f\left[u(t)\right] = g(t),\tag{1}$$

where g(t) is a specified oscillatory function of time, dot denotes differentiation with respect to t, f(u) is a nonlinear restoring function representing the system hysteresis, as shown in the figure, and $u(0) = \dot{u}(0) = 0$. To obtain the bound, both sides of equation (1) are multiplied by \dot{u} . Integration of the resulting expression over the time interval t_i to t_{i+1} yields

$$\frac{\dot{u}^2(t)}{2}\bigg]_{t_i}^{t_{i+1}} + \int_{t_1}^{t_{i+1}} f(u)\dot{u}(\tau) d\tau = \int_{t_i}^{t_{i+1}} g(\tau)\dot{u} d\tau. \tag{2}$$

If t_i and t_{i+1} are two consecutive times of zero crossing of $\dot{u}(t)$, then the first term on the left hand side of the above equation vanishes. Therefore,

$$\int_{t_i}^{t_{i+1}} f(u) \dot{u}(\tau) d\tau = \int_{t_i}^{t_{i+1}} g(\tau) \dot{u}(\tau) d\tau.$$
 (3)

Since u(t) attains extremum values at times t_i and t_{i+1} , then one may assume $\overline{u} = \sup |u(t)|$ to occur either at $t = t_i$ or $t = t_{i+1}$. Therefore, the right hand side of equation (3) may be represented by

$$\int_{t_i}^{t_{i+1}} g(\tau) \dot{u}(\tau) d\tau = \int_{u(t_i)}^{u(t_{i+1})} g(\tau) du \leqslant 2\overline{gu}, \tag{4}$$

where $\bar{g} = \sup |g(t)|$. The left hand side of equation (3) may also be represented as

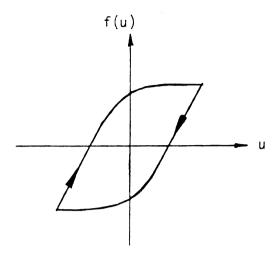
$$\int_{t}^{t_{i+1}} f(u)\dot{u}(\tau) d\tau = \int_{u(t_i)}^{u(t_{i+1})} f(u) du = \alpha(2\bar{f}\bar{u}), \tag{5}$$

where $\bar{f} = \sup |f(u)|$ and $0 < \alpha \le 1$ is the reduction factor which makes the equality satisfied. The value of α may be calculated from the ratio $A/4\bar{f}\bar{u}$, where A is the area of the hysteresis loop. Comparisons of equalities (3) and (5) and inequality (4) yield

$$\bar{f} \leqslant \bar{g}/\alpha.$$
 (6)

^{*} Received February 21, 1984.

200 N. MOSTAGHEL



A representation of f(u)

If it is assumed that \bar{u} and \bar{f} occur simultaneously, i.e. $\bar{f} = |f(\bar{u})|$, it is concluded that $f(\bar{u}) \leq \bar{g}/\alpha$. (7)

This inequality yields an upper bound on \bar{u} with α as a parameter.