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1. Introduction. In this paper we study degenerate diffusion problems in which free

boundaries occur, our major objective being the development of numerical procedures

which effectively track these boundaries. For convenience, we introduce our ideas in terms

of the one-dimensional porous media problem; generalizations are given at the end of Sec.

2 and in Sec. 4.

Consider the problem of determining u(t, x), t > 0, x G R, such that

"r=("2)*x. "(0, x) = u0{x), (<3>)

with initial data u0 supported on a finite interval:

u0(x) > 0, —a<x<a,

u0(x) = 0 otherwise. (1.1)

This is (a special case of) the porous media problem (cf., e.g., [1]). As is known ([2-6]):

there exists a unique weak solution u; at each t the support of u is a finite interval

(t) <x< ?+(/);

inside its support u is smooth, but across f ± (r), ux is generally discontinuous;

L(t)=~2 ux(t,S±(t)). (1.2)

There exist numerical procedures for Problem ("?) (cf., e.g., [7-9]), all of which seem to

encounter some difficulty in tracking the free boundaries x = f ± (/). The main feature of

our method is the determination of a family of curves

x = X(t ,p), X(0 ,p)=p

along which the free boundary propagates:

S±(t) = X(t,±a). (1.3)

Writing (^P), in the form of a mass balance law

", + (uv)x = 0 (1.4)
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with u(t, x) a "density" and

v=-2ux (1.5)

a "velocity" (cf., e.g., [10]), we see, using (1.2), that the free boundary propagates with the

velocity v(t, x) of the medium; hence property (1.3) will follow provided we take X(t, p)

to be the solution of

X,(t,p) = v{t,X(t,p)), X(0,p)=p. (1.6)

Within this context x = X(t, p) represents the motion of the medium with material points

labeled by their positions p at t — 0.

Using these ideas, we are able to reduce CdP) to the following initial-value problem for

XpX, = 2u0Xpp — 2u'0Xp, X(0 ,p)=p. (<?*)

(Here and in what follows X™ — (Xp)"\) The free boundary is then given by (1.3), while

U(t, p) = «(/, X(t, p)) satisfies

u = x;*u0, (1.7)

a relation which expresses balance of mass in material (Lagrangian) coordinates. Our

procedure for solving (<dP) consists in solving ("5P*) on the fixed interval — a ^ p < a of

support of m0.

In Section 2 we establish a uniqueness theorem for (6**), and we show that given a

sufficiently regular solution X of this problem, (1.7) generates, at least locally in time, a

weak solution u of our original problem ("?).

The determination of u(t, x) from U(t, p) requires that X(t, p), as a function of p, be

invertible at each t, a condition related to the nonvanishing of Xp. We show, in Sec. 2, that

Xp > 1 for all time whenever u'q < 0 on its support, and that Xp(t, a), say, tends to zero in

a finite time T whenever u'0(a) = 0, u'0'(a) > 0. We show further that under the latter two

conditions X(t, a) = a for 0 < ; < T, so that the free boundary is vertical until t - T (cf.

[6, 11]). We also establish a growth estimate for the L2(—a, a) norm of Xp(t, •)■

In Sec. 3 we describe a simple difference scheme for Problem (^P*) and give some

calculations which demonstrate the utility of our procedure; in particular, we show that

even with a fairly crude mesh the free boundary is tracked quite accurately.

While our paper is devoted to the one-dimensional porous media problem, our method

seems to have considerable generality: in Section 4 we derive the analog of (6?*) for the

porous media problem in R"; in a future paper we will discuss applications to more

general equations and to Stefan problems.

2. The initial-value problem for X(t, p). We first proceed formally. Let u be a solution of

(<3>) with initial data u0 subject to (1.1), let X(t, p) be the solution of the initial-value

problem (1.6), and define

U(t,p) = u(t,X(t,p)), (2.1)

or more generally, for any function f(t, x),

f*(t,p)=f(t,X(t,p)). (2.2)
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Then by (1.4), (1.6), and (2.1),

U, = («, + uxv)* = - (uox)*, Xpt = (vx)*Xp,

so that

But by (1.6)2,

hence

Further, by (2.1),

and (1.5), (1.6) yield

(UXp)i=U,Xp+ UXpl = 0. (2.3)

U(0, p) = u(0, p) = u0(p), xp(0,p)=l;

U=Xp~'u0. (2.4)

Up = (ux)*Xp,

X,= -2 Upx;\ (2.5)

Equations (2.4) and (2.5) form the basis of our method. It is these equations that we will

solve numerically in Sec. 3. Note that we can use (2.4) to eliminate U from (2.5); this leads

to the initial-value problem C?*) for X.

Our procedure for solving (?P) is based on solving (6?*) for t >0 and p in the fixed

interval [—a, a], the support f u0. (We will give a uniqueness theorem to show that

boundary conditions at p = ±a are not needed.) Let X be a solution of (6P*). Since

X — 1 at t — 0, there exists a T > 0 such that

> 0 on [0, T) X [ — a, a].

Let

z±(t) = ±a),

- {('> *): £-(0 < x < 0 ' < T}-

Then for each /6[0,r) the mapping p h-» X(t, p) is a bijection of [~a, a) onto the

interval [f_ (t), f + (f)]; letting P(t, x) be such that

X(t, P(t, x)) = x

(i.e., P(t, •) is the inverse of X(t, •)), we define

= (2.6)
L 0, otherwise

with U given by (2.4). We then expect the resulting function u to be the weak solution of

('?). We now show that this expectation is indeed justified. To avoid repeated hypotheses

we assume, for the remainder of the section, that

u0 > 0 on (~a, a), u0 = 0 otherwise, u0 G C(R) D C2[—a, a\. (2.7)

Further, we will use the term solution of (<35*) on [0, T] for a solution Xon [ 0, T) X [ — a, a]

with X, X,, X , X , Xlp, and Xppp continuous on [0, T) X [ — a, a]; if, in addition, Xp > 0

on [0, T) X [ — a, a], then X is regular.
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Theorem 1 (consistency). Let A' be a regular solution of (9*) on [0, T), and let u be

defined by (2.6). Then

(i) u > 0 on Qr, u — 0 otherwise;

(ii) u(x, 0) = u0(x) for x G R;

(iii) = (u2)xx in ClT\

(iv)?±(0 = -2ux(t, £±(t)) and ±f±(r) > 0 for ( G [0, T).

Proof. Assertion (i) follows from (2.4), (2.6), (2.7), and the inequality Xp > 0; (ii) is a

consequence of (2.6), (2.7), and the indentities P(0, x) = x, Xp(0, p) = 1.

Next, (9*), and (2.4) imply (2.5) and (2.3), while (2.1) is a consequence of (2.6). By (2.1)

and (2.5),

*,= -2(0*. X,P=-2(uxx)*Xp, (2.8)

where we have used the notation (2.2). Also,

U, = («,)* + (ux)*X, = {u, ~ 2ul)*,

and hence (2.3) and (2.8)2 imply

0 = Xp(u, - 2ux - 2uuxx)* = Xp[u, - (u2)xx]*\

since Xp > 0, we have (iii).

Eq. (2.8), leads to the first of (iv). Finally, since u0(±a) = 0, (??*), implies

L(0 = X,(t, ±a) = -2u'0(±a)Xp(t, ±a)~2-, (2.9)

but by (2.7), ±u'0(±a) < 0, and the remainder of (iv) follows. This completes the proof.

Theorem 2 (uniqueness). For any T > 0 there exists at most one regular solution of

(<3>*) on [0, T).

Proof. Let X and Y be regular solutions on [0, T). Choose t0 G (0, T)\ it suffices to

show that X = Y on [0, /0] X [ — a, a]. By (^P*),,

X, = - - «o*;2> Y, = - («oYp~2)p - u'0Y~2.

If we subtract these equations, multiply by X — Y, and integrate from p = — a to p — a,

we obtain, after an integration by parts using u0(±a) = 0,

1 ±
2 dt f (X- Y)2 dp

J — a

= f u0(x^~ y;2){xp- Yp)dp -fu'o(xp-2- y;2){x- Y)dP.
J — a — a

(2.10)

Since

{Xp2 ~ Y~2)(Xp - Yp) = -(Xp+ Yp)(Xp - Ypfx;%2 < 0,

the first term on the right side of (2.10) is < 0. Next, letting

^ = u'0(Xp + Yp)X~2Yp2,
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we find that

-f u'0(Xp2 - Y~2)(X- Y)dp = \f [(A"— Y)2\p*dp
J —a — a

= Y?*pdp + \[{X- Y)2xp]"_a.

Since ±u'0(±a) < 0, we have ±i//(±a, t) < 0; hence [(X — Y)2\p]la *£ 0. Further, as the

solutions X and Y are both regular, Xp and Yp are bounded away from zero on

[0, /0] X [ — a, a]; hence there is a constant K such that |^|< K on [0, f0] X [ — a, a].

Let

€(')=/ [*('> p) ~ Y(l< P)Y dP
J — n

and note that |(0) = 0, since X and Y satisfy the same initial condition. Thus if we

integrate (2.10) from 0 to t and use the above remarks, we arrive at the Gronwall

inequality £(/) < KJq £(t) dT for 0 < f0, which clearly implies X — Y on [0, /0] X

[-a, a].

Remark. We have not been able to establish (directly) existence for Problem (^P*). We

note that existence can be inferred from existence for (§") in conjunction with (1.6).

Thus far all of our results have been local, as the initial condition ^(0, p) = 1 only

insures Xp > 0 for sufficiently small time. There are situations in which we can give a

global result.1

Theorem 3. Suppose that u'0' < 0 on [—a, a]. Let A" be a solution of (?F*) on [0, T). Then

X is regular; in fact, Xp > 1 on [ — a, a] X [ 0, T).

Proof. We let Z = Xp and differentiate C?*), with respect to p to obtain

Z3Z, = 2u0Zpp - 6u0Z-'Z2 + 6u'0Zp - lu'^Z. (2.11)

At t = 0 we have Z — 1, Zp — Zpp — 0; hence Z, > 0 at / = 0 and Z > 1 for small t.

Suppose Z were ever equal to 1. Then there would be a first time /, e [0, T) at which this

occurs and a point /?, with Z(/,, p,) = 1. If px G ( — a, a), we would have Zp = 0,

Zpp > 0, and Z, < 0 at (f,, px), which contradicts (2.11), since u'0'(p,) < 0. If p, — — a,

then Z, < 0 and Zp> 0 at (/,, p\)\ thus, since u0(—a) — 0, u'0(—a) > 0, and u'q( — o) < 0,

we again contradict (2.11). A similar argument applies at x — a.

For initial data u0 which is not concave one cannot expect to have Xp > 0 for all time.

Knerr [6], generalizing results of Aronson [11], has shown that if u'0(b) = 0 for b = a, say,

then the free boundary emanating from a is vertical for an interval 0 < t < T < oo. At

t = T there is a loss of smoothness and f+ (/) begins to increase. We now show that this

phenomenon is related to the vanishing of Xp.

Theorem 4 (breakdown). Suppose that u'0(b) = 0 and u'o(b) > 0 for b = — a or b = a,

and put

(2.12)
' Cf. Graveleau and Jamet [8], who show that if u0 is concave, then the solution u of (CP) will be concave for

all time. With uxx < 0 (2.8) clearly implies Xp> I.
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Let X be a solution of ("dP*) on [ 0, T). Then

(i)

X(t,b)=b forO <t<T,

(ii)

Xp(t,b)-*Q &st -> T.

If, in addition, X is regular on [0, T) and u is defined by (2.6), then

(iii)

uxx(t, X(t, b)) -» oo as t -> T.

Proof. Let z(t) — Xp(t, b). Since z(0) = 1, there is a t0 such that z(t) > 0 for 0 < t < t0

< T. Thus, by (2.11), for 0 < t < t0,

z2z' = -2u^{b) (2.13)

and

z\t) = 1 - 6u'^{b)t.

Therefore, by continuity, we may take t0 = T and (ii) follows. Moreover, since z > 0 on

[0, T), (9*) yields (i). Finally, by (2.8)2 and (2.13),

uxx{t, X(t, b)) = u'^{b)z{t)~\

and (ii) implies (iii).

Under the hypotheses of Theorem 3 we have the following growth estimate for the L2

norm of Xp.

Theorem 5 (stability). Suppose that u'0' < 0 on [ — a, a], and put c = 8[wo( — a) — Wo(«)]-

Let A'be a solution of (5**) on [0, T). Then

f xp(l> P) dp ̂  2a + ct (2.14)
J —a

for 0 t < T.

Proof. Note first that, since u0(±a) = 0, (^P*), implies

Xt{t,±a)= -2 u'0(±a)X~2(t,±a). (2.15)

We multiply (??*), by Xp3Xpp and integrate from p = —a to p = a. After an integration

by parts and the use of (2.15) we obtain

" 5 I/_/'dp " 2t=2dP +2-V'), dr

If we integrate the last term on the right by parts, we find that

= ~4[u'oXpl]a_a + 2j" u'oX~] dp
* —a

< 4[u'0(-a)x;\t, -a) - u'0(a)X;\t, a)] <f,
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since u'q < 0, ±u0(±a) < 0, and Xp> \. The estimate (2.14) follows upon integration.

Observe that one obtains also the estimate

f f «oX~3X* dp dr<2a + ct;
•'O-'-a

in addition, since Xp > 1,(1.3) and (2.15) yield the inequality

|fa:(/)|<2|«J(±fl)|.

By (iv) of Theorem 1, ±X{t, ±a)>0; hence for each t there is a p] such that

X(t, pt) = 0. The standard argument

rP r«
\X(t,p)|= / Xp(t,t)d£<2a X*(t,t)di

Pi ~a

and (2.14) therefore yield the estimate

\X(t, p)\*zj2a(2a + ct) .

Thus the width of the support of «(•, t) is at most 0(tx/1).

Remark. Vasquez [12] has shown that this width is actually 0(/1/3) by proving that

u(t, x) is asymptotic to a certain "fundamental solution" u(t, x) of the form (3.5). Such

fundamental solutions correspond to Dirac distributions at / = 0 and as such the

corresponding coordinate transformation X(t, p) is not defined. If, however, one lets ta

denote the time for which the support of u(ta, •) has width 2a, and considers ua(t, x) =

u(ta + t, x), then the corresponding coordinate transformation Xa is well defined; in fact,

Guided by the results of [12], we conjecture that X(t, p) and Xa(t, p) are asymptotic as

t -» oo.

Problem (^P*) can be given a weak formulation, which we now deduce. We begin by

writing (^P*)j in the form

x,= -(u0x~2)p-u'0x;2.

If we multiply this equation and (^P*)2 by an arbitrary C1 function w(p) and integrate

from p = —alop = +awe obtain, after an integration of parts,

f [{X, + u'0X~2)w - u0X~2w'] dp = 0,
J —a

f [X(0, p) - p]w(p) dp = 0. (2.16)
— a

Eq. (2.16) constitute the desired weak formulation of (<3)*).

The weak form (2.16) admits an approximate formulation in terms of finite elements. In

this connection it is important to note that the absence of boundary conditions allows one

to operate in the space H[(—a, a). We expect these observations to be of great value in

the extension to higher dimensions.
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Remarks. 1. The p = constant trajectories t X(t, p) are analogs of characteristic

curves, as the degeneracy in the porous media equation (6P), propagates along such

trajectories. Indeed, this equation degenerates at u = 0, and

u(t, X(t, p)) = 0 if and only if u0(p) = 0,

at least when the solution is regular (cf. (2.4)).

2. Problem C5P) is a special case of the more general diffusion problem

u, = q(u,ux)x, u(x,0) = u0(x), (2.17)

with (2.16) degenerate in the sense that

/ f\/>0 for m > 0
for u = 0.

As before, we seek curves x = X(t, p) along which this degeneracy propagates. Formally,

such curves are generated, via (1.6), by writing (2.17), as a mass balance law (1.4), since

this law has the Lagrangian form

u(t, X(t, p)) = X~l(t, p)u0{p)

(cf. (1.7)). If we do this, we find that the resulting initial-value problem for X(t, p) is:

(2.«)

As an example, the porous media equation is often considered in the form

", = («mL (m> 2);

for this equation (2.18), becomes

,m — 2mu
*<=-

\xP
p

3. Numerical solutions. Here we describe a simple difference scheme for the initial-value

problem (€P*). (We will actually work with (2.4), (2.5), rather than (?P*),.) For conveni-

ence, we assume that u0 is symmetric: w0(x) = u0( — x). Then by symmetry we can restrict

ourselves to 0 < p < a provided we impose the additional conditions

*(0,0=0, l/,(0,0=0. (3.1)

We want to solve the equations

X,= -X^Up, U= X~]U0. (3.2)

We choose Ar > 0 and Ap — aN~1 for some integer N, introduce the mesh tt — iht,

i — 0,1,2,..., pn = mA/7, n = 0,1,...,N, and write /„' for the value of a function / at the

mesh point (/,, pn). We approximate (3.2) by the difference scheme:

Xn+] ~ Xn _ LnU> _ Un

A/ MnXn ' " MrJXi+l
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Kf= 12Ap

In these formulae un = u0(pn), while Ln and Mn represent the spatial difference operators

Kn<N-l,

'/*-2 _ 4/*-i, n = N, (3.4)

.0, n — 0,

Kn<N- 1,

3/^r ~~ 4/Ar_1 + /Ar_ 2, n — N,

2/,, w = 0.

The formulae (3.4) are accurate to 0(Ap2) for functions satisfying (3.1) with i/(f, a) = 0.

Since the method (3.3) is partially explicit, we would expect it best to take At = (Ap)2;

with this choice we expect 0(Ap2) accuracy.

The following explicit solution to the initial-value problem (IP)—for initial data a Dirac

distribution—is given by Pattle [13]:

M f — -t—nJ A p

u(x, t) =
MO"i-^

MO2
I v|a£ \(r),1/1 v ' (3.5)

.0,

y = x/x0,\(t) = (t/toy/3, x0 = T{5/2)/fi: =h'o = xl/\2.

We attempted to approximate the solution u(t, x) = u(t + 1, x). Thus we have a =

(12x0)l/3 = 9I/3. The results are presented in Tables 1 and 2.

In Table 1 we give the approximate and theoretical values of (/), together with the

relative errors, for a sequence of times. These calculations are performed with ten

subdivisions, so that Ap = 0.208. We observe that even with this fairly crude mesh the

free boundary is tracked quite accurately. In Table 2 we present one of our calculations to

determine the rate of convergence. The results confirm the expected rate of (Ap)2.

Table 1

$A(t) and ?r(0> the approximate and theoretical positions of the right-hand free boundary

for Ap = 0.208, At = (Ap)2.

t f^(0 fr(0 relative error

5.327 3.63826 3.63274 0.00152

9.653 4.43406 4.42904 0.00113

13.980 5.01550 5.01093 0.00091

18.307 5.48638 5.48218 0.00079

22.634 5.88782 5.88391 0.00063

29.960 6.24088 6.23721 0.00059

31.287 6.55793 6.55445 0.00053

35.614 6.84696 6.84365 0.00048

39.941 7.11343 7.11027 0.00044

44.267 7.36131 7.35827 0.00041
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Table 2

f(1.108) and fT(1.108), the approximate and theoretical positions of the right-hand free

boundary at t = 1.108 for At = (Ap)2.

A p i"<(1.108) f r(1.08) error

0.1040042 2.152773 2.152531 0.000242

0.0520021 2.152591 2.152531 0.000060

0.0260011 2.152546 2.152531 0.000015

0.0130005 2.152535 2.152531 0.000004

Problem (^P) with

f 2 W ^ ,
„„(*)= C0S T' **'• (3.6)

[0, otherwise,

is discussed by Aronson [11], who shows that the corresponding free boundaries are

vertical for an interval 0 < t < T, a result consistent with the conclusions of Theorem 4,

where for (3.6),

T = (3w2)"' » .03377.

We also performed a numerical experiment for the initial data (3.6); the results are shown

in Table 3. It is seen that the free boundary is indeed roughly vertical for t < T.

Table 3

£A(t), the approximate position of the right-hand free boundary for u0(x) = cos2(ttX/2).

Here Ap = 0.025, At — (Ap)2.

' no
0.00375 1.0000016

0.99750 1.0000039

0.01500 1.0000130

0.02000 1.0000293

0.02500 1.0000752

0.03000 1.0002330

0.03125 1.0003195

0.03250 1.0004445

0.03375 1.0006275

0.03500 1.0008996

0.03625 1.0013092

0.03750 1.0019303

4. Extension to R". The porous media problem in R" consists in finding a scalar

function u(t, x), t > 0, x G R", such that

«, = M"2)> n(0,x) = «0(x). (9J
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(Here and in what follows A, div, and V, respectively, denote the Laplacian, divergence,

and gradient operators in R".)

Guided by our one-dimensional analysis, we rewrite C^), as a balance law

u, + divx(«v) = 0

with

v = — 2vxw,

and we take X(r, p) to be the solution of the initial-value problem

X,(',P) = v(f,X(/,p)), X(0,p) = p. (4.1)

Proceding as before, we define

U(t, p) = «(r,X(f,p))

and note that

Ut — (u, + v ■ Vxm)* = — (wdivxv)*. (4.2)

Let

Z = vpx,

and assume that det Z > 0. Then, using the identities (cf. e.g., [10], p. 77)

(detZ), = (detZ)tr(Z,Z~'), tr(Z,Z-') = (divxv)*

in conjunction with (4.2), we conclude that

(U detZ), = 0

and hence that

U= (detZ) 'm0.

On the other hand, by the chain-rule,

Vpt/ = Zr(vx«)*.

Thus, using (4.1), we arrive at the following initial-value problem for X:

VXrX, = -2v£/, U= (det vX)"'«0, (^P*)

x(o, p) = p,

where V = Vp.

A careful analysis of (9*) is beyond the scope of this paper. Our ultimate hope is to

show that when

Uq > 0 on A, u0 = 0 otherwise, (4.3)

with A compact and connected, Problem (^Fn) reduces to solving i6?*) on the fixed region

A for all time.

In view of (4.3), «0(p) = 0 for p e dA. Thus, by ('5P*), X,(?,p) = 0 at any p G dA for

which Vw0(p) = 0, at least as long as the solution remains regular.

Remarks. 1. The p = constant curves 11-> X(/,p) are analogs of bicharacteristic curves

in the theory of partial differential equations (cf. Remark 1 at the end of Sec. 2).
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2. For Problem (9n) with n ^ 2, regularity of the free boundary f is essentially an open

question (cf. [14]). The formulation (^Pn*) might be useful in attacking this question, as

<S= (X(f,p): p 6 dA, t > 0}.

Moreover, since regularity is a local question, the problem of proving that X(t, ■) is a

bijection is trivial: it follows, at least locally, from X(0, p) = p, where we have chosen the

time scale with I = 0 the time near which regularity is sought.

3. For the more general equation

u,= \x(um) (m> 2)

the first of is replaced by

VXFX, = -mUm~2vU.

Note added in proof. We have recently discovered the paper of J. G. Berryman (Evolution of a

stable profile for a class of nonlinear diffusion equations, III; slow diffusion on the line, J. Math.

Phys. 21,1326-1331 (1980)), where similar techniques are introduced. Berryman also uses

Lagrangian coordinates (rather than the initial coordinate, Berryman takes p = p(x, t) to be the

total mass at t in the interval (- *)). Berryman's partial differential equation for X is simpler

than ours, but his initial condition is more complicated.
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