
QUARTERLY OF APPLIED MATHEMATICS 135
VOLUME XLIII, NUMBER 2

JULY 1985, PAGES 135-141

ON A PLANAR EXTERIOR PROBLEM

IN LINEAR ELASTICITY

By

H. RAMKISSOON (University of the West Indies)

Abstract. In this note a representation is obtained for the solution of the planar

Dirichlet boundary-value problem of linear elasticity. It consists of a double-layer

potential and a linear combination of three basic functions whose form is determined by

the shape of the boundary. This representation is similar to that obtained for the

analogous problem in hydrodynamics.

1. Introduction. In a paper by Korenev [1], a particular representation for the two-di-

mensional exterior problem of Stokes flow was obtained. The equations of linear elasticity

are only slightly more complicated than the governing equations for Stokes flow and in

this note it is shown that the treatment of Korenev [1] can be extended to the analogous

problem in elasticity.

In the case of plane strain of a homogeneous isotropic elastic body the equilibrium

equation is

(i)

while the constitutive law takes the form

'ij = XukJ,j + (2)

Here are components of the stress tensor, u is the displacement vector, f is the body

force, (A, ju.) are material constants, <5I; is the Kronecker delta and the indices (/', j, k) take

the values 1, 2. Greek indices («,/?) will take the values 1, 2, 3 and throughout the paper a

rectangular co-ordinate system (jt^ x2) will be employed.

The above Eq. (1) and (2) lead to the following basic equation of elasticity:

U + li)UK,Ki + + /, = 0. (3)

Our objective is to obtain a particular representation for the solution of the homoge-

neous equation associated with (3) (f = 0), in an exterior region R(e) subject to the

boundary condition

lim u = a (4)
v e R(e) —>C
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where C is the boundary. We shall assume that C is a simple closed curve dividing the

two-dimensional plane into an interior bounded region R{j) and an exterior unbounded

region R{e).

2. Preliminaries. The question of existence and uniqueness of solution of the above-

mentioned boundary-value problem has been studied extensively, more so by Kupradze [2,

3]. This section is mainly devoted to stating some of the results from these studies that are

relevant to our problem.

Consider a concentrated point force applied at the point y in an infinite isotropic elastic

plane. This can be represented by

f = 8(x - y)e*

where 6(x — y) is the Dirac delta function and e" is the unit vector defined along the ATth

co-ordinate axis. If we represent the solution of (3) due to this concentrated point force by

u\ then the matrix A(x, y) of these so-called fundamental solutions has been shown [2, 4]

to take the form

Ax, y) =
<i "f
,i*2 U2

where a = (X + 3ju)/2jh(A + 2ju), r2 = - yj)2 + (x2 - y2)2 and I(x, y) is a 2 X 2

matrix with weak singularities in comparison with the main one. Furthermore, it was

shown that

A(x,y) = A*(y,x) (6)

where A* is the transpose of A. For convenience, we represent the unknown vector u in the

matrix form

U =

and introduce the operators

T\U = {(X + 2/i)uu + Xm2>2 }«! +{fi(ul2 + u21)}n 2,

T2U = {/i("i,2 + «2.i)}"i + {^"1,1 +(X + 2n)u22}n2,

where n is the unit outward normal to the curve C. If we let

2 IT

a 0

0 a
log r+I(x,y) (5)

LvA*(x,y) =
TXA'1 T{A'2

t2at2a'2

where A*K are the columns of the matrix A, then it can be shown that [2,4]

log r -V II(jc, y), (7)
ATI

— P-
3/1.. Pds„

-fi— ~aw..
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where 11(jc, y) is a matrix with weaker singularities, /3 = \i/(\ + 2ju) and B(x, y) =

[LvA*(x, y)\*. From these same references [2,4] the following results, stated in Theorems

1-4 can be obtained:

Theorem 1. The solution of the equation (3) with f = 0, has the integral representation

U(x) = ( {A{x, y)L(U) - B{x, y)U{y)} dsv, (8)
Jc

and the associated Betti formula

f U*L(U) dsv = J E(U)dR, (9)
c Rd)

where

L(U) =
TXU

T2U

and E is the internal energy given by E(U) = (\/2)eiiejJ + with e:j = j(n^ y +

ju/ (). The reprersentation (8) suggests the introduction of the single-layer potential

V(x; ip) = f A(x, y)xp(y) ds,„
Jc

and the double-layer potential

w(x; <t>) = fcB(x> y)<t>(y) dsy,

where the density functions ip = [^,] and <£[<#>,] are column matrices and are assumed to

satisfy Holder's condition.

Theorem 2. The single-layer potential V(x; ip) is continuous throughout the entire plane

including C.

Theorem 3. Let ) and W({; 4>)(e> denote the limiting values of the potential

W(x; <#>) as a: —» £ e C from R(i) and R{e) respectively. Then

W(£; <#>)(■) = -^<l>(£) + fcB(£' dsv, (10)

W(|: <#>)«■) = ^<#>(£) + dsv.

Theorem 4. If the operator L is applied to the single-layer potential F(x; >p), then

L(V\n=^U)+ f L(A({,V)t(r,)ds,, (11)

L(V\e)= + f L{A((,v)Hv) dsv.

The systems (10) and (11) are pairwise adjoint and have been used to study the existence

and uniqueness of solutions of certain standard boundary-value problems [2], The use of
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Fredholm alternative for these problems which includes the present problem under

investigation, has been justified [2], We now note the following:

(a) From (9) we have

f U*L(U) ds = (E{U) dR, (12)
Jc+cTo JR

where CT is a circle centered at the orgin (which is taken in R(j)) and radius t0 sufficiently

large to ensure C c CT( and R is the bounded region between C and C . It follows by

taking the lim (12) asT0 -» oo that if

lim r0 f2vU*L(U) dd = 0, (13)
^*o * cc Jq

then

f U*L(U ) ds = - f E(U) dR. (14)
J r ' n

(b) The equation

fu*L(U)ds = 0 (15)
Jc

has three linearly independent solutions U" given by

Ul = u2 = u =
-*2

(16)

(c) From (5) the elements of A(x, y) are of <9(log r). Hence, if the condition fc \pds = 0

is satisfied for a continuous density function ^ then the single-layer potential

V(x; ip) = 0(l/r). In other words,

lim V(x\ \p) = 0 if f ip ds = 0. (17)
I v | —* oo Jc

3. A representation. We shall now generate a representation for the solution of the

homogeneous planar exterior problem in elasticity. That is, for the solution of

(A + n-)ukki + puitkk = 0 (18)

for x e R(e), subject to the condition (4) which we shall write as

«oi(0

_"o2(0.

and subject to condition (13) which permits the use of Betti formula in R{e).

Lemma 1. The homogeneous equation

^<#»(£) + v)<l>(v) dsn = 0 (20)

has as three linearly independent solutions, the Ua's given by (16).

lim U=F(£) =
vg Rle)

(19)
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Proof. Ua satisfies (18) and also L(Ua) = 0. Substituting into (8), we get

U"(x) = - J^B(x, ri)Ua(ij) dsv (21)

for x G R(I). Taking lim (21) as x —> £ e C and ultilizing (10), produces

uaU) = -wU- ua)U) = \ua(0 - fHLv)ua(v) dsv

\uaU)+ t1)Ua(ri) dsv = 0.

Hence, Ua(x) satisfies (20). Since Ul, t/2, t/3 are linearly independent, it means that the

Ua,s are three linearly independent solutions of (20) and this completes the proof. It

follows from Fredholm alternative that the associate equation

^(0+ 0, (22)

has at least three linearly independent solutions, say ^a. In fact, we can as in [3], show

that they form a complete system of linearly independent set of solutions of (22).

Lemma 2. The linearly independent set of solutions of the homogeneous equation (22)

satisfies the condition

j-*ads± 0. (23)

Proof. We form the single-layer potential V(x~, 4'®) and observe from (11) that

L(V(x; ¥"))(,.) = 0. From this result and Betti's formula (9), we see that

f VL(V) ds = f E{V) dR =
J r J t?

= o.

It now follows from (15) and (16) that

V(x- *a) = Ua, x £ R(iy (24)

Now assume that fc<f,ads = 0. From (17), this implies that lim|r|_00K(;c; >I'a) = 0. But

from (24) and Theorem 1, V(x; ty1) = U' throughout the plane and consequently

liin|V|_oo V(x> ^ 0- This is a contradiction which means our assumption is false.

Lemma 3. There exist unique constants ax, a2 such that for

= - a2*2, (25)

we have

*4<fe = 0. (26)
/c

Proof. We observe that (26) is a system of equations for determining al5 a2. To prove

that it is uniquely solvable, it suffices to show that the corresponding homogeneous system

j (a<Vl + a^2) ds = 0, (27)
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has only the null solution o1 = a2 = 0. If a^1 4- 2 ¥= 0, then from Lemma 2,

J (a^1 + <J2^2) ds ¥= 0.

Therefore, /c(a1,I'1 4- 03^2) ds = 0 implies that o^1 + oS^2 = 0, which in turn implies

that a, = a2 = 0. Hence, the proof.

To obtain the required representation, we follow the same procedure as for the Stokes

flow in fluid mechanics [1], We seek a solution of the boundary-value problem (18)—(19)

subject to the condition (13), in the form

U(x) = W(x; <f>) + alUl + a2U2 + a3V(;t; *4), (28)

where ty4 is defined in (25). From (10),

F(i) - alUl - a2U2 - a3V((; *4) = |*(£) + /*(«, v)4>(v) ds(29)

The constants aa are chosen such that for 6 = 1, 2, 4

j [F(£)alUl - a2U2 - a3F(£; = 0. (30)

To demonstrate the unique solvability of (30) for the a", we consider its homogeneous part

( {alUl + a2U2 + a3F(£; ¥4)W'di = 0. (31)
Jc

This equation (31) is equivalent to the system

a1 f *{ds + a2 f ^ds + a3 f F(|; y4)**1 ds = 0,
Jc Jc Jc

a1 ( ds + a2 f &2 ds + a3 f V(£; ds = 0,
J c * c * c

a3 [ V(£; *4)**4 ds = 0. (32)
Jc

From (11) and the already established result L(V(x\ ^"))(1) = 0, it follows that

L( K(|; >I'4))(e,) = ^4. Using this and (14) in the last equation of (28), we obtain

0 = a3 f V(£;*4)**4ds = a3 [ E(V)dR.
J r * n

Now since Jc^4 ds = 0, we have from (17) lim^^^ V(x; 4'4) = 0 and so a3V(x; ^4)

vanishes identically in R(e) and on C. But since V(x; W") are linearly independent,

V(x; ^4) # 0. Thus a3 = 0 and (32) simplifies to

a1 { ds + a2 [ ^ ds = 0,
Jc Jc

a1 [ ty2 ds + a2 f ty2 ds = 0. (33)
Jc Jc
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This system (33), is conjugate to that represented by (27) which was in fact shown to

possess only the trivial solution. Hence, a1 = a2 = 0. We have thus shown that a1 = a1 =

a3 = 0 which proves the unique solvability of (30) for the aa and this in turn guarantees

the existence of the solution <f> of (29). These results can be summarized in the following

theorem:

Theorem 5. The solution of the exterior planar boundary-value problem of elasticity

characterized by the Eq. (18) and (19) and satisfying the Betti formula (14), is representa-

ble in the form

U{x) = W{x\<p) + alUx + a2U2 + a3V(x; *4), (34)

where 4> is a solution of (29) and the aa are determined from (30).

From this representation, which is similar to that for Stokes flow [1], it is seen that

u(a-) = 0(1)

since W(x\ (j>) = 0(\/r) [3].
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