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Abstract. We derive new sufficient conditions for uniform asymptotic stability of the

zero solution of linear non-autonomous delay differential equations. The equations

considered include scalar equations of the form

x'(t) = ~c{t)x(t) + £ bi(t)x(l - Tj)
1 = 1

where c(t), b^t) are continuous for t > 0 and Ti is a positive number (/' = 1,2and

also systems of the form

x'(t) = B(t)x(t - T) - C(r)*(0

where S(r) and C(/) are n X n matrices. The results are found by using the method of

Lyapunov functionals.

1. Scalar equations with a single delay. The purpose of this paper is to derive some new

sufficient conditions for stability of linear delay differential equations. We first consider

the scalar equation

x'(t) = b(t)x(t - T) - c(t)x(t) (1)

where b and c are given continuous functions and T is a positive constant. Extensions to

scalar equations with several delays and to systems of equations are given in Sees. 2 and 3.

The simplest available sufficient condition for asymptotic stability is contained in the

following theorem of Hale [5, page 108],

Theorem 1. Suppose that b and c are bounded continuous functions on R and satisfy

(i) c(t) > S > 0 for all t, and

(ii) \b(t)\ < 68 for all t, and for some 6, 0 < 6 < 1.

Then, the zero solution of (1) is uniformly asymptotically stable.
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In this result, the function c is required to dominate the function \b\ in the very strong

sense that the supremum of |ft| must be less than the infimum of c. Some such condition is

needed, since if b and c are constants and b > 0, then ft < c is necessary for stability. In

the theorems that we give here the hypotheses on b and c are less stringent. For example,

when b and c are periodic with period T, the hypothesis |/>(/)! < c(t) suffices. This can

also be shown to hold in more general circumstances by applying a stability theorem of

Dyson and Villella-Bressan [4],

Our results are obtained by using certain simple Lyapunov functionals V(t, <j>) rather

than the autonomous functionals V(<p) used in proving Thm. 1. Although the theory of

Lyapunov functionals has been extensively developed for autonomous equations, for

example by Carvalho, Infante and Walker [3], a similar development is still lacking for

non-autonomous equations.

Our first result for Eq. (1) is contained in the following theorem.

Theorem 2. Suppose that b and c are continuous and assume that the following conditions

are satisfied:

(a) Given 77 > 0 there exists t > 0 such that

+ T.

|6(j)|A < 7) for t ^ 0

(and consequently for some B > 0

r° |b(t + T + 6)\d0 < B < 00,nJ-T

t > 0).

(b) There exist a > 0 and q > 0 such that

2c(t) - a\b(t)| - \b(t + T)\/a ^ q for t > 0.

Then the zero solution of (1) is uniformly asymptotically stable.

Proof. The proof consists in applying the Lyapunov theorem for functional differential

equations given in Sec. 4 with a Lyapunov function V: R X C -» C of the form

V(t, <f>) = a<p2(0) + f° K(t + 0)<t>2(0) d0
J-T

where A" is a continuous function, K: R -» R, to be chosen later. Let x(.s, <j>) denote the

solution of (1) satisfying xs - <j> and, for simplicity, let x(t) denote the value of x(i, <t>) at

t. Then

V(t,4>)= lim \[v{t + h, xl+h(t,<t>)) - K(/,<j>)]
h 10

+ lim t( f K(t + 6)x2(t + 6) dd — J K(t + 6)x2(t + 9)
hlO " \J-T+h J-T

2ax(t)x'(t) + K(t)x2(t) - K(t - T)x2(t - T).
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Since x satisfies (1), we have

F(f,<*>) = [JC(0 - 2ac(0]<^2(0) + 2ab(t)<t>(0)<j>(-T) - K(t - T)<j>2(-T). (2)

Letting K(t) = \b(t + T)| in (2), we note that the discriminant of the resulting quadratic

form is

4 a2b2(t) + 4|fe(<)|[|/j(? + T) |— 2ac(t)]

= 4\b(t)\[a2\b(t)\ + \b{t + T)\- 2ac(t)] < -Aaq\b{t)\,

(3)

the inequality following from condition (b). Now, whenever \b(t)\ > q/ia, we see from

(3) that the quadratic form (2) is negative definite (uniformly for all such t). Hence, there

exists a constant > 0, such that V(t,<p)< —a^iO) for all t where |£>(0I > q/%a.

However, if |6(0I < <?/8a, we have from (2) with K{t) = \b(t + 7)|:

V(t,<f>) = [|i(* + T)\-2ac(t)\<t>2(0) + 2ab(t )*(0)*( - T) - |6(/)|<J»2( - T)

< -aq<j>2(0) + 2ab(t)<t>(0)<f>( - T) — |fc(/)|</>2( - T) (4)

since from (b) we have \b(t + T)\ - 2ac(t) < -aq. Now, if 2ab(t)<j>(0)<j>(-T)~

|Z>(r)|<)2( — T) > 0, then 2a|4>(0)| > |4>(- r)|, hence

2ab{t)<t>{Q)<t>{~T) -|Z>(0l<f>2 (-r)| < 4a2\b(t)\4>2{0)-\b{t)\<t>2{-T)

< 4a2\b(t)\<pr(0) < y<?>2(0).

Using this in (4) we obtain

V(t, </>)<- ^y<P2(0), whenever |6(/)l < <?/8a.

Letting a = min^, aq/2), we see that V(t, </>) < -a<j>2(0) for all t > 0 and all ^eC.

Moreover, the inequalities

a<\>2{0) < V(t, <t>) < (B +

follow directly from (a) and the definition of V; and the zero solution is asymptotically

stable. This completes the proof of the theorem.

Remark. The condition (a) can hold even when c(t) —

b(t) ^ q > 0 and c(t) - b(t + T) ^ q > 0 fail to hold. In fact if we take a = 1 and

q = 1/2 in condition (a), we see that it holds for the special case

T= 3, c(t) = 1,

£(f)=/*2[l~|6« + 3-r|], (G (6 n + 2,6« + 4), n = 0, ±1, +2,...,

10, otherwise.

However, c(6n + 3) - \b(6n + 3)| = -1/2 < 0, and c(6n) - \b(6n + 3)| = -1/2 < 0.

Note that the stability conditions of Dyson and Villella-Bressan [4] when applied to Eq.

(1) require that c(t) - b(t) > q > 0.
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Theorem 2 has some immediate corollaries that are worth stating because they deal with

situations that are frequently encountered in applications.

Corollary 1. Suppose that c is continuous and b is continuous and periodic of period T.

Then, if there exists q > 0 such that

c(t)-\b(t)\> q, t > 0,

the zero solution of (1) is uniformly asymptotically stable.

Note that if b and c are constants, then condition (a) with a = 1 reduces to c - \b\ > 0.

This is the best possible stability condition regardless of the size of the delay T in this case

([5], page 108). So, in this sense, the condition (a) is also the best possible condition of this

type.

Corollary 2. Assume that b and c are continuous and that:

(b) There exists X e (0,1) such that |fe(f )| < t > 0,

(c) c(0 > c1 > 0, and either c(t) is non-increasing or |6(OI is non-increasing.

Then the zero solution of (1) is uniformly asymptotically stable.

The above results were obtained by choosing K(t) = \b(t -I- 7")| in (2). If different

choices of K are taken, then other stability conditions can be obtained. For example, we

shall prove the following theorem by choosing K(t) = b2(t + T).

Theorem 3. The results of Theorem 2 hold provided that

(a') 2ac(t) - b2(t + T) - a2 > q, for some a > 0, q > 0, and

(b') f,'+Tb2(s) ds is bounded and given 77 > 0 there exists t > 0 such that

(' T|6(s)|<is < TJ
Jt

for t > 0.

Proof. If K(t) = b2(t + T), then (2) has the form

V(t,4>) = Ib2(t +T)~ 2ac(t)] <t>2(0) + 2ab(t)<t>(0)<f>( — T) - b2(t)<t>2(-T).

Using (a'), we obtain

V(t,<*>) < -(a2 + q)<p2(0) + 2a&(0<^>(0)<^>(-7,) - b2(t)<t>2(-T)

< -<74>2(0) -[a<f>(0) - fc(0<#>(-r)]2

< -q<t>2(0),

for all <j> e C. Moreover, V(t, <£) > a<f>2(0) and

V(t, </>) < a<t>2(0) + I° b2{t + T + d) dO
J  j

< a<t>2(0) + |<f>|L f'+rb2(s) ds.
Jt

By condition (b'), there is a constant B such that

V(t,<!>) < -SklL-
As for Thm. 2, uniform asymptotic stability follows from Theorem 8, and the theorem is

proved.
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A special ease occurs again when b is periodic of period T. Then conditions (a') and (b')

are implied by the single condition

2ac(t) - b2(t) - a2 > 0, 0 < t < T.

As a final example, we examine the consequences of choosing

K(t) = b2(t+ T)/c(t+ T),

as was done in [2],

Theorem 4. Assume that b and c are continuous and that the following conditions hold,

(a") There is a constant X such that b2(t 4- T)/c(t)c(t + T) < X < 1 for t ^ 0,

(b") jt'+T b2(s) ds is bounded and given r; > 0 there exists t > 0 such that

f T|6(.?)|A<tj

for t > 0.

(c") There is a constant cl such that c(t) > cx > 0 for / > 0.

Then the zero solution of (1) is uniformly asymptotically stable.

Proof. If K(t) = b2(t + T)/c(t + T), then (2) has the form

b2(t + T)
/ 2 ac(t)

c(t + T) w

b2(t) 2, .

<t>2(0) + 2ab(t)<t>(0)<j>(-T)

c(t)

From (a") and (c") we get

V(t,*) < (X - 2a)c(t)<j>2(0) + 2ab(t)<}>{0)<t>(-T) - <j>2(-T)
c(t)

= - [(2a - X)c2(t)<j>2(0) - 2ab(t)c(t)*(0)*(-T) + b2(t)<t>2(-T)]/c(t).

Choosing a = 1, we have, for all <j> e C,

V(t, <!>)<-( I- X)c(t)<t>2(0) - [c(/)*(0) - 6(0*(-r)]2A(0

< -(1 - X)c(t)<f>2(0) < -(1 - X)c1<l>2(0).

Moreover,

<t>2(0) < V(t,4>) + JT'+7^U) <

and the proof is completed.

2. Scalar equations with several delays. The analysis of the previous section can be

directly generalized to cover equations with several delays of the form

N

x'{t) = -c(t)x(t) + £ bl(t)x(t - 7;) (5)
; = 1

where 7] > 0 is a positive constant (/' = 1,2,... ,N). We use the functional

V(t, 4>) = <#>2(0) + E 1° K,(t + 0)<p2(6) do,
, = 1 J-Tl
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where K, are continuous functions to be chosen below. A calculation of the same sort as in

Sec. 1 yields

-2c(t)+ E*,(0 <#>2(0)
/ = 1

+ 2<t>(0)Lbi(t)<t>(-Ti)- £*,(*- Ti)<$>2( -T-). (6)
/-I i=i

When — V is viewed as a quadratic form in <#>(0) and <#>(— 7^), i = 1,2it has the

following associated symmetric matrix

N

2 c(0-E*,(0 -MO -MO -M 0
( = 1

M = ~M0 0 ••• 0
-MO 0 K2(t-T2) ••• 0

-MO 0 0 KN(t-TN)

We now choose

tf((0=|A,-(/+ «■= 1,2,....AT, (7)

and note that the principal minors of M are

2c(0-!>/('+ TM/a,

1■IM0I
" i

2c(0 - fli|M0l - E — \bi(t + T,

■IM0I-" IMOI

,=i a<

2c(t) - E«/M0l~ Y.\\bAt+Tl)I
;=1 (=1 '

If 16,(01 > e > 0 for all i, then the quadratic form — V is positive definite whenever there

exists q > 0 such that

2c(0- 1^,(01- E ^\bi(t+ Ti)\>q>0. (8)
i-l i-l '

Using the arguments of Thm. 2, we can conclude that, if (8) holds, then there exists a > 0

such that

V(t, <j>) < — a<|>2(0).

Clearly,

l<f>(0)| < V(t, </>) s* |^|oo(l + E / ~\bi(t + Tt + 9)\d6

1 + E f+T'j\b,{s)\ds\,
i = i ' a< I

and we have established the following result.
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Theorem 5. Let c(t) and bt(t) be continuous functions satisfying the following condi-

tions:

(i) Given tj > 0 there exists t > 0 such that

rt + T,

f'+r\bM\*
Jt

v

for / = 1,2and / > 0.

(ii) 2c(t) - a,|^,(OI _ Z)fLilbj(t + Tt)\/ai > q > 0, for some constants q > 0,

a, > 0, /' = 1,2,... ,N and for t e [0, oo) .

Then, the zero solution of (5) is uniformly asymptotically stable.

It is easy to derive analogues of Corollaries 1 and 2 of Sec. 1. We only mention one of

these.

Corollary 3. If c(t) and bt(t) are continuous, and bi(t) is periodic of period T„

i = 1,2,... ,N; a sufficient condition for the uniform asymptotic stability of the zero

solution of (5) is that there exist q > 0, with

c(0 - E 1^(01 > q> fe[0,oo).
l'« 1

Other results follow from different choices of the Kt. For example, the choice

K,(t) = jbf(t + T,)
i

yields the following form for V(t, <j>)

N 1

-2c(t) + £ ~bf(t + T,)
1 = 1 a-

N

^>2(0) + 2<p(0)j:bl(t)H-T,)

" 1
- I -b^tWi-TX (9)

i-i <

and we have the following result.

Theorem 6. The zero solution of Eq. (5) is uniformly asymptotically stable if c(t) and

bjit), i = are continuous and

(i') there exist constants q > 0, a, > 0, /' = 1,2,...,N with

N N j

2c(t) - la, - E — b?{t + 7].) > q,
1 1 ai

1 = 1 1 = 1 '

(ii') EfLi //+ T' bf(s) ds < B < oo, and given tj > 0 there exists r > 0 such that

/' + T|ft,(j)|& < 7)

for / = 1,2.,n and t > 0.
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Proof. Using condition (i') in (9) we note that

V(t, <f>) < -^2(0)+ E +
/ = 1 '

< -q<t>2(0)- E j [a,<*>(0) - b,Z))]2 < -q<j>2(0).
i-i '

The condition (ii') immediately implies that

k(°)l < < |(>|c
T S 1 ft + Tj -) , .

i + E — / M*)ds
, = 1 ■'r

<l*l»[l + BL],

where L = ATflj 1/a,, and the proof is completed.

An immediate corollary is the following.

Corollary 4. If c(t) and bl(l) are continuous and if b:(i) is periodic with period 7j,

i = 1,2,,N, then a sufficient condition for the uniform asymptotic stability of the zero

solution of (5) is that there exist q > 0, a, > 0, /' = 1,2,..., N, such that

2c(t) - E a, - E > 1-
1=1 (-1 i

We note that all of these results can be generalized, at the expense of complicating the

stability conditions, by choosing Lyapunov functions of the form

V(t, <j>) = a(O<#>2(0) + E f° K,(t + 6)<S>2{6) dO,
i-\J~T,

with a(t) 3* a0 > 0, a continuously differentiable function. The proofs of the correspond-

ing results proceed in the same manner as before with obvious changes in the stability

conditions. For example, the conclusions of Thm. 5 hold if condition (ii) of that result is

replaced by

2c(t) - 0t(t) E a\b,{t)\   E ]r\b/O + ^)|- > q > °'
, = i a(0, = 1a, a(0

for any function a of the type described above. All of our results have analogous

extensions.

3. Some simple stability criteria for systems. Consider the system

x'(t) = B(t)x(t - T) - C(t)x(t) (10)

where x is an H-dimensional vector and B and C are continuous functions whose range is

in the set of n X n matrices. Introducing the functional (the superscript T denotes the

transpose of a matrix):

V(t,<p) = ^O)7/^) + f° <p(0)rK(t + 9)4>(9) dd (11)
J _T



LINEAR NON-AUTONOMOUS DELAY DIFFERENTIAL EQUATIONS 303

where K(t) and D are rt X n matrices to be chosen below, and assuming that K is

continuous, we obtain

V(t, ip) = x'(t)TDx(t) + x(t)rDx'(t) + x(t)TK(t)x(t)

-x(t - T)TK{t - T)x(t - T)

= [x(f - T)TB(t)T - x(/)TC(?)r] Dx(t)

+ x(t)TD[B(t)x{t - T) - C(f )*(/)]

+ x(t)TK(t)x(t) - x(t - T)TK(t - T)x(t - T)

= -<j>(0)r[c(OTZ) + DC(t) - AT(/)]^(0)

+ <f>(- T)TB(t) TD<S>(0) + </>(0)'TDB(t)*(- T)

-4>(-T)TK(t- T)t(-T).

If D = Dt, we have

V(t,4>) = -*(0)r[c(/)7'D + DC(t) - tf(0]*(0)

+ 2</>(0)TDB(t)<j>(-T) - <j>{-T)TK(t - T)<j>(-T). (12)

This quadratic form - V has the associated symmetric matrix

C{t)TD + DC(t) - K(t) \{DB(t) + B(t)TD)

\(DB{t) + B{t)TD) K(t-T)

Several tests can be applied to establish that this is a positive definite matrix.

As a specific example, choose D to be positive definite and symmetric, and let

K(t) = B(t + T)TB(t + T).

Then

= -4>{0)T\c{t)TD + DC(t) - B(t + T)TB{t + r)]«#>(0)

+ l<t>{0)TDB(t)$(-T) -<t>(-T)TB(t)TB(t)4>(-T). (13)

and if we impose the condition

C(t)TD + DC(t) - B(t + T)TB(t + T)- D2 > yl,

where y > 0 and / is the identity, we obtain from (13)

< —y<p(0)T<j>(0) — (.£><£ (0) + B<t>(-T))T(D4>(0) + B<p( - T))

< —y<f>(0)T<t>(0).

Moreover, since D is positive definite, there exist constants ax > 0, a2 > 0 with

«iii<f>(o)ii2 < mTDm < «2ik(o)ii2.
hence, if //+r||5(i)||2 ds < /? < oo, we have

«iik(°)ii2 < < «2ii<#>(°)ir+ii<#>nL/'+:rii'B('S)ii2^
jt

<ML(«2 + P)-
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Applying Theorem 8 in Sec. 4, we have

Theorem 7. Consider the system (10) and assume B and C are continuous matrix valued

functions satisfying the conditions

(i) C{t)TD + DC(t) — B{t + T)rB(t + T) - D2 ^ yl, for some y > 0 and some posi-

tive definite matrix D, and

(ii) Given tj > 0 there exists r > 0 such that

f ||l?($)||*fe < tj forf>0.

Then the zero solution of (10) is uniformly asymptotically stable.

Theorem 7 is an exact extension to systems of Thm. 3 for scalar equations. It is clear

that Thm. 6 also has an analogous extension to systems of the form

*'(/) = -C(t)x(t) + £ Bi(t)x(t - T,). (14)
/=1

The stability conditions in this case take the form

rt+T., , v ..2

I / ll«,M<=iy'
ds < /8 < oo

and

N N ,

C(t)TD + DC(t) - D a,D2 - £ -B(t + T,)TB(t + T,) > yI,
i=i /=i a>

for some positive definite symmetric matrix D and some constants y > 0, a, > 0, i =

1,2 If D is taken to be non-constant: D: [0,oo) -» positive definite nXn

matrices, D(t) continuously differentiable and D(t) > D0, where D0 is a constant positive

definite matrix, then the second stability condition changes to

C(t)TD(t) + D(t)C(t) - E a,D2(t) - D'(t)
i-i

N 1

L ~B(t + T,)TB(t + T,)>yl.
/-1 a-

We finally note that our results are intrinsically different from those of Lewis and

Anderson [6] because we allow the possibility that the matrices Bi(t) in (14) have non-zero

diagonal terms. The hypotheses in [6] require that all diagonal terms in the Bt(t) be equal

to zero. The techniques in [6] can be extended to cover the situation where the B,(t) have

non-zero diagonal terms, and stability criteria which differ from those presented here are

obtainable in that way. This has been done and will be described in a forthcoming paper

of R. Volz.

4. A Lyapunov functional result. In proving the results of the previous sections we have

used a version of the Lyapunov asymptotic stability result of Krasovskii that does not

require the standard restriction that the right-hand side of the functional equation map
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R X (bounded sets of C) into bounded sets of R". This can be done because of the special

form of the functional differential equations that we are considering, namely

f(0 = F(t. xt) - G(t, x(t)) =f(t, x,). (15)

We assume that f(t, 0) = 0 and /: R X C -> R" is continuous and is smooth enough to

ensure that the solution of (15) through (5, <#>) e R X C is continuous in (s, <£, t) in the

domain of definition of /. In this section we shall use the notation of Hale [15, Chapter 5].

The result we need is the following:

Theorem 8. Suppose that there exist continuous nondecreasing functions u, v,w: R + -> R +

with i/(0) = i>(0) = 0 and u(s) > 0, v(s) > 0, w(s) > 0 for s > 0. Suppose also that there

exists a continuous function V: R X C -» R such that

"(k>(0)l) < V(t, <j>) < i>(|<f>|),

K(/,*)< — w(|^»(0)|).

Finally, assume that given positive rj > 0, y > 0 there exists r > 0 such that

f,'+r\F(s, $)| ds < t) for all t > 0 and |<f>| < y, and xTDG(t, x) > 0 for some positive

definite symmetric matrix D and for (t, x) e R + X R ". Then the solution jc = 0 of (15) is

uniformly asymptotically stable.

Proof. The proof proceeds in the same way as that of Theorem 2.1 in [5, page 105] with

the exception of the part of that proof which uses the added assumption that/in (15) take

R X (bounded sets of C) into bounded sets of R". So, we shall present only that part of

the proof.

Let S0 > 0 be such that |<J>| implies |x(t, <J>)| < 1 for all t > a. Assume that there

exists a sequence {tk} such that

a + (2k - \)r < tk < a + 2k(r), k: 1,2,...

and, with|x|D = (xTDx)1/2,

\x(tk)\D>&, forsome5>0.

The proof can be completed as in [5], if we can show that there exists r > 0 such that

l*(Olo > s/2 for

t e ['k - T' h + T]-

Now, for |<f>| < e choose t > 0 so that

s,t ~f* 3S2
\F(s, <p)\ds <-t-j , where d = ||Z)||

OU

Note that the continuity of x(t) implies that there exist rk > 0 with |x(/)|H > 5/2 for

t e [tk — rk, tk + t^] = Ik, and for each k let rk > 0 be the maximal such rk. We shall

show that rk > t. For, supposing that rk < r we have

xT(t)Dx(t)) = xT(t)DF(t, x,) + FT(t, x,)Dx{t)

- [xT(t)DG(t, x(?)) + GT(t, x(t))Dx(t)]

< xT(t)DF(t, x,) + FT(t, x,)Dx(t).
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So, for t G [tk ~ T, tk + t]

I*(OId "MOId < 2dP+T\F(s, jc,)|ds
J'k

< 3§2/4,

that is |x(0Id > ^/2, which contradicts the maximalities of rk. So rk > t, and the proof is

completed.

Remark. Burton [1] gives extensions of the Lyapunov theorem of Krasovskii for more

general equations than (15). In the scalar case (n = 1), the condition on G(t, x) reduces to

the requirement that xG > 0.
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