
QUARTERLY OF APPLIED MATHEMATICS 57

APRIL 1985

MODULATIONAL INSTABILITY IN MAGNETIC FLUIDS*

By

S. K. MALIK and M. SINGH

Simon Fraser University

Abstract. A weakly nonlinear evolution of two dimensional wave packets on the surface

of a magnetic fluid in the presence of a tangential magnetic field is presented taking into

account the surface tension. It is shown that the magnetic field has a stabilizing influence

on the modulational instability.

1. Introduction. The propagation of plane waves in ferro-fluids in the presence of a

tangential magnetic field has been investigated theoretically as well as experimentally by

Zelazo and Melcher [1], These authors have demonstrated that the magnetic field has a

stabilizing influence on the stability of the fluid surface. In their experiment, a plane wave

of specific wavelength, consistent with the boundary conditions, was imposed on the

interface, and the subsequent frequency shift for various strengths of the magnetic field

was measured. Both theoretical and experimental results show an upward shift of

frequency of the imposed wavelength as a function of the magnetic fluid. This, however, is

in constrast when the magnetic field is normal to the interface where beyond a certain

critical magnetic field strength, Cowley and Rosensweig [2] report the existence of an

instability leading to the appearance of the regular hexagonal cells.

The aim of the present paper is to study the nonlinear propagation of wave packets on

the surface of a magentic fluid. In hydrodynamics, this classical problem has received

considerable attention (see Lighthill [3], Benjamin and Feir [4], Whitham [5]). The analysis

carried out by Benjamin and Feir [4] reveals that a uniform wavetrain of weakly nonlinear

dispersive waves is unstable against the side band perturbation. Such an instability is

confined to the long wave modulations, and possesses a much higher cutoff waveneumber.

These findings generated considerable efforts by various authors [5,6,7] towards obtain-

ing the system of equations governing the amplitude evolution of the unstable wavetrain.

Hasimoto and Ono [7] derived the nonlinear Schrodinger equation for the evolution of the

finite amplitude gravity wave packets on the fluid surface with the use of the derivative

expansion method, and succeeded in recovering the results reported earlier [4],
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In this presentation, we plan to develop the nonlinear Schrodinger equation describing

the evolution of the finite amplitude wave packet on the surface of a ferro-fluid in the

presence of a uniform tangential magnetic field. The basic equations with the accompany-

ing boundary conditions are given in Sec. 2. The first order theory and the linear

dispersion relation are obtained in Sec. 3. In Sec. 4, we have derived the second order

solutions and the nonlinear Schrodinger equation governing the amplitude modulation. It

is well known that the solution of this equation can be represented in terms of Jacobian

elliptic functions. The solitary wave, phase jump, and the progressive wave of constant

amplitude are just the special cases. The wavetrain solution of constant amplitude are

unstable against modulation if the product of the group velocity rate and the nonlinear

interaction parameter is negative. We have shown in this paper that the wavenumber at

which the modulational instability sets in is highly sensitive to the magnetic field strength.

Furthermore, we have established that the magnetic field has a stabilizing influence on the

modulation instability.

2. Basic equations. We consider two dimensional wave motion of an inviscid, incom-

pressible, magnetic fluid with density p and magentic permeability Hv The fluid is

occupying the half space z < 0, and the medium z > 0 is of magnetic permeability ju 2 but

of negligible density. There is a magnetic field H( H, 0,0) along the fluid interface. The

motion under gravity g(0,0, -g) is assumed to be irrotational. The basic equations which

govern the velocity potential <p( v = \7<p) and the magnetic potential \p(H = Stf) are:

V2<t> = 0, (1)

vVO)=0 0 = 1,2). (2)

The boundary conditions at the free interface z = t](x, t) are (See Malik and Singh [8])

given by

9ij d(f> _ d<j> Br;
8/ 3z dx dx (3)

M/Zi1' = Hf\ (4)

Hp = H?\ (5)

*±+n+i^_i^(1+^r3/2
a, +^ + 2(v<#,) "7^ 1+U*/

(/* - i)
87rp

(6)
(2)1

where ja = ^x/fJL2- Here T, tj, Hn and HT repesent the surface tension, the elevation of the

free surface, the normal and tangential components of the magnetic field, respectively.

To investigate the modulation of a weakly nonlinear quasi-monochromatic wave with

narrow band width spectrum, we employ the method of multiple scales by introducing the

variables

xn = e"x and tn = e"t (n = 0,1,2,3),



MODULATIONAL INSTABILITY IN MAGNETIC FLUIDS 59

and letting

3

TJ(x, 0 = E e"v„(x0, Xu x2; t0, tx, t2) + 0(e4), (7)
n = 1

3

<p(x, 0 = E £"<P„(x0> xi> x2' 'o> h> h) + 0(e4), (8)
n = 1

3

iU)(x,t)= £ eW^Xo, xv x2; t0, tx, t2) + 0(e4), (9)
« = l

where the small parameter e characterises the steepness ratio of the wave. The short scale

x0 and the fast scale t0 denote, respectively, the wavelength and the frequency of the wave.

Here, tx and t2 represent the slow temporal scales of the phase and the amplitude,

respectively, whereas the long scales xv x2 stand for the spatial modulations of the phase

and the amplitude (see Nayfeh [9]). The expansions (7) to (9) are assumed to be uniformly

valid for -oo < x < oo and 0 < t < oo. The quantities appearing in the field Eqs. (1) to

(2) and the boundary conditions (4) to (6) can now be expressed in Maclaurin Series

expansions around z = 0. Then, we use Eqs. (7) to (9), and equate the coefficients of equal

powers in e to obtain the linear and the successive nonlinear partial differential equations

of various orders.

3. Linear theory. Since there is no steady flow in the unperturbed state, the linear

progressive wave solutions of the Eqs. (1) to (2) subject to the boundary conditions (3) to

(6) yield

Vi = A(xu x2\ tu t2) exp(iip) + A(xu x2; tu t2) exp(-/^), (10)

(j>1 = -iuk-^Aixy, x2, tu t2) exp(iip) - A(xu x2, tu r2)exp(-/^)]

•exp(/cz), (11)

= iB[A(xJ, x2; tx, t2) exp(/'^) - A(xx, x2\ tx, ?2)exp(-^)]

■exp(^z), (12)

iP{2) = iB[A{x1, x2; ?!, r2)exp(/^) - A(xx, x2; tx, /2)exp(-/V)]

■exp (-kz), (13)

where

xp = kx0- ut0, B = H( 1-M)/(1+M). (14)

Here, A denotes the complex conjugate of the amplitude A, and k, to stand for the

wavenumber and the frequency of the centre of the wave packet, respectively. The

progressive wave solutiosn (10)—(14) lead to the dispersion relation:

w2 = gk + ^k3 + V2k2, (15)

where

V2 = (fj. - I)2H2/4tt(h + l)p. (16)



60 s. K. MALIK AND M. SINGH

From the dispersion relation (15), co2 > 0, implying that the tangential magentic field has

a stabilizing influence on the wave motion. These theoretical results were obtained and

confirmed experimentally by Zelazo and Melcher [1],

4. Amplitude modulation of traveling waves. Since our aim is to study the amplitude

modulation when w2 > 0, we now proceed to the second order problem in 0(e2). With the

use of the first order solutions given by the equations (10) to (14), we obtain the equations

for the second order problem:

3 <t>2 + 3_^ = _2oo ( Tfi ) exp(/0 + kz) + c.c., (17)
3z2 BjCq \ 9*i

d2W 9y2D j dA
dz2 ' dx2 =2kB(-tei\™P(i0 + kz) + c-c-> (18)

3 ^ + ^J^_==2kBl^-\exp(i0 - kz) + c.c., (19)
8z2 3^o 13^i

and the boundary conditions at z = 0:

^ exp(/0) — 2iukA2 e\p(2i9) + c.c., (20)
o/q o z d/j

3^2' 3^22)Nl ,r„ \ 3r)2 dA

^—arj - H(1 -"> ■H(1 -

— 2ik2B(n — 1) A2 exp(2/0) + c.c., (21)

= 4Bk2A2 exp(2i8) + c.c., (22)
* 3^<2> .2

3x0 9x0

>29<#>2 , ^32t?2 //(/x, - 1) 0^(2"

P 3fo Pg,J2 0x^ 3-^0

3 /< 1

exp(/0) (23)
~ . „d A u dA HB . dA
2kT- h p7r-  —(11 - 1)-5—

k 3/j 47t dxx

+ ,2„ _ ;„2T/2 (M + 3)u 2p - k V A2 exp(2i6) + c.c..
(1 + n)

The non secularity conditions for the existence of the uniformly valid solution are

„ , ,/ dA \ I T w2 dA n
2^_1hr + ^- + -+ F2k- = 0, (24)3t1) \ p k2 J dxi

and its complex conjugate relation. The group velocity of the wave is given by

r (2*1 + 4+H- (25)
* dk 2u \ p k2 j

The equation (24) shows that in the second order theory, the amplitude A is constant in a

frame of reference moving with the group velocity V of the waves.
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The Eqs. (17) to (25) furnish the second order solutions:

tj2 = A^42exp(2/0) + c.c., (26)

1 '

*2 k

3/1 co , , \ 3^4
Wt*-k{x~zk)J7t exp(/# + kz)

~i~r{ A — k)A2exp{2i8 + 2 kz) + c.c., (27)
K

i [) J
^2* = t-8(1 — z^)o—exp(/0 + kz) + iB{A - /c),42exp(2/0 + 2£z) + c.c., (28)

K OX ̂

z c)A
\p(2) = —5(1 + zk)-^~ exp{id - kz) + iB{ A + k)A2 e\p{2id - 2kz) + c.c., (29)

where

A = -co2 + V2k2(n - 1)/(1 + M)/(2k2T/p - g) (30)

Furthermore, we assume that k J= {gp/lT)1' 2. The case k = (gp/IT)1/2 corresponds to

the case of the second harmonic resonance. We now proceed to the third order problem in

0(e3). On using the first and the second order solutions in the equations for the third

order theory, we deduce the following condition for the perturbation tj3 to be non secular:

2w dA I co2 rr2 2kT\M
-r- : + V2 +
k dt2 \ k2 P ) 3jc2

2co 32/l

1 d2A / (o3 | V2\ d2A

k 312 \ k3 /c2 / 3x22

k2 9-*i3^i
2A{ co2 - k2V2\ L|)j + 2k{co2 - k2V2) - ^Tk4 A2A.

(31)

On substituting (24) into (31), we get the nonlinear Schrodinger equation:

3A dA \ 32A j— . .

^ '3^j ' (32)

where

P = \dVg/dk, (33)

and

4A|co2 - A:2F2|L^-JJ + 4k {co2 - £2F2} - 3^A:4 (34)

It is appropriate now to introduce the transformations

f = e'1{x2 - Vgt2) = xx - Vgtl = e(x - Vgt) and

The Eq. (31) is transformed to

M 314
i~ + P^r= QA2A. (35)

3r 3f2 v '
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It is apparent from Eq. (35) that the results of Hasimoto and Ono [6] and Whitham [5] are

recovered on setting H equal to zero. It is also known that the solutions of the equation

(35) are unstable against modulation if PQ < 0.

We shall now examine special cases of physical interest ensuing out of the nonlinear

Schrodinger Eq. (35). In order to discuss the role of the magnetic fluid in the presence of a

magnetic field, first we reproduce the results for the gravity and the capilliary waves in

hydrodynamics.

(A) Letting H — T = 0, we get P = w/8k2, Q = 2uk2. Thus, PQ < 0 for all values of

the wavenumber k, implying thereby modulational instability of gravity waves [5].

(B) Letting H = 0 and T -> oo, we obtain P = 3Tk/8pco, Q = k5T/2pu. Hence,

PQ > 0, implying thereby that the capilliary waves are stable. On the other hand if T is

finite, then the waves are stable provided

J'13)1/2 < 7i K 5<2)1/j- (36)

Moreover, with k measured in units of (T/pg)1/2, the inequality (36) indicates that the

presence of surface tension leads to the stabilization of the gravity waves when the

dimensionless wavenumber km lies between 0.393 and 0.707.

Stable region I

Unstable region I

Jj.40

0.5 1.0 2 1 5 2 0

Fig. 1. The stability diagram showing the variation of km against magnetic field parameter a2
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What we would like now is to consider a magnetic fluid in the presence of a magnetic

field, and investigate wave propagation phenomena similar to the one described for

hydrodynamics. Towards that goal, we normalize all physical quantities with respect to the

characteristic length lc = (T/pg)1/2, characteristic time tc = (lc/g)1/2, and the character-

istic magnetic field parameter a2 = H2Ic/4ttT. The group velocity rate P and the

interaction parameter Q now become

«2^ 1)2 + 3 k-
0* + i)

.2 _ »,2„2 it 1) , a A ..2 _ /,2„2 !)4A co - lc a — ~~z + 4k co2 - k2a2±f V - 3kA
\ (M+l)2 \ (M+l)

(37)

(38)

where

A = o2 + k2a2 —

(M+l)2

[2k2-\]~l. (39)

The modulational instability is characterised by the criterion PQ < 0, which yields the

value of the wavenumber km at which the instability occurs. Such a criterion depends

upon the wavenumber k, the ratio of the magnetic permeabilities ju, and the magnetic field

parameter a2. In Fig. 1 we have sketched the transition curves acros which P changes sign

for different values of and a2. Below the curves is region / where P is negative while Q is

positive implying instability. It is interesting to observe from the graph that as the

magnetic field increases, the region of instability shrinks quite significantly which makes

us conclude that the modulational instability can be suppressed considerably with the

application of strong magnetic fields. For a given a2, as /u. increases, the value of km

initially increases, reaching a maximum when /x = 1 and then starts decreasing. (Fig. 2)

0.40

0.35

E

0.30

0.25 -

0.20

0.15

a.-

Fig. 2. The variation of km against magnetic field parameter a.



64 S. K. MALIK AND M. SINGH

There is a second transition curve characterised by k = (2)"1/2 which corresponds to the

case of the second harmonic resonance. Here, the nonlinear interaction parameter Q

changes sign across the transition curve. Above the curve, P is positive whereas Q is

negative giving rise to the unstable region. This region is not shown in the figure.

However, we wish to point out that the exact location of such a transition regions is only

approximate in character since the analysis developed in this paper excludes the second

harmonic resonance.

In conclusion, there are two unstable regions and one stable region. Furthermore, like

water waves (see Zakharov and Shabat [10]), the modulational instability in a magnetic

fluid shall cause an initial wave packet of arbitrary envelope to disintegrate into a series of

solitons.
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