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1. Introduction. In this paper, we consider a homogeneous linear viscoelastic filament

which has occupied the interval [0, a] at all times prior to time 0. Subsequently one end is

held fixed, while the other is subjected to a given traction r. Let K(t) denote the kinetic

energy at time t, and ^(t) the free energy at time t defined by

^(0 f [' f 'g(2t — r — s)e(x, r)e(x, s) drds dx,
Jo Jo Jo

where g is the relaxation function, and e is the time derivative of the strain e. Then, we

prove that the mean values of the kinetic and free energies are asymptotically equal, i.e.,

t 1 ( (ff- *) - 0 as; oo,
'0

provided the traction r and its derivative t satisfy

x(f) -» 0 as t -* oo,

and /o° I ̂ (01 dt < oo. This result generalizes to viscoelasticity, theorems on the equiparti-

tion of energy in elastic bodies due to Day [1] and Levine [2], Two identities due to Brun

[3] play a key role in our proof.

Our hypotheses on the relaxation function for the above result to be true, allow the

filament to be elastic. However, if the filament is genuinely viscoelastic in a sense

explained later, we are able to derive a stronger conclusion, viz.

lim K(t) — lim ¥(0 = 0,
/-* 00 t— 00

provided the integral

['(>)'+*(')2] d<sJo

converges. The proof relies upon estimates due to Day [4],

For simplicity, these results are stated and proved here for a homogeneous filament. But

they can be extended with few difficulties to an inhomogeneous three-dimensional body,
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part of whose boundary is clamped while the remainder is subjected to a prescribed

surface traction. The body may also be subjected to an external body force.

2. Preliminary results. For convenience, the notation and terminology chosen is almost

identical to those of [4],

Consider a homogeneous linear viscoelastic filament, which occupies the interval [0, a]

in the reference configuration. The mass density p: [0, a] -» (0, oo) is continuous. The

relaxation function g: [0, oo) -> R is a prescribed twice continuously differentiable function

which satisfies:

(a) g(0 >0,g(t) «0,g(0 >0 for all t > 0,

(/?) g(t) -* g(oo) > 0 and g(t) -» 0 as? —oo.

The filament is said to be genuinely viscoelastic if g further satisfies:

(y) the integral
r°o i

J g(t) /g(0 dt

exists as a Lebesgue integral.

Here and elsewhere superimposed dots denote differentiation with respect to time, and

primes indicate spatial derivatives.

The condition (y) was introduced in [4], where it is noted that (y) follows from the

assumption that t h* ln[g(?) — g(oo)] is convex. Any relaxation function of the form

n

g(t) = g(oo) + 2 a,-exp(-fi,0. (2.1)
/= i

where g(oo), a, and /x, are strictly positive, obeys (a)-(y).

A dynamic viscoelastic process with a quiescent past is an ordered triplet [ u, e, a ] such

that:

(a) u: [0, a] X R -> R is a continuous function whose restriction to [0, a] X [0, oo) is of

class C2, and

u = 0 on [0, a] X(-oo,0],

u(0, •) = 0 on [0, oo);

(b) £ = w';

(c)a(-, 0 = g(0)e( ■ ,t) + /0'g(? - t)e(-, t)cJt for every fin R;

(d) the equation of motion

pii = a',

holds on (0, a) X (0, oo).

Here u is the displacement, e is the strain, and a is the stress in the viscoelastic process.

The traction t: R -» R corresponding to [w, e, a] is defined by t := a(a, ■).

A viscoelastic process [u, e, a] is termed smooth if u restricted to [0, a] X [0, oo] is of

class (23.
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In [2], the displacement problem of linear elastodynamics was considered in an abstract

setting. Levine only required that u be piecewise <3', that the principle of virtual work and

conservation of energy hold instead of the equation of motion, and that

m(0, •) = u(a, •) = 0 on [0, oo).

Corresponding to each viscoelastic process [u, e, a], it is possible to define the following

mappings on R,

U(t): = ff'oe, (2.2)
•'o Jo

K(t):= ifapu(-,t)2, (2.3)
•'o

E(t) := U(t) + K(t), (2.4)

ifapu(-,t)2, (2.5)
Jo

<P(t):= faq>(;t), (2.6)
•'o

*(t):= ("*(-, t), (2.7)
•'o

where

<P('.0 := 2g(°°)e(->')2 ~ if' g(< ~ s)[£('.') - e{-,s)]2ds, (2.8)
— OO

and

<H->0 := 2g(<»)e(-.')2
/•OO /»00

+ 2/ / #('■ + «)[«(•. 0-«(•»'-OHeO.O — e(-»* — ■*)] drds-
^0 •'O

(2.9)

Here U is the strain energy, K is the kinetic energy, E is the total energy, $ is Volterra 's free

energy, and ¥ is another free energy. It is also convenient to introduce the functions P:

[ 0, oo) X [ 0, oo) -» R and W\ [ 0, oo) X [ 0, oo) -> R by

P(r,s) ■= T(r)u(a,s), (2.10)

W(r,s) := r(r)u(a,s). (2.11)

The function \f/, which appears in [3], can be rewritten as

= e(-,t)o(-,t) - jg(0)e(-,t)2

+ i f f'g( 2' - r- s)e( -, r)e(-, s) drds, (2.12)
Jo Jo

= [' f'g(2t - r - s)e(-, r)e{-, s) drds. (2.13)
•'o •'o

if/ is the density of a free energy in the sense that

i(-,t) >ig(cc)e(-,t)2, (2.14)
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and

f'a(-,r)e(-,r)dr>^(-,t) ~t(-,s),
JS

for every s and t in R, provided that for k = 1,2,

(-1Y f f gik)(r + s)f(r)f(s)drds> 0,
■'o •'o

for every / in G[0, oo) with compact support. These inequalities certainly hold if g has

the form (2.1) with g(oo), a, and ft, positive. The requirement (2.14) for ^ to be a free

energy is akin to Definition 3 of Day [5], A mechanical interpretation of ¥(/) is given in

the following result, whose proof is trivial.

Proposition. Let [w, e, o] be a viscoelastic process with

0, s e(—oo,0] U [2r, oo),

e(-,21 - s), ie(0,2/),
e(-,s) =

for some t > 0. Then the work done on the body is

/ /2'ci = 2[t/(0 - *(')]•
•'o Jo

Thus, U(t) — ty(t) is half the work dissipated in the closed viscoelastic process obtained

by retracing the displacement followed over (-oo, 0- Compatibility with thermodynamics,

whose implications for a linear viscoelastic body are investigated in [5], would demand

that U(t) — ¥(t) be positive.

We now cite two important inequalities. The first is a special case of Theorem 256 of

Hardy, Littlewod and Polya [6], while the second is a consequence of the Cauchy-Schwarz

inequality.

Lemma 1. Let /be in Q '[0, a] with /(0) = 0. Then

ca 4 cP' ca

f'1, (2.15)
J0 7T J0

f(a)2^a[f'2. (2.16)
•'n

and

For the sake of conciseness in our later proofs, we record, as in [4], the following

elementary inequality.

Lemma 2. If 6 > 0 and 6 *£ £ + r]0x/1, then 8 < 2£ + tj2.

Next we present two important identities, which form the basis of a strong uniqueness

theorem in elastodynamics that requires no positivity assumption on the elasticity tensor

(cf., e.g., [7], Sec. 63). The second identity can be found in [3].

Henceforth, we shall usually surpress the spatial argument of functions appearing in

integrands.
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Lemma 3. Let [u, e, a] be a viscoelastic process. Then, for every t > 0,

f [^ — A"]=^ f + / — j) + 2W(s, s) — W(t — j,; + j)] di + f u(2t)u(0),
Jo Jo Jo

(2.17)

and

^(f) — K(t) = j f [P(/ + s, t — s) — P(t — s, t + s)] ds — \ f pu(0)u(2t).
Jo " Jo

(2.18)

Proof. The equation of motion (d) implies that

pu(-, r)u(-, s) = a'(-,r)u(-,s),

for all r, s in [ 0, oo). Integrate this over [0, a] and then integrate by parts, to see that

W(r,s) = [pu(r)u(s) + o(r)e(s)]. (2.19)

Another integration by parts shows that

f p f [«(r + s)u(t — s) — ii(t — s)u(t + s)] ds — f p[u(0)u(2t) — 2u(t)u(t)].
J0 j0 j0

(2.20)

Also a short calculation using Fubini's Theorem demonstrates that

f [o(r + s)e(t — s) — o(t — s)e(t + j)] ds = f f g(2t — r — s)e(r)e(s) drds.
Jo Jo Jo

(2.21)

By integrating (2.12) over (0, t), it is quickly established that

4 f \p — 2 f eo = f f g(2t — r — s)e(r)e(s) dr ds. (2.22)
J0 J0 J0 J o

It now follows from (2.19)—(2.22) that

4 [ — 2 f f ea = f [W(t + s, t — s) — W(t — s, t + 5)] ds
Jo Jo Jo Jo

-J p[u(2t)u(0) - 2u(t)u(t)]. (2.23)

Next we infer from (2.19) that

f lV(s, s) ds = f f [pii u + a e],
Jo Jo Jo

which, on integrating by parts becomes

( pu(t)u{t) = f W(s, s) ds + [' 2K — f ea . (2.24)
•'0 •'o Jo

(2.17) now follows by substituting the right-hand side of (2.24) into (2.23).
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The proof of (2.18) is similar. An argument similar to that which established (2.19)

shows that

p{r,s)=( [pu(r)"(s) + o(r)e(j)]. (2-25)
Jo

Using Fubini's Theorem and (2.3), we see that

np\ii{t + s)u(t — s) — u(t 4- s)ii(t — s)] ds = f p [' + s)u(t — s) ds,
j Jo Jo ds

= [" pu(0)u(2t) - 2K(t).
Jo

This equation and (2.25) imply that

ra f
f f [a('s)^(l ~ s) ~ o(t — s)e(t + s)] ds — 2K(t)

° ° .. n ^ (2-26)
= I [^(^ + s, t — s) — P(t — s, t + s)] ds — / pu(0)u(2t).

Jo Jo

Integration by parts of (c) shows that the stress is also given by

a(-,t) =fo's(' ~ s)e(-,s) ds.

This expression and Fubini's Theorem allow us to calculate that

2V(t) — f f [a(f + s)e(t — s) — o(t — s)e(t + i)] ds. (2.27)
•M) J0

To complete the proof notice that (2.26) and (2.27) imply the desired result.

(2.17) can be established from the principle of virtual work by mimicking the proof of

Lemma 3.1 in [2]. ■

We state without proof the conversation of energy.

Lemma 4. Let [m, e, ct] be a viscoelastic process. Then, for all t > 0,

E(t) = £(0) = f'ru(a, •). (2.28)
A)

Lemma 5. Let [m, e, a] be a viscoelastic process. Then, for each t > 0,

(2.29)
Jo g(oo)

Proof. An easy calculation using (2.8) and (a) shows that

<p(-,0 = (' (' g(t - j)[e(-, t) ~ e{-,s)]2ds.
— 00 ~ 00

Since g > 0, we deduce that

It follows from this inequality (2.2), (2.6) and the fact that <p(-,0) — 0 that

f'ea=u(t). (2.30)
•'o Jo Jo
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Due to (a),

Q(0>}g(°°)f e(-,t)2. (2.31)
•'0

The desired result is an immediate consequence of (2.30) and (2.31). ■

The following result is almost identical to Lemma 5 of [4],

Lemma 6. Let [u, e, a] be a viscoelastic process. Then, for each t > 0,

I(t)<yf'E. (2.32)
■'o

where

y := max] 1, ——- maxpl. (2.33)
g(oo)w2 [0,a]

Proof. It is easily seen using (2.5), (2.15) and (2.29) that

7(0 = { f pu(-,t)2.
'0

2a2
< —— max

7T •'O

e(-> 0 .
n

4 cP'
max p U(t). (2.34)

The derivative of 7 is given by

so that

g( oo)t72

i(t) = f pu(t)u(t),
Jo

nCJ puu.
J

The Cauchy-Schwarz inequality, the arithmetic-geometric mean inequality, (2.34) and (2.5)

enable us to see that

7(0 « ('I fpuu 2 f'l]/2K]/2,
A) I A) A)

< f'(I + K)<yf'(U+K),
Jo Jo

= y f'E,•'n

where y is given by (2.33). ■

The final result of this section can be found as (2.10) and (3.6) of Day [4].

Lemma 7. Suppose that the filament is genuinely viscoelastic. Let [u, e, a] be a smooth

viscoelastic process. Then there is a material constant k, such that

f fe2 < ic[l + f'(t2 + t2 + t2)
Jo Jo Jo

(2-35)
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for all / 3s 0. Moreover, if

( (t2 + t2)<oo,
Jo

then

K(t) -> 0 ast->cc. (2.36)

Lastly we record an inequality which can be found in [6] as Theorem 260.

Lemma 8. Let f: (0, oo) -» R be of class <32. Then

rt2< f°(f2 + ?2). (2.37)
•'o •'o

3. Main results.

Theorem 1. Let [u, e, o] be a viscoelastic process where associated traction t satisfies

t(()-»0 as(->oo, (3.1)

and

r°°.

■'o

Then the total energy E remains bounded, the limit

lim E(t) (3.3)
t~> 00

exists, and

r1 f'(K- *) ^0 as/-»0. (3.4)
Jo

Proof. It will firstly be shown that E is bounded. Integration by parts of (2.28) gives

E(t) = £(0) + r(t)u(a, t) — ('j(s)u{a, s) ds. (3-5)
Jo

Hence by (2.16), (2.29) and (2.4),

, 1/2 . .. / ,a ,\ 1/2

f Kl < 00. (3.2)

£(0<£(0) + a1/2|r(/)|(^e(-,02) + (*)l(jf «('. *)*) ds

<£(0) + (s^)) |T(,)|£(')l/!+(i^))

Now we apply Lemma 2 and obtain

E{,)"2£(0) + IRt<,)1ir) jyWM')"1*

<2£(0) ++ (-T^r) (max£) '
g(00) \g{oo)l [0, r] > J0
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and therefore,

max E < 2£(0) + ——- max t2 + ( -7—r) ( max £) 7 f |f |.
[0,/] g(oo) [0,0 \g(oo)l Mo.'] ' Jo

Now use Lemma 2 again to see that

max E < 4£(0) H—p-jmaxr2 + f Ifl 1.
[0.'] g(oo) [ [0, r] |/0 J

Due to (3.1) and (3.2), this implies that

sup E < 00. (3.6)
[ 0,00)

Because E is positive, this establishes that E is bounded.

Note that (2.16), (2.29) and (3.6) show that

sup \u(a,-)|< v, (3.7)
[0,00)

where v2 : = 2ag(oo)"' sup[0 XJE. Let 7j > 0. By (3.1) and (3.2), there is a time tv > 0 such

that

KOI <1/3", (3.8)
for all t > tv and

(VI <1/3", (3.9)
JS

for all s, t > tr In view of (3.5),

E(t) - E(s) = r(t)u(a, t) - t(s)u(a, s) - •)•
J S

thus (3.7)-(3.9) imply that

|£(0 - £(j)|<K0I l«(o.0l+K')l l"(a"0l + t('M W(a, -)|

|t(/)|+|t(j)| + f'\r\Iu{a, -)|
Js

<y>

whenever t > s > tr This establishes that the limit (3.3) exists.

Finally we proceed to prove (3.4). By (2.11) and (3.7),

I'"1 ( W(t + s, t — s) ds < f |t(/ + j)| |w(a, t — 5)1^5
I •'0 Jo

< vt'x j |t(/ + s)|<ft = vt|t|

= '(4/>I-7/0'w)-° <310)
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as t -> oo.The right-hand side tends to zero, since (3.1) implies that

1 rt. .
— / t -» 0 as / -> oo.
t V 1

Similarly, it is easy to show that

t'1 f lV(s,s)ds-> 0 as t -> 0, (3-11)
Jo

and

t~] f W(t — s, t + s) ds-> 0 asf->oo. (3.12)
Jo

Also, the Cauchy-Schwarz inequality, (2.15), (2.29), (2.4) and (3.6) enable us to deduce

that

>/2/ ru ,\'/2

| ']f0 ^ r'(/0 P2"(-'0)2) [jo U(',2t)2

* (C+^Y^ -
7Tt

< —
1/ 8fl2 \1/2/ „,2\1/2

(/V"(-,0)2) £(20'/2-0 (3.13)
7T2g(00) / Wo

as ? -» oo. (3.4) now follows from (3.10)—(3.13) and the identity (2.17). ■

Part of the conclusion of Theorem 1 is that E is bounded. Theorem 2 tells us that (3.4)

holds merely if the total energy is subbounded in £' i.e.,

sup? ' f'\E\ < oo. (3-14)
o

Theorem 2. Let [w, e, a] be a viscoelastic process whose total energy is subbbounded, and

7'|t|2-0 (3.15)

as t -» oo. Then (3.4) holds.

Proof. We show that each of the limits (3.10)—(3.13) hold under the hypotheses stated

above.

By (2.11), (2.16), (2.29), (2.4) and the Cauchy-Schwarz inequality,

I'"' f W(t + s, t — j) ds < f f |t(/ + s)| |u(a, t — s)\ds
I Jo Jo Jo

1/2

ax/2t 1J |t(/+ s)|e(t — i)2) ds

(2a/g(oo))'/2 f'\r(t + s)|£(* - s)>/2 ds
Jo

(2a/g(oo))1/2(r'/o'£)/(r'pT|2)/-

The first two terms in parentheses are bounded, while the last term tends to zero due to

(3.15). Thus (3.10) holds.
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Similar arguments establish the inequalities

|r1/V(,,5)^<(2a/g(o°))1/2(r,/0£) (r'^'lT|2) ,

|r'jfV(f - 5, t + s) ds < (2a/g(cc)y/2^t~* J*'e j ('"'J^M2) •

We conclude from these that (3.11) and (3.12) are true using (3.14) and (3.15).

Finally, we apply the Cauchy-Schwarz inequality and (2.32) to conclude that

t fpu(0)u(2t) <2r'A:(0)1/2/(2/)1/2
KO

2y^2K(0)rl/2(r] J2'e j
\ 1/2

0.

as t -» oo using (3.14). ■

The assumptions (a), (/?) on the relaxation function allow the filament to be elastic,

and therefore cannot exclude resonance. It is not surprising that the dampening in a

genuinely viscoelastic filament enables us to strengthen Theorem 1.

Theorem 3. Suppose that the filament is genuinely viscoelastic. Let [u, e, a] be a smooth

viscoelastic process whose associated traction t satisfies

f (r2 + t2) < oo. (3.16)
Jo

Then

lim K(t) = lim ^(r) = 0.
t-*CQ t~* 00

Proof. The theorem will be proved by demonstrating that each of the terms in (2.18)

tends to zero.

It follows from (2.10) and (2.16) that

f P(t + s, t — s) ds\ < f |t(? + 5)| |u(a, t —
I yo I •'0

< t(/ + s)2 | f'\u(a, t — j)|2 ds j

But due to (2.35), (2.37) and (3.16),

/*°° ca
/ / e < 00, (3.18)

and, by (3.16),

r2t
f t2 -> 0 as t -* 00. (3.19)

Jt
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It is an easy consequence of (3.17)—(3.19) that

J P(t + s, t — s) ds -> 0 as f -> oo. (3.20)
■'o

Similarly, it can be shown that

f P(t — s, t + s) ds -> 0 as t -» oo. (3-21)
Jo

The Cauchy-Schwarz inequality and (2.36) imply that

\\fQ P«(0)«(20
K{0)K(2t) -» 0 asf-oo. (3.22)

(2.18), (3.20), (3.21) and (3.22) now yield the desired result. ■
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Day.
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