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Abstract. New general expressions are given for Langford's cylinder functions, which

occur in solutions of the Cauchy problem for the heat equation in cylindrical co-ordinates.

These formulae are deduced by means of generating functions. In addition a new

technique is used to obtain Langford's formal series, new basic formulae connecting

Langford's various cylinder functions are established and their relevance in a formal series

solution of a moving boundary problem is noted.

1. Introduction. Langford [4] gives general solutions of the Cauchy problem for a one

dimensional heat equation in planar, spherical or cylindrical co-ordinates. Given arbitrary,

analytic temperature and heat flux functions prescribed on a fixed plane, spherical or

cylindrical surface formal series solutions are given in terms of these functions. These

solutions are general in the sense that particular choices of the prescribed temperature and

heat flux functions yield other known solutions of the heat equation. For example, the

classical Fourier and Bessel series solutions of the heat equation may be generated in this

manner (see [4]). The results for both planar and spherical geometries are relatively simple,

and we refer the reader to [4] for these expressions. However the corresponding expres-

sions for the cylinder are, as usual, awkward and Langford [4] gives only the first few

terms of the series explictly, indicating a complex process by which the remaining terms

may be calculated. Langford's functions are fundamental to the solution of the heat

equation with cylindrical geometry and the purpose of this note is to give new general

formulae for these functions, which we obtain from generating functions. In addition we

give an alternative derivation of Langford's solutions, and we show that Langford's

functions also arise in the formal series solution of the classical Stefan problem in a

cylinder. An entirely analogous derivation is applicable to planar and spherical geome-

tries.

Langford [4] states that the solution T(r, t) of the problem

9T 92T 1 3T „
+ (i-1)
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7(r0, t) = A(t), lim ^^(r, t)j = B(t), (1.2)

where r0 is an arbitrary, non-zero, fixed radius, and A(t) and B(t) are analytic functions

of time, is given by

T(r,,) - + !«<->(,)«„(£, I)}. (1.3)

Here A(n>(t) and denote the «th derivatives of the functions A(t) and B(t)

respectively. With the notation z = r1/4 and z0 = r^/4 the first four of the functions

c„(z, z0) and en(z, z0) are given by

c0(z< z0) = 1, q(z, z0) = (z - z0) - z0log —,
0

c2(z' zo) = — /~(z + 5zo) - y(2z + 2o)lo§ 7". (1-4)
z z0

ci(z> zo) = ^ 36"°^ (zl + 19zzo + 10zo) - (3z2 + 6zz° + zo)log

and

e0(z' zo) = log , ej(z, z0) = 2(z0 - z) +(z + z0)log
0 z0

e2(z. zo) = 7(zo - z)(z + zo) + t(z2 + 4zzo + zo) log ~7> (L5)
0

Z°) = ^108^ (llz2 + 38zzo + llzo) + ^Z 3/°^ (z2 + 8zz0 + Z02)log^.

In the following sections we give a new derivation of (1.3) and obtain general

expressions for cn(z, z0) and en(z, z0). In the final section we show the moving boundary

problem

at a2t 1 ar ,
■37 = —7 + -^", /?(f) < r < 1,
3? 0r2 r 9r

7(1, t) + 0^(1, 0 = 1, T(R(t), t) = 0, (1-6)

^(R(,),t)=-af( t), R( 0) = 1,

has formal series solution

W X £ 3" (r2 R(<)2 1 ^

r(M,"s;,?' 4 —f (1-7)
« = o \ /

where 7?(/) denotes the unknown moving boundary, and a is a strictly positive constant, /?

a non-negative constant. This formal result follows from an integral formulation of the

problem given in a recent paper Dewynne and Hill [1] and the following basic relations

for c„(z, z0) and en(z, z0),

c„(z, zo) = ( log7C„_,(w, z0) Jw, (1.8)
J, CO
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e„(z,z0 )=[ log~en_1(u, z0) du, (1.9)
J CO"0

c„(z,z0)=j en_1(z, co) do:, (1.10)
Z0

which we establish in Sec. 2. In a practical context the formal series solution (1.7) of the

moving boundary problem (1.6) has limited utility. However our results serve more to

identify the essential mathematical structure, associated with a cylindrical problem, which

is always far more complicated than the corresponding planar or spherical problem.

2. An alternative derivation of Langford's solutions. By multiplying (1.1) throughout by

r, integrating twice with respect to r and changing the order of integration, we may deduce

that

r rr f c)T
T(r,t) = A(t) + B(t)\og- + £log j-^(£,t)d{, (2.1)

where (1.2) has been used for the prescribed temperature and flux at r = r0. Substituting

this expression for T(r, t) into the right hand side of equation (2.1) we obtain

T(r, t) = A(t) 4- 5(0 log— + A(1)(t) f £log jd£ + Bw(t) f £log^log — d£
r0 Jr0 % Jra S r0

+ / f* tvlogj log-^(t], t) dt)d£. (2.2)
r0 r0 S •/ dt

Repeating this process indefinitely, and assuming that the remainder tends to zero, leads

to

T(r, t) = £ { A^\t)c*n{r, r0) + r0)}, (2.3)
n = 0 '

where c*(r, r0) and e*(r, r0) are given by

c*(r,r0)= / £log7c*-i(£< ro) d£, c%{r, r0) = 1,
r0 ^

eZ(r>ro )= f ^ogj^-id. ro) d£, e*(r, r0) = 2 log . (2.4)
ro ro

Assuming that both r > 0 and r0 > 0, it is easily shown inductively that

m M" ,» , , xl M" ,« , ,
\c*{r, r0)|< — |r - r0| , \e*(r, r0)| < M2—\r - r0| , (2.5)

where

Ml = sup Slog J : £ G ['*0. r]|' M2 = SUP log — : £ e [r0, r]}. (2.6)

Observing that Mx —> 0 as r -* r0, it follows that we may find some =£ r0 such that

Mx\rx - /-0| equals the smaller of the radii of convergence of the Taylor series expansions

of A(t) and B(t) about t. Then clearly for r e [r0, rj the series (2.3) converges absolutely,

and term-wise operations may be used to show that it does indeed represent a solution of

(1-1)—(1-2).
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If we let

c„(z, Z0) = cZ(r> ro)> e„(z, z0) = e*(r, r0), (2.7)

where as before z = r2/4, z0 = r02/4, then from (2.3) and (2.4) with co = £2/4 we have

0 = L ( c„(z, z0) + ]rB"(t)en(z, z0)\,
n = 0 v ^

Z
cn(z>zo)=f log^;cn_l(u,z0)du, c0(z,z0) = 1, (2.8)

J, CO
"0

/*• z z•°g-e»-i(w' zo) eo(z> zo) = l°g7"-
-o w z0

Thus (1.8) and (1.9) are established. To prove (1.10) we proceed by induction. The case

n = 1 is trivially true, so assuming the result for some n > 1 we have

/ «„(z.")^ = / / log ^en_\(p,u) dpdu
z0 z0 w "

/'Z f^ ZJ l°gpe«-i (p,u)dudp
'0 '0

z
/ zlog-cn(p, z0) dp = cn + l(z, z0), (2.9)

establishing (1.10).

3. New expressions for Langford's functions. We now proceed to deduce explicit

expressions for c„(z, z0) and en(z, z0). From (2.8) or Langford [4], it may be verified that

both sequences (c„) and (en) satisfy the recursion relations,

9 ( V»< \\ f ( \
Z^7(Z' Zo) ) =fn-l(Z> Zo).

(«> 1) (3.1)
9z \ 3z

/„Uo. ^o) = ^~(zo- zo) = 0,

with/0 being taken as 1 or log(z/z0) respectively. Since the first function in the sequence,

/0 is an homogeneous function of degree 0, it follows inductively that the wth function in

the sequence, fn, is homogeneous of degree n. Thus we define a new sequence (gn) such

that

fn(Z'Zo) = Z0S«(fj (3-2)

and from (3.1) it is apparent that the sequence (gn) is determined recursively by

tg'n(t) + g'n(t) = 8„-1(£). („ > i) (3 3)

gn(l) = g'n(l) =

where primes denote differentiation with respect to the argument £ = z/z0. Thus if we

define a generating function by

OO

G(£, s) = £ gnU)s", (3.4)
n = 0
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since in both the cases g0(£) = 1 and g0(£) = log£ (corresponding to c„(z, z0) and

en(z, z0) respectively), the relation

Sso U) + go(0 = 0, (3.5)

is found to hold, we find from (3.3)! and (3.4) that

„0 2G 3G r. l\

If we let C(£, s) be the generating function corresponding to the sequence of cn(z, z0),

we may deduce the following initial value problem,

„02C 0C „ n

a^2 0£ '

c(l,j) = l, f(l,.) = 0,
(3.6)

and it is not difficult to establish that the appropriate solution is

C((,s) = 2fs {\0{2yfJl)Kx(2fs) + K0(2v^)l1(2v^)}, (3.7)

where I0, Ix, K0 and K, denote the usual modified Bessel functions of the first and second

kind. Similarly, letting £(£, s) denote the generating function for the functions elt(z, z0),

we have

,92£ 0£

V + '
£(1,j) = 0, ||(l,i)-l,

(3.8)

which has the solution

EU,s) = 2{I0(2V^")K0(2^) - K0(2^)l0(2v^)}. (3.9)

Expanding the Bessel functions as power series,

00 1 / v \ 2w 00 1 / Y \2n+l

'oW= E77 y . Ii(^) = E , 1V (2)
n-0 («0 „ = ()«!(«+ iy.\2l

Ko(*) = -(v + log|)l0(-x)

+ £fl+l+ (3-10)
„=0i 2

Ki(jc) = (y + logf)ll(jc) + ^

1 /x\2" + 1

n\(n + 1)! I 2 /«=o

, 1 1 ,14--+ •••+- +
2 nl 2(« + l)

where y = 0.5772... denotes Euler's constant, and as usual {1 + | + ■ • ■ + is taken

to be zero when n = 0, we may expand (3.7) and (3.9) to deduce the following expressions
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for c„(z, z0) and e„(z, z0)

c„(z, Zo) _ 2 "^1ln-l\2ll + l+ + 1

[(« - l)!]2 y=0 V J I I 2 n-j- 1

V-j-1 (j

(7 + 1) (n-j)

+ 7^77 ~ E C/ ) (J(l +(« -y')log?), (3.11)
(«!)2 (n\)2 j=q\J

6"(Z' Z°) " 2 l(")2(l+T+ •■■+7K«"~7-*y)
(«!)2 j **0 M 2 j

+ -^L( y)V-log|,
(«!)27=o^

where, as before, | = z/z0. The reader may confirm that the first four functions given in

(1.4)-(1.5) arise from the above formulae.

4. Formal moving boundary problem solution. Dewynne and Hill [1] show that the

solution of (1.6) satisfies the integro-differential equation

T(r>0 = j:f ((logr - log()[a + T((, t)] d(, (4.1)
R(t)

while the motion of the moving boundary is determined from

t= fl i(0- log Z)[a+ T((,t)]d(. (4.2)
JRU)

Proceeding as in Sec. 2, repeated application of (4.1) gives

9
T(r't) = a^;f ((log ̂  - log() d(

R(t)

+ ^2/ 4 [(^2 - r2) +(^2 + r2)(logr - log I)] [a + T((, 0] d(,
Ot R(t) H

(

'R(t)

(4.3)

and on making the transformations

-T- -f (4'4)
we find that (4.3) becomes

T(r,t) = a^-f e0(z, u) do> + a^- ( el{z,u)du
dt Z(r) 3r JZ(t)

+ Tlf e1(z,u)T(2]/a,t)du. (4.5)
3tz JZ(,)
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Continuing this process, and again assuming that the remainder term containing the

temperature function T(r, t) tends to zero, we obtain the formal series solution

T(r, () = «! ^/ en_1(z,u)du, (4.6)
n = 1 r)

and (1.7) follows immediately on application of (1.10). We remark that (1.7) or (4.6) can

be verified independently by direct substitution into either (1.6), or the integral formula-

tion (4.1), assuming of course that the series is convergent. We note also from the formal

series solution and either the surface condition of (1.6), or Eq. (4.2), we may deduce

various formal eqautions for the motion of the boundary. These representations lead to

unusual integral equations for R(t), similar to those given by Grinberg and Chekmarera

[2] for the planar geometry and Hill [3] for all three geometries. In particular the integral

equation for the cylindrical geometry may be found in Hill [3], Since these integral

equations cannot be presently solved, we do not pursue the matter further.
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