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Introduction. We study the thermoelastic equations

d29 30 d2u+ ■ W

32u 30 , 32u , .—7 = 03- + ^—7- (2)
3x 3x a?2

The derivation of these equations from the standard equations of homogeneous and

isotropic linear thermoelasticity, as presented by Carlson [1], is to be found in [2] and will

not be repeated here. We remark, though, that 9(x, t) is the temperature, and u(x, t) is the

displacement in a slab 0 < x < 1 which has unit (scaled) thickness. The coupling constant

a2, denoted by a in [2], measures the interaction between thermal and mechanical effects,

and the constant b measures the effect of inertia.

Equation (2) is just the equation of motion

do/dx = bd2u/dt2

in which

a = du/dx — a6

is the stress.

The quasi-static theory is obtained by setting b = 0, thereby ignoring inertia altogether;

if we were to adopt that theory we should conclude that the stress is independent of the

coordinate x, that is to say

a(x, t) = a(y, t) (0 < x, y < 1).

The thermoelastic theory generalizes the classical theory of heat conduction, according

to which the slab is rigid and the temperature satisfies the heat equation

d20/dx2 = 30/31.
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Let us consider a continuous function cp(x, t), defined in the half-strip S(t0) = [0,1]

X [;0, oo) of the *, r-plane. If R c 5(/0) is any closed rectangle of the form R = [0,1] X

[/j, t2\ we denote by dR the parabolic boundary of R, that is to say that part of the

boundary of R which is formed from the three line segments

[0,1] x{/j}, {0} X [^, r2], {l}x[^,f2].

which comprise the base and the two vertical sides of R.

We shall say that cp has the maximum property in S(t0) if maxw cp = max^ cp, and that

cp has the minimum property in S(tQ) if min R <p = min dR cp, for every such R c S(tQ).

As is very well known: If <p is continuous in S{t0), and if d2cp/dx2 and dcp/dt exist and

are continuous in the interior of S(t0), then cp has the maximum property in S(t0) provided

that dzcp/dx2 > 3cp/dt, and cp has the minimum property in S(tQ) provided that d2<p/dx2 <

dcp/dt. If cp is a solution of the heat equation it has both the maximum property and the

minimum property in S(t0).

We propose to study solutions 8, u of the thermoelastic equations which are defined in

the half-strip 5(0) = [0,1] X [0, 00) and to ask whether it is still the case that, as the

classical theory predicts, 8 has the maximum and minimum properties in 5(0).

So wide a statement is simply false for the thermoelastic equations. Nonetheless we shall

prove, what is our main result, that 8 has the maximum property if there is a net flow of

heat out of the slab at each instant, and that 8 has the minimum property if there is a net

flow into the slab at each instant, so long as we confine our attention to a half-strip

S(t0) c 5(0) where t0 ^ 0 is some finite number, chosen appropriately. In effect, we may

say that, if the net heat flow is of constant sign, 8 will have either the maximum property

or the minimum property once the 'noise' generated by the initial data on / = 0 has had

time to die down. This result is different from the results of the articles [3,4] but it

reinforces the same general point that, if a proposition which holds for the heat equation

extends at all to thermoelasticity, it is most likely to be valid after a sufficient lapse of

time.

1. Maximum and minimum properties of the temperature. We suppose always that a > 0

and b > 0.

We take the boundary conditions to be

|^(0, 0=/(0. |^(l, 0 = g(0> «(0, 0 = "(1, 0 = 0 (t> 0)- (3)

We write h — g — f for the net flow of heat: thus there is a net flow of heat into the slab at

any instant t at which h(t)> 0, and there is a net flow of heat out of the slab at any

instant at which h(t) < 0. Since we are interested in drawing comparisons with the

classical theory for a rigid conductor we have supposed the faces x = 0 and x = \ to be

clamped.

A preliminary lemma involves the function

'(t) = a 1 max
0«.r,

3 a , 3 a , .
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whose values are finite if the stress-rate do/dt is continuous in 5(0). This is certainly the

case if, as we suppose, 8 e C2 and we C3 in 5(0).

Lemma. Let 8 e C2, u e C3 in 5(0) and let 6, u satisfy the thermoelastic equations (1), (2)

and the boundary conditions (3). Then 8 has the maximum property in 5(0) if h 4- r < 0

in [0, oo) and 8 has the minimum property in 5(0) if h > r in [0, oo).

At first sight, the Lemma would appear to be of little value because we have no prior

knowledge of r in general. However, we shall find that it is possible to estimate r in a

satisfactory way. We do have prior knowledge of r in the important quasi-static theory

(b = 0) for then the stress a is independent of x, and r vanishes identically. In that case we

can immediately draw the conclusion:

Theorem. Suppose, in addition to the hypotheses of the Lemma, that 6 = 0. Then 8 has

the maximum property in 5(0) if h < 0 in [0, oo), and 8 has the minimum property in 5(0)

if h > 0 in [0, oo).

The fact that b is usually small by comparison with unity suggests that Theorem 1 is

close to the truth even when inertia is taken into account. It will be noted that we have

imposed no restriction upon the constant a beyond that it be positive.

The proof of the lemma is straightforward. We integrate Eq. (1) with respect to x and

we appeal to the boundary conditions (3) to find that

I1 ™dx = g-f=h,

and we integrate the equation

du/dx = ad + a (4)

and appeal to the boundary conditions again to find

( a dx = —a {
Jo Jo

8 dx

and, therefore,

Xo 9'

Next, we differentiate (4) with respect to t and substitute for d2u/dxdt in (1) and obtain

the equations

d28 , 2. 3# 3ct
—- = (1 + a2)^- + fl-
ax2 3; 91

30 . I 3a ri 9a
- (! + - «'h + « 37 - / (5)

The first mean value theorem for integrals implies that there is v e [0.1]- depending upon

Z, with

f1 3a, x , 9a , ,
/„ 8?(z-'>dz ~ '• '>
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and, consequently, that we can estimate the third term on the right-hand side of (5) as

I do , , r\ 3a , , ,
ai97(x'')_i0 ~di{z't)dz < a

9a , . 3a , ,

0 0 $t
< a2r(t).

On returning to (5) we see that this estimate implies the inequality

d2e 2,3(9
J?>il+a >37

if /! + /•< 0 and, hence, that 0 has the maximum property in 5(0). Similarly,

d2e „ 2,36i

^<(1 + ,,)a7

if h > r and then 0 has the minimum property in 5(0).

In order to cope with the case in which b is positive we introduce the second-order

energy

if12 I
d2e 2 + 33w

3?

We denote derivatives of /, g, h by primes.

3x3/"
+ b

3 3u

31-
dx.

Theorem 2. Suppose that b > 0, that 8, u e C4 in 5(0) and that 8, u satisfy the

thermoelastic equations (1), (2) and the boundary conditions (3), where

(i) |/i(OI —> °o as t -* +oo,

(ii)A'(/) = o(|A(0D,

(iii) /o'(|/"(^)|2 + |g"(*)|2) ds = o(\h(t)\2).

Then there is a finite t0 > 0 such that 8 has the maximum {minimum} property in 5(?0)

according as h{t) -> - oo{ + oo}.

The hypotheses in /, g, h are satisfied if, for example, / and g are polynomials

/(') = Ao + Ai' + ''' + AJ"' s(t) = Bo + B\t+ "'" +

of the same degree n ^ 1 and with An + Bn.

We might regard the hypothesis (iii) as saying that when we calculate the net heat flow

h = g — /, by subtracting / from g, the amount of cancellation is not excessive.

If one of the faces is insulated, that is if / = 0 or g = 0, (iii) reduces to the condition

(iv) fo\h"(s)\2 ds = o(\h(t)\2)

on the net heat flow.

The same remark applies if 8 is an even function with respect to the mid-plane x = j, in

the sense that 8(x, t) = 8( 1 - x, t) in 5(0), for then —f=g= \h.

The conditions (i), (ii), (iv) are satisfied if h is any non-constant polynomial.

We begin the proof by observing that

da , , da , . rz da r
37(2.0- 87^.')- / 5797
3a/ x 3a, N rz 32a , , /"'33« ,

jdx
dt
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and, therefore,

, s b r\ 3 u b / n
(0<~ TT dx ^ - 1/ /

a 8; a v o

a3« 3u

3r ^ < \/~7£(0 •
a2

Thus, in order to estimate r it is enough to estimate £, and that we can do with the aid of

energy integral techniques.

If we set

320

3;2

3 m

3x3?"

3 u

dt3

_ 3^0 336> | 33m 33k 32fl 03_u

dt2 3x3?2 3 t3 3x3/2 3/2 3r3

the thermoelastic equations imply that

3G _ 3F

3x 3?

330

3x3z2

Thus, if we apply Green's theorem

3 G 3 FIL\^-^)'l'""-LFdx + G'"

to any rectangle R = [0,1] X [0, T], where 3R is the (entire) boundary of R oriented in the

positive sense, we arrive at the equation

/7'■'o Jo

re
ldx dt + E(T)

3x3t2

£(°) - f ^?(o, dt + f |^(1, t)g"(t) dt.
J(\ nt rtt

(6)

Next, we recall that

fi 3a

/;>=*•

and, therefore,

r ^dX=
Jn At2

Accordingly, if we integrate the identities

u i, . 32<9 \ d2e „ . d3e

9* \ 3r2 / 3/2 3x312

3 26 \ 32(9 d36
X   =    + X

M dt2 312 3x312 '
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we obtain the formulae

920/n x ,, /-I „ , 33(9-(0, t)=-h + (1 - x)
JC\ i3t2 Jq 3x3/2

d29 „ , /-i 330

dx,

(i,/)-a' + r x-^-dx,
•'n RrS/2

e into

/*"/■" ""

3/2 ' ' •'o 3x3/"

and, when we substitute into the right-hand side of (6), we see that

336

3x3/
dxdt + E(T)

3 36
dxdt= £(0) + /7'/»(/)(! - jc)

•'o •'O

+ fT C g"(t)x • dxdt + fT h'(t)h"(t) dt.
Jc\ J c\ HvH/ •'n

Jo Jo J ' 3x3/2

d3e

Jo dxdt2 Jo

Since the arithmetic-geometric mean inequality leads to the estimates

jT J1 1 - x)~^ dxdt + fT J1 g"(t)x y^dxdt
Jo Jo 3x3/~ Jo Jo 3x3/

f* ||/"(0|2(1 - x)2 + —2) dxdt

UT£b,)f*1+

< 2

+ 2

3x3/2

336>

=yT(\rv)\2+\g'V)\2)*+jT f
0 J0 j0 J0

dxdt

336

3x3/*
■ dxdt,

we conclude that

£(r) < £(0) - ^'(O)2 + |/or(|/"(/)|2 + |g"(0|2) dt + ^'(T)2

and, in the light of the hypotheses (i), (ii), (iii), that £(/) = o{\h(t)\2) as / -> + oo. Thus

we can choose /0 ^ 0 in such a way that 2bE < a2h2 in the interval [/0, oo) and, without

any loss in generality, we may suppose that h is of constant sign in [/„, oo). It follows that

r \h\ in [/0, oo) and, moreover, that h + r < 0 in [/0, oo) if /?(/) -» - oo and that h > r

in [/0, oo) if h(t) —> + oo. In the former case, the Lemma implies that 6 has the maximum

property in S(t0) and, in the latter, that 9 has the minimum property in S(t0), which

completes the

2. A comparison theorem. We use the results of the preceding section to compare the

temperature predicated by solving the thermoelastic equations with that predicated by

solving a heat equation.

Theorem 3. Let 0, u e C4 in S(0), let 0, u satisfy the thermoelastic equations (1), (2) and

the boundary condition

u(0, t) = h(1,/) = 0 (/> 0),
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and suppose that

= = fx^1' h = g~f'

satisfy the hypotheses (i), (ii), (iii).

Let ipe C2 in 5(0), let <p be a solution of the heat equation

0 = + ̂
and let

<p(0,0 = 0(0,0> <p(i» 0 = 0(1-0 (' > o).

Then there is a finite r0 > 0 such that 0 ^ <p or 6 < <p throughout S(t0), according as

hit)-* +oo orA(() -» — oo.

Once again the hypothesis (iii) can be replaced by the hypothesis (iv) on h alone when

one face is insulated, or when 6 is even with respect to the mid-plane.

The Theorem compares 6 with a cp which takes the same values on the faces x = 0 and

x = 1 as does 9, and which is a solution of the heat equation in which the (scaled)

diffusivity 1 is replaced by (1 + a2)"1. No restriction is placed upon the values taken by

9, u, du/dt, or qp on the initial line segment [0,1] X {0}, and 9 and (p need not coincide

there. It is supposed that information is available about the behaviour of the heat flow

across the faces x = 0 and x = 1 in the thermoelastic problem.

In order to prove the Theorem we use the elementary remark that: if p e C1 in [0,1] and

p(0) = p( 1) = 0, the quotient p(x)/x(\ — x) is bounded in the open interval (0,1). We also

need explicit, though not best possible, bounds on the quotient when p(x) = sin irx. These

are provided by the inequalities

2x(\ — x) sin77\x < 2trx(\ — x),

which hold in [0,1]. It is enough to verify them in [0,

In that interval

2x < sin7TX < TTX, J < 1 — X < 1,

the first two bounds being valid because sin77\x is a concave function of a-, and the

required inequalities follow.

We may suppose h(t) -» + oo as t —> + oo, for the alternative case is covered by

arguing with — 9 in place of 6 and — qp in place of <p.

If we return to equation (5), which we derived in the course of proving the Lemma, we

see that 6 satisfies the inequality

d29 , 2, 36 2 2
< (1 + a )-r a~h + a'r,

dx2 V 'dt

where, as we know,

0 < r < 11 ̂ E = o(h).
a2
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Thus there is tl > 0 such that r(t) < \h(t) a°d h{t) > 1 when t > tv Consider

\p(x, t) = 9(x, t) - <p(x, t) - ^a2x(l - x)

+ ^4 sin77x • exp ——-(/ - /x) ,
\ 1 + a2 I

in which the constant A > 0 will be chosen later. We have

d2\p „ ,,0i/- 020 1 2

^-(1 + "2)37 = ^+ °2)a7 + 2°2

< — a2h + a2r + ^a2 < - ja2h + ^a2 < 0

in the half-strip SX^). Since <p coincides with 6 on the vertical sides of S(t), \p vanishes on

the vertical sides. On the base

i//(x, tx) = 0(x, tx) — cp(x, t1) — \a2x{ 1 — x) + /4 sin7rx

3* x(l — x)(B — \a2 + 2A),

where B is a lower bound on the quotient

8(x, tx) - (p(x, rt)

x(l — x)

and, therefore, we can arrange that ^ > 0 on the base of S(t1) by choosing A =

max{0, ja2 — \B}- With A chosen in this way, we have > 0 throughout 5'(/1) and,

therefore,

0 — <p ̂  }a2x(l — x) — A sin ix ■ expj — y~—-(t — tx) ]

3* x(l - x)|\a2 - 2 it A ■ exp | - 1 ^ q2^ ~ 'i)]j-

Thus if we take t0 > tl sufficiently large we shall have 6 > <p throughout the half-strip

S(t0), which proves the Theorem.

It will be noted that our proof depends upon equation (5), which depends in turn upon

the hypothesis that the faces are clamped. Thus although the Theorem is an assertion

about the temperature its validity depends in part upon the boundary conditions on the

displacement; this is just what we should expect from a coupled theory.

References

[1] D. E. Carlson, Linear thermoelasticity, Encyclopedia of Physics, Vol. VIa/2, Springer-Verlag, Berlin, 1972

[2] W. A. Day, A comment on approximations to the temperature in dynamic linear thermoelasticity. Arch. Rational

Mech. Anal. 85, 237-250 (1984)

[3] W. A. Day, A property of the heat equation which extends to the thermoelastic equations. Arch. Rational Mech.

Anal. 83, 99-113 (1983)
[4] W. A. Day, Further remarks on a property of the equations of dynamic thermoelasticity. Arch. Rational Mech.

Anal. 84, 69-81 (1983)


