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1. Introduction. We are concerned with the oscillatory behavior of solutions of the

Timoshenko beam equation

94m 32u , , 94u 94 w , , , .
— + <x/3y — -(/? + y) + — + c(x, f, u) = f(x, t), (*)
31 9r 9;r0r 0x

(x, /) e J x /? + ,

where / = (0, L), ^? + = (0, oo) and a, f3, y are positive constants. By taking account of the

rotary inertia and the deflection due to shear, we obtain the following fourth order

differential equation for the transverse vibrations of prismatic beams on elastic founda-

tions:

p2I 34u d2u I EI \ 94u 04w , , .
+ + + (,)

(see [5, p. 433] and [7, p. 150]). If a = pA/EI, fi = kfi/p, y = E/p, c(x, t,u)= 0 and

f(x, t) = (k1G/p1I)q(x, t), (*) reduces to Eq. (1).

The purpose of this paper is to obtain sufficient conditions for all solutions of (*)

subject to certain boundary conditions to be oscillatory in J X R +. Our method is an

adaptation of that used in studying the oscillatory behavior of solutions of hyperbolic

equations (cf. [1-3, 6, 8]). In Sec. 2 we present oscillation criteria for a class of fourth

order ordinary differential inequalities. In Sec. 3-5 oscillation criteria for (*) are derived

on the basis of the results in Sec. 2. We consider three kinds of end conditions, i.e. hinged

ends (Sec. 3), hinged-sliding ends (Sec. 4) and sliding ends (Sec. 5).

We assume that the following conditions are satisfied throughout this paper:

(A-I) c(x, t, tj) is a real-valued continuous function in J X R + X R1-,

(A-II) t]c(x, t,ri)> 0 for all (x, t, rj) e J X ^ + X jR1;

(A-III) c(x, t, -tj) = -c(x, t, T)) for all (x, t, rj) e / X R + X R+;

(A-IV) f(x, t) is a real-valued continuous function in J X R+.
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Definition. A function u: J X R + ̂ > Rl is said to be oscillatory in J X R+ if it has a

zero in J X (t, oo) for any t > 0.

2. Fourth order ordinary differential inequalities. We consider the fourth order ordinary

differential inequality

j<4)(0 + k2y"(t) 4- m2y(t) < h(t), t > a. (2)

The object of this section is to obtain sufficient conditions under which (2) has no

eventually positive solution. It is assumed that k and m are nonnegative constants and

h(t) is a continuous function on [a, oo). We define

1/2

Theorem 2.1. Inequality (2) has no eventually positive solution if

r3
lim inf

t-* oo JT
fh-i *<£)<*£--» 0)

for all large T.

Proof. Suppose to the contrary that there exists a solutiony(t) of (2) such that _y(?) > 0

on [?0, oo) for some t0 > 0. Integrating (2) over (t0, t) twice, we obtain

/'(f) + k2y(t) <c0 + cxt + f'(t - |)M£) d£, (4)
0

where c0 = y"{t0) + k2y(t0) - (yO)(t0) + k2y'(t0))t0 and cx = k2y'(t0). Since

= t1 _ ~ ̂  dsj= I' ~

we have

l'[l " f )(c° + cis + Jr(s - 0M0 ^j ds (5)

= t2\B(t, t0) + - yj h(Z) ̂J,

where B(t, t0) is bounded as t tends to infinity. From (3) and (5) it follows that

lim inf J^l — j^c0 + cts + J (s — £)h(£) j ds = -oo. (6)

Applying Theorem 2 of Kusano and Naito [4], we see that under condition (6) inequality

(4) has no positive solution on [?0, oo). This is a contradiction and the proof is complete.
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Theorem 2.2. Assume that k2 > 0, m2 ^ 0 and kA — 4m2 > 0. Inequality (2) has no

eventually positive solution if

liminf / (l — ̂ )(j^ * h(l-) sin u+ (£ - s) ds =-oc (7)

for all large T.

Proof. Suppose that there is a solution y(t) of (2) such that^(0 > 0 on [?0, oo) for some

t0 > 0. Letting <£ = <£(/, .s) = sin u+(t - 5), we find that <p(t, s) > 0 for all / e (s, s +

V<o+), cf>(s, s) = <f>(s + w/w+, s) = 0, and that 4>(t, s) satisfies

<#>«» + k\t + m2(t> = 0, (8)

where the subscript t denotes the partial differentiation with respect to t. Multiplying (2)

by <f> and integrating over (s, s + 77/co J with respect to t, we obtain

/S + v/o). ~ /•5 + 77/a), . T rs + ir/u, fS + TT/u), . .
y( ̂  dt + k~ J y <j> dt + w2J y<p dt < J h(f> dt. (9)

Integration by parts gives

rs + 7T/u>+ ,,-\s + Tr/io+ r , ls + 7r/to + , /"s+ir/u+

J y <f>dt = [y <f>]s ' +-[y<$>,\s +J y<>udt

= w + (j(s + 7t/u + ) + .)>(■*)) + fS + "/u+y<t>„dt, (10)
JS

f+n/u+y^dt = [y"'4>Y,+w/"+ -[y"4>,rr/u+ + [/<#.„]rA,+
Js

r lS + 7r/oi+ . fS + '7T/u +

Js

= w+(/'(s + V"+) + /'(*)) - u\{y(s + 77/W+) + j(^))

/54-77/w, y<t>,mdt. (11)

Combining (9)-(ll) and using (8) yields

y"(s + V" + ) +/'(J) +(^2 - " + )(^(^ + w/w + ) +^(^))

1 fS + 77" / CO , , . . ,
<  I h(£)sinu + (£ - s) d£.

u+ Js

(12)

Since k2 - co\ = u2_ > 0, it follows from (12) that y(s 4- tt/co +) +^(5) is a positive

solution of

z"(s) + u2_z(s) < — r /u)"h(i) sin w + (£ - i) d£, s > t0. (13)
w+ Js

On the other hand, using Theorem 2 of [4] and taking account of (7), we conclude that

(13) has no eventually positive solution. The contradiction establishes the theorem.
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Theorem 2.3. Assume that k2 > 0, m2 > 0 and k4 — 4m2 ^ 0. Inequality (2) has no

eventually positive solution if there exists a nontrivial function p(t) e C2([l, oo)) with the

following properties:

(i) p(t) is oscillatory on [1, oo);

(ii) p"(0 = // + "/"+ /;(!) sin <o+(| - ?) / > 1;

(iii) liminf,^00p(0 = 0.

Proof. Suppose that (2) has a solution y(t) such that y{t) > 0 on [/0,oo) for some

t0 > 0. Proceeding as in the proof of Theorem 2.2, it can be shown that>'(.s- 4- tt/w t) + y(s)

is a positive solution of (2) on (t0, oo). Since m2 > 0, we see that to_> 0. It is known that

z"(s) + o32_z(s) < 0 has no eventually positive solution (see, e.g., Kahane [2, p. 185]).

Hence, the hypothesis implies that (13) has no eventually positive solution (see Kusano

and Naito [4, Theorem 3]).

Theorem 2.4. Assume that k2 > 0, m2 > 0 and k4 — Am2 > 0. Inequality (2) has no

eventually positive solution if there exists a sequence {tn} such that lim= oo and

J" / / + h(£) sin w + (| - s) sin u_(s - tn) ds < 0.

Proof. Let y(t) be a solution of (2) such that y{t) > 0 on [?0, oo) for some t0 > 0.

Repeating the argument used in the proof of Theorem 2.2, we observe that z(s) = y(s +

77-/co+) + y(s) satisfies (13). Multiplying (13) by sin u_(s - /) and integrating over (Z, t +

■n/u_) with respect to .v, we obtain

y(t +(t7/w + ) +(w/w-)) +y(t + 7r/u + ) +y(t + tt/u_) + y(t) (14)

<(w + co_)1^ ^ {fs /+M£)sinw + (£ — i)^|jsinco_(i — t) ds,

' > 'o>

(cf. Kahane [2, p. 185]). The left-hand side of (14) is positive on (t0, oo), and therefore the

right-hand side of (14) is also positive on (/„, oo). This contradicts the hypothesis and

completes the proof.

Remark 1. In the case where k2 > 0, m 2 > 0 and k4 — 4m2 > 0, we can replace w+ by

_ in the hypotheses of Theorems 2.2 and 2.3. Theorem 2.4 remains true if to__ is replaced

by u+.

Remark 2. Consider the particular case of (2) in which h(t) = 0, i.e.

y<4)(t) + k2y"{t) + m2y(t) < 0. (15)

If /c 2 > 0, m2 > 0 and k4 — 4m2 > 0, we can apply Theorem 2.4 to conclude that (15) has

no eventually positive solution.

3. Hinged ends. We consider the case where the ends of the beam are hinged, so that

solutions u(x, t) of (*) are required to satisfy the boundary condition

«(0,0 = ^(0,0 = u(L,t) = ^2(L,t) = 0, t> 0. (HE)
OX ox
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Our main result in this section is the following.

Theorem 3.1. Every classical solution u of (*) satisfying the boundary condition (HE) is

oscillatory in / X R+ if the fourth order ordinary differential inequalities

(4)(0 +(«/?Y +(P + y)(ir/L)2)y"(t) + (iy (tt / L)4 y(t) < F(t), (16)y

y(4)(t) + (a/iy +(p + y)(ir/L)2)y"(t) + Py(ir/L)4y(t) < -F(t) (17)

are oscillatory at t = oo in the sense that neither (16) nor (17) has a solution which is

positive on [;, oo) for any t > 0, where

C L 77"
F(t) = I f(x, t) sin yx dx.

Jo L

Proof. Suppose that there is a solution u of the problem (*) and (HE), which has no zero

in J X [r0, oo) for some t0 > 0. First, we assume that u > 0 in J X [f0, oo). By assumption

(A-II) we get

3 4w 32w , , 34u d4u , , , .

a7+'(,V"('it7te+',V</,x'')' (18)

Multiplying (18) by ip(x) = sin (it/L)x and integrating over (0, L), we obtain

d4 (L . , x , „ d2
— fLu\P(x) dx + afiy—— [^(x) dx
fit J(\ dtZ J(\dt Jo dt Jo

~(P + (L ^i(x)dx + Py jL^i(x)dx < [Lf(x, t)t(x) dx. (19)
dt Jo ox Jo ox •'o

Integration by parts and use of (HE) yields

rL 32u
(L^(x)dx = -(n/L)2(LuHx)dx,

•'n HrAJ0 dx

fL dx = (V^)4dx.
J a Hr

Hence, (19) leads to

-jjM[u](t) + (ocfiy + (/? + y){ir/L)2)^—M[u](t) + fiy^-n/L)4 M[u](t)
dt4 dt2

< f f(x,t)sinyxdx,
J0 L

where M[u](t) = u(x, t) sin(w/L)x dx. Consequently, we find that M[u](t) is a

positive solution of (16) on (t0, oo). This contradicts the hypothesis. In the case where

u < 0 on [f0, oo), U = u satisfies

34U n 32t/ , n x 34U n 34U . TTv ,
— + 4>y— -(/, + T> — + 0T — + c(x. ,,u). -/(*, <).

Using the same arguments as in the case where u > 0, we are led to a contradiction. The

proof is complete.
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We note that afiy + (/? + y)(ir/L)2 > 0, /3y(77/L)4 > 0 and

\2\2 . „ , , , *4
(aPy+(P + y)(n/L)2) - 4fiy(it/£,)"

= («^y)" + 2a/?y(/? + y)(w/^)2 + (£ ~ > °-

We define the constants w + by

w±= 2~1//2(a^y + (/3 + y)(77/L)2

1/2

± ((a^y)" + 2a£y(/3 + y)(V-L)2 + (£ ~ y)2( V-^)4)17")

Applying Theorems 2.1-2.4 to (16) and (17), we obtain the following results.

Corollary 3.1. Every classical solution u of (*) satisfying (HE) is oscillatory in J X R + if

liminf ( (\ — -) F(£)d£=-oo,
t->rx Jt\ t I

limsup ('(I - F(£) d£ = oo
r-» oo JT\ '/

for all large T.

Corollary 3.2. Every classical solution u of (*) satisfying (HE) is oscillatory in J X R+ if

liminf J (l - 7 F(£) sin £>(£ — 5) d£ j ds = -00,

limsup J ^1 — jf / + F(£) sintj(£ — 5) ds = 00

for all large T, where i0 = co+ or £> = co_.

Corollary 3.3. Every classical solution u of (*) satisfying (HE) is oscillatory in / X R+ if

there exists a nontrivial function p(t) e C2([l, 00)) with the following properties:

(i) p(t) is oscillatory on [1, 00);

(ii) p"(0= // + "/0F(Osin«(|- t)dt,t> 1;

(iii) lim(_oop(0 = 0,

where w = w+orw = w_.

Corollary 3.4. Every classical solution u of (*) satisfying (HE) is oscillator}' in J X R+ if

/f + ir/a>_ / Ay+ 77/0). , . . . \ . .
F(£) sinu + (£ - s) d$ J sinu_(s - t) ds

is oscillatory on (/0, 00) for some /0 > 0.

Example 1. We consider the equation

94w , 4 32w 2 ,, , >2 94m 1 / r „ ^46Au 8 / . 77
~T + T ~T _ ~k(L/TT)z + j = -^(sin yx )r4sin t. (20)
014 3 012 3W dxidt2 9V 0jc4 Ql ' '
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Here a = \2(tt/L)4, /? = y = \(L/Tr)2 and c(x, t, u) = 0. A direct calculation shows that

/rf1 " f) (/o'-f^^t5111^)2^) ^

= -~L j^l - y j £4sin £d£ = -1"L;sin t + B(t, T),

where B(t, T) is bounded as t tends to infinity Hence, we obtain

H™lnf fr(l ~ f) ("I /0V(sm|)(sm ̂xf d£ = -co,

limsup — y) JL£4(sin £)(sin j-xj dxj d£ = 00.

It follows from Corollary 3.1 that every classical solution of (20) satisfying (HE) is

oscillatory in J X R+. In fact, there exists an oscillatory solution of (20)

u = |sin -^xj(?4sin t — 54r2sin t + 108fcos? + 513sin t)

which satisfies (HE).

Example 2. We consider the equation

d u d"w , .2 d u , , x4 d w / . 77 \ .
—7 + 4—-— 4( L/tt) —-—- + ML/tt) —- = 16 sin —x )e sin t. (21)
dt 3t2 7 dx dt K / ' dx4 \ L I y J

Here a = (■jt/L)4, ji = y = 2(L/tt)2 and c{x, t, u) = 0. Since

f'r(l ~ f) (/0L 16e"£(sini)(sin dx) #

< 8Ly |l - yj e~(sm £ d£ < 8L e'* d£ = 8L,

Corollary 3.1 is not applicable to (21). However, we can apply Corollary 3.3 to (21).

Integration by parts gives

f sin <o(| - t) d£ = 8L f'+w/ae~((sin £) sin w(| - t) dg
Jt Jt

= Ae''cos(/ + 77/<£) + Be'' sin (t + tt/&>) + Ce''cos t + De'' sin t,

where A = 16L«(«4 + 4B = 8Lw3(w4 + 4)"V"/*, C = 16Lw(w4 + 4)"1 and

D = 8Lu3(u4 + l)"1. Defining

p(f) = \e~'(-A sin(r + 77/co) + Bcos(t + 7r/a>) — Csin t + Dcost),

we see that p(t) satisfies conditions (i)-(iii) of Corollary 3.3. Hence, every classical

solution u of (21) satisfying (HE) is oscillatory in J X R+. In fact, Eq. (21) has an

oscillatory solution u = (sin(-u/L)x)e~'cos t which satisfies (HE).

Example 3. Consider the equation

34" . „/ /M4 32m / r \i 94" , t ,m4 34«
— + 2(„/L) — - 2(„/L) — +(„/£) ^
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Here a = 2, fi = y = (tt/L)2 and c(x, t, u) = f(x, t) = 0. Since f(x, t) = 0, we have

F(t) = 0. Therefore, Corollaries 3.1-3.3 are not applicable to (22). However, Corollary 3.4

implies that every classical solution u of (22) satisfying (HE) is oscillatory in J X R+. In

fact, there exists an oscillatory solution u = (sin(w/L)jc)cos(/2 + \/3~ (n/L)2t) which

satisfies (HE).

4. Hinged-sliding ends. In this section we deal with the case of hinged-sliding ends for

which the boundary condition takes the form

«(0, 0 = 0(0, t) = If (L, 0 = 0(L, 0 = °, r>0. (HSE)

We obtain the following analogue of Theorem 3.1.

Theorem 4.1. Every classical solution u of (*) satisfying the boundary condition (HSE) is

oscillatory in J X R+ if the fourth order ordinary differential inequalities

y4)0) +(<*/?y +(/? + y)(TT/(2L)f)y"(t) + /?y(""/(2L))4y(t) < G(t), (23)

y(4)(t) +(a/iy +(0 + y)(ir/(2L))2)y"(t) + /3y(n/(2L))4y(t) < -G(t) (24)

are oscillatory at t = oo in the sense that neither (23) nor (24) has a solution which is

positive on [/, oo) for any t > 0, where

G(t) = f f{x,t)s\n-^yxdx.
Jr, ZL

Proof. Suppose that the problem (*) and (HSE) has a solution u which has no zero in

J X [/0, oo) for some t0 > 0. We may suppose that u > 0 in J X [t0, oo). As in the proof of

Theorem 3.1, we obtain the inequality (18). Multiplying (18) by ip(x) = sin(w/(2L))x and

integrating over (0, L), we have (19) with \p(x) replaced by \p(x). Integration by parts

gives

/ dx = -(7r/(2L))2f u$(x) dx,
Jo ox Jo

(L dx = ("•/(2L))4/Z"V'(-x) dx-
•'n nr Jr\Jo 3x •'o

Hence, jQU\p(x)dx is a positive solution of (23) on (t0,oo). This contradicts the

hypothesis.

By specializing the results in Sec. 2 to (23) and (24), one could easily formulate various

oscillation criteria for equation (*) plus (HSE).

5. Sliding ends. We consider the case of sliding ends, i.e. equation (*) subject to the

boundary condition

du \ 93m , 3m,, x 93m , , - „ „
-(o,,).—(0,,)-S(L,,)-0, ,>0. (SE)
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Theorem 5.1. Every classical solution u of (*) satisfying the boundary condition (SE) is

oscillatory in J X R t if the fourth order ordinary differential inequalities

y^(t) + a/iyy"(t) ^ H(t), (25)

/4>(0 + a/3yy"(t) < -H(t) (26)

are oscillatory at t = oo, where

H{t) = f f(x, t) dx.
Jo

Proof. Let u be a solution of the problem (*) and (SE), which has no zero in J X [?0, oo)

for some t0 > 0. First we assume u > 0 in / X [?0, oo). As in the proof of Theorem 3.1, we

obtain the inequality (18). Integrating (18) over (0, L), we have

dA fL . n d2 rL , . d2 rL 32u
— udx + afiy— udx -{/3 + y) — —^dx
dt Jo dt Jo dt Jo dx

+ py jL ^dx < [Lf(x, t) dx. (27)
•'n n r

Since

(27) reduces to

rL 3 m , 3u , T , 3m n

I ~dx* = fa ~ ' =

{L—dx~—AL,t)-—A0,t)-Q,
•'o dx dx dx

( udx + a^Y-77 fLu dx < fLf(x, t) dx. (28)
dt Jo dt Jo ■'o

This shows that (25) has a positive solution /0L u dx on (t0, oo), contradicting the

hypothesis. In the case where u < 0 in 7 X [/0, oo), U = -u satisfies

34U . d2U ,0 , 34U 0 d*U , TT, s, ,
— - + apy—-(p + y) + py— + c(x, t,U) = -f(x, t).
3? 3 tL dx dt 3x4

The same argument as above leads us to a contradiction. The proof is complete.

Theorem 5.2. Assume that c(x, t, u) — p0u (p0 is a positive constant), i.e.

34m 32m , , 34m 34m , - , ,
— + <#y— -(/) + y)_ + ft — + ,). (29)

Every classical solution m of (29) satisfying (SE) is oscillatory in J X R+ if 0 < p0

< afiy )2 and the function

/t + ir/u)_ ( fs + ir/u). , . v / . \ \ \
If //(£)sinw + (£ - s) dn sinw_(i - t) ds



176 TAKASI KUSANO AND NORIO YOSHIDA

is oscillatory on (t0, oo) for some t0 > 0, where

«±= ±((a/3y)2 - 4/?0)1/2))
1/2

Proof. In the case where u > 0 in J X [r0, oo) for some > 0, we obtain

d4 rl d2 [L rL
—— / udx + apy —- / u dx + p0 I u dx ^ H(t)
dt Jo dt Jo Jo

instead of (28). Proceeding as in the proof of Theorem 5.1, we find that the conclusion

follows from Theorem 2.4.

Corollary 5.1. Every classical solution u of (*) satisfying (SE) is oscillatory in J X R+ if

liminf 1 11 ^
t 00

JJl - i) *U) dt - -00,

limsup J (l — N(t) dt = co
t~* oo 7"

for all large T.

Proof. By Theorem 2.1 we see that (25) and (26) are oscillatory at t = oo. The

conclusion follows from Theorem 5.1.

Corollary 5.2. Every classical solution u of (*) satisfying (SE) is oscillatory in / X R+ if

liminf J ^1 — y)( J ' //(£) sin w(£ — s) dj-^ ds = -oo,

limsup/(l_y)(/ H(t) sin w(£ - s) d£ j ds = oo

for all large T, where = (a/3y)l/2.

Proof. We observe, using Theorem 2.2, that (25) and (26) are oscillatory at t — oo. The

conclusion follows from Theorem 5.1.

Remark 3. We consider the equation (29) with f(x, t) = 0, i.e.

34u n d2u , _ , d4u 34u
— + apy—j-(/? + y) 2 , + Py—* + Pou = °- (3°)
3/ 3r 3x23r 3x4

It follows from Theorem 5.2 that every classical solution u of (30) satisfying (SE) is

oscillatory in J X R+ if 0 < Po < i(afiy)2-
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