STABILITY CONDITIONS FOR LINEAR NON-AUTONOMOUS DELAY DIFFERENTIAL EQUATIONS*

By
STAVROS N. BUSENBERG (Harvey Mudd College)
AND
KENNETH L. COOKE (Pomona College)

Abstract

We derive new sufficient conditions for uniform asymptotic stability of the zero solution of linear non-autonomous delay differential equations. The equations considered include scalar equations of the form $$
x^{\prime}(t)=-c(t) x(t)+\sum_{i=1}^{n} b_{i}(t) x\left(t-T_{i}\right)
$$ where $c(t), b_{i}(t)$ are continuous for $t \geqslant 0$ and T_{i} is a positive number $(i=1,2, \ldots, n)$, and also systems of the form $$
x^{\prime}(t)=B(t) x(t-T)-C(t) x(t)
$$ where $B(t)$ and $C(t)$ are $n \times n$ matrices. The results are found by using the method of Lyapunov functionals.

1. Scalar equations with a single delay. The purpose of this paper is to derive some new sufficient conditions for stability of linear delay differential equations. We first consider the scalar equation

$$
\begin{equation*}
x^{\prime}(t)=b(t) x(t-T)-c(t) x(t) \tag{1}
\end{equation*}
$$

where b and c are given continuous functions and T is a positive constant. Extensions to scalar equations with several delays and to systems of equations are given in Secs. 2 and 3.

The simplest available sufficient condition for asymptotic stability is contained in the following theorem of Hale [5, page 108].

Theorem 1. Suppose that b and c are bounded continuous functions on \mathbf{R} and satisfy
(i) $c(t) \geqslant \delta>0$ for all t, and
(ii) $|b(t)| \leqslant \theta \delta$ for all t, and for some $\theta, 0 \leqslant \theta<1$.

Then, the zero solution of (1) is uniformly asymptotically stable.

[^0]In this result, the function c is required to dominate the function $|b|$ in the very strong sense that the supremum of $|b|$ must be less than the infimum of c. Some such condition is needed, since if b and c are constants and $b \geqslant 0$, then $b<c$ is necessary for stability. In the theorems that we give here the hypotheses on b and c are less stringent. For example, when b and c are periodic with period T, the hypothesis $|b(t)|<c(t)$ suffices. This can also be shown to hold in more general circumstances by applying a stability theorem of Dyson and Villella-Bressan [4].

Our results are obtained by using certain simple Lyapunov functionals $V(t, \phi)$ rather than the autonomous functionals $V(\phi)$ used in proving Thm. 1. Although the theory of Lyapunov functionals has been extensively developed for autonomous equations, for example by Carvalho, Infante and Walker [3], a similar development is still lacking for non-autonomous equations.

Our first result for Eq. (1) is contained in the following theorem.
Theorem 2. Suppose that b and c are continuous and assume that the following conditions are satisfied:
(a) Given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}|b(s)| d s<\eta \quad \text { for } t \geqslant 0
$$

(and consequently for some $B>0$

$$
\int_{-T}^{0}|b(t+T+\theta)| d \theta \leqslant B<\infty
$$

$t \geqslant 0$).
(b) There exist $a>0$ and $q>0$ such that

$$
2 c(t)-a|b(t)|-|b(t+T)| / a \geqslant q \quad \text { for } t \geqslant 0
$$

Then the zero solution of (1) is uniformly asymptotically stable.
Proof. The proof consists in applying the Lyapunov theorem for functional differential equations given in Sec. 4 with a Lyapunov function $V: \mathbf{R} \times C \rightarrow C$ of the form

$$
V(t, \phi)=a \phi^{2}(0)+\int_{-T}^{0} K(t+\theta) \phi^{2}(\theta) d \theta
$$

where K is a continuous function, $K: \mathbf{R} \rightarrow \mathbf{R}$, to be chosen later. Let $x(s, \phi)$ denote the solution of (1) satisfying $x_{s}=\phi$ and, for simplicity, let $x(t)$ denote the value of $x(s, \phi)$ at t. Then

$$
\begin{aligned}
\dot{V}(t, \phi)= & \varlimsup_{h \downarrow 0} \frac{1}{h}\left[V\left(t+h, x_{t+h}(t, \phi)\right)-V(t, \phi)\right] \\
= & \frac{d}{d t} a x^{2}(t) \\
& +\varlimsup_{h \downarrow 0} \frac{1}{h}\left\{\int_{-T+h}^{h} K(t+\theta) x^{2}(t+\theta) d \theta-\int_{-T}^{0} K(t+\theta) x^{2}(t+\theta) d \theta\right\} \\
= & 2 \operatorname{ax}(t) x^{\prime}(t)+K(t) x^{2}(t)-K(t-T) x^{2}(t-T) .
\end{aligned}
$$

Since x satisfies (1), we have

$$
\begin{equation*}
\dot{V}(t, \phi)=[K(t)-2 a c(t)] \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-K(t-T) \phi^{2}(-T) . \tag{2}
\end{equation*}
$$

Letting $K(t)=|b(t+T)|$ in (2), we note that the discriminant of the resulting quadratic form is

$$
\begin{align*}
4 a^{2} b^{2}(t)+4|b(t)|[\mid b(t & +T) \mid-2 a c(t)] \\
& =4|b(t)|\left[a^{2}|b(t)|+|b(t+T)|-2 a c(t)\right] \leqslant-4 a q|b(t)| \tag{3}
\end{align*}
$$

the inequality following from condition (b). Now, whenever $|b(t)| \geqslant q / 8 a$, we see from (3) that the quadratic form (2) is negative definite (uniformly for all such t). Hence, there exists a constant $\alpha_{1}>0$, such that $\dot{V}(t, \phi) \leqslant-\alpha_{1} \phi^{2}(0)$ for all t where $|b(t)| \geqslant q / 8 a$. However, if $|b(t)|<q / 8 a$, we have from (2) with $K(t)=|b(t+T)|$:

$$
\begin{align*}
\dot{V}(t, \phi) & =[|b(t+T)|-2 a c(t)] \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-|b(t)| \phi^{2}(-T) \\
& \leqslant-a q \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-|b(t)| \phi^{2}(-T) \tag{4}
\end{align*}
$$

since from (b) we have $|b(t+T)|-2 a c(t) \leqslant-a q$. Now, if $2 a b(t) \phi(0) \phi(-T)-$ $|b(t)| \phi^{2}(-T)>0$, then $2 a|\phi(0)|>|\phi(-T)|$, hence

$$
\begin{aligned}
2 a b(t) \phi(0) \phi(-T)-|b(t)| \phi^{2}(-T) \mid & <4 a^{2}|b(t)| \phi^{2}(0)-|b(t)| \phi^{2}(-T) \\
& <4 a^{2}|b(t)| \phi^{2}(0)<\frac{q a}{2} \phi^{2}(0)
\end{aligned}
$$

Using this in (4) we obtain

$$
\dot{V}(t, \phi) \leqslant-\frac{a q}{2} \phi^{2}(0), \quad \text { whenever }|b(t)|<q / 8 a .
$$

Letting $\alpha=\min \left(\alpha_{1}, a q / 2\right)$, we see that $\dot{V}(t, \phi) \leqslant-\alpha \phi^{2}(0)$ for all $t \geqslant 0$ and all $\phi \in C$. Moreover, the inequalities

$$
a \phi^{2}(0) \leqslant V(t, \phi) \leqslant(B+a)|\phi|_{\infty}^{2}
$$

follow directly from (a) and the definition of V; and the zero solution is asymptotically stable. This completes the proof of the theorem.

Remark. The condition (a) can hold even when $c(t)-$ $b(t) \geqslant q>0$ and $c(t)-b(t+T) \geqslant q>0$ fail to hold. In fact if we take $a=1$ and $q=1 / 2$ in condition (a), we see that it holds for the special case

$$
\begin{gathered}
\quad T=3, \quad c(t) \equiv 1 \\
b(t)=\left\{\begin{array}{l}
\frac{3}{2}[1-|6 n+3-t|], \quad t \in(6 n+2,6 n+4), n=0, \pm 1, \pm 2, \ldots, \\
0, \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

However, $c(6 n+3)-|b(6 n+3)|=-1 / 2<0$, and $c(6 n)-|b(6 n+3)|=-1 / 2<0$. Note that the stability conditions of Dyson and Villella-Bressan [4] when applied to Eq. (1) require that $c(t)-b(t) \geqslant q>0$.

Theorem 2 has some immediate corollaries that are worth stating because they deal with situations that are frequently encountered in applications.

Corollary 1. Suppose that c is continuous and b is continuous and periodic of period T. Then, if there exists $q>0$ such that

$$
c(t)-|b(t)| \geqslant q, \quad t>0
$$

the zero solution of (1) is uniformly asymptotically stable.
Note that if b and c are constants, then condition (a) with $a=1$ reduces to $c-|b|>0$. This is the best possible stability condition regardless of the size of the delay T in this case ([5], page 108). So, in this sense, the condition (a) is also the best possible condition of this type.

Corollary 2. Assume that b and c are continuous and that:
(b) There exists $\lambda \in(0,1)$ such that $|b(t)| \leqslant \lambda c(t), t \geqslant 0$,
(c) $c(t) \geqslant c_{1}>0$, and either $c(t)$ is non-increasing or $|b(t)|$ is non-increasing.

Then the zero solution of (1) is uniformly asymptotically stable.
The above results were obtained by choosing $K(t)=|b(t+T)|$ in (2). If different choices of K are taken, then other stability conditions can be obtained. For example, we shall prove the following theorem by choosing $K(t)=b^{2}(t+T)$.
Theorem 3. The results of Theorem 2 hold provided that
($\left.\mathrm{a}^{\prime}\right) 2 a c(t)-b^{2}(t+T)-a^{2} \geqslant q$, for some $a>0, q>0$, and
($\left.\mathrm{b}^{\prime}\right) \int_{t}^{t+T} b^{2}(s) d s$ is bounded and given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}|b(s)| d s<\eta
$$

for $t \geqslant 0$.
Proof. If $K(t)=b^{2}(t+T)$, then (2) has the form

$$
\dot{V}(t, \phi)=\left[b^{2}(t+T)-2 a c(t)\right] \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-b^{2}(t) \phi^{2}(-T)
$$

Using (a^{\prime}), we obtain

$$
\begin{aligned}
\dot{V}(t, \phi) & \leqslant-\left(a^{2}+q\right) \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-b^{2}(t) \phi^{2}(-T) \\
& \leqslant-q \phi^{2}(0)-[a \phi(0)-b(t) \phi(-T)]^{2} \\
& \leqslant-q \phi^{2}(0)
\end{aligned}
$$

for all $\phi \in C$. Moreover, $V(t, \phi) \geqslant a \phi^{2}(0)$ and

$$
\begin{aligned}
V(t, \phi) & \leqslant a \phi^{2}(0)+|\phi|_{\infty}^{2} \int_{-T}^{0} b^{2}(t+T+\theta) d \theta \\
& \leqslant a \phi^{2}(0)+|\phi|_{\infty}^{2} \int_{t}^{t+T} b^{2}(s) d s
\end{aligned}
$$

By condition (b^{\prime}), there is a constant B such that

$$
V(t, \phi) \leqslant B|\phi|_{\infty}^{2}
$$

As for Thm. 2, uniform asymptotic stability follows from Theorem 8, and the theorem is proved.

A special case occurs again when b is periodic of period T. Then conditions (a^{\prime}) and (b^{\prime}) are implied by the single condition

$$
2 a c(t)-b^{2}(t)-a^{2}>0, \quad 0 \leqslant t \leqslant T .
$$

As a final example, we examine the consequences of choosing

$$
K(t)=b^{2}(t+T) / c(t+T)
$$

as was done in [2].
Theorem 4. Assume that b and c are continuous and that the following conditions hold.
$\left(\mathrm{a}^{\prime \prime}\right)$ There is a constant λ such that $b^{2}(t+T) / c(t) c(t+T) \leqslant \lambda<1$ for $t \geqslant 0$,
($\mathrm{b}^{\prime \prime}$) $\int_{t}^{t+T} b^{2}(s) d s$ is bounded and given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}|b(s)| d s<\eta
$$

for $t \geqslant 0$.
$\left(\mathrm{c}^{\prime \prime}\right)$ There is a constant c_{1} such that $c(t) \geqslant c_{1}>0$ for $t \geqslant 0$.
Then the zero solution of (1) is uniformly asymptotically stable.
Proof. If $K(t)=b^{2}(t+T) / c(t+T)$, then (2) has the form

$$
\begin{aligned}
\dot{V}(t, \phi)= & {\left[\frac{b^{2}(t+T)}{c(t+T)}-2 a c(t)\right] \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T) } \\
& -\frac{b^{2}(t)}{c(t)} \phi^{2}(-T)
\end{aligned}
$$

From ($\mathrm{a}^{\prime \prime}$) and ($\mathrm{c}^{\prime \prime}$) we get

$$
\begin{aligned}
\dot{V}(t, \phi) & \leqslant(\lambda-2 a) c(t) \phi^{2}(0)+2 a b(t) \phi(0) \phi(-T)-\frac{b^{2}(t)}{c(t)} \phi^{2}(-T) \\
& =-\left[(2 a-\lambda) c^{2}(t) \phi^{2}(0)-2 a b(t) c(t) \phi(0) \phi(-T)+b^{2}(t) \phi^{2}(-T)\right] / c(t)
\end{aligned}
$$

Choosing $a=1$, we have, for all $\phi \in C$,

$$
\begin{aligned}
\dot{V}(t, \phi) & \leqslant-(1-\lambda) c(t) \phi^{2}(0)-[c(t) \phi(0)-b(t) \phi(-T)]^{2} / c(t) \\
& \leqslant-(1-\lambda) c(t) \phi^{2}(0) \leqslant-(1-\lambda) c_{1} \phi^{2}(0)
\end{aligned}
$$

Moreover,

$$
\phi^{2}(0) \leqslant V(t, \phi) \leqslant|\phi|_{\infty}^{2}\left(1+\int_{t}^{t+T} \frac{b^{2}(s)}{c(s)} d s\right) \leqslant B|\phi|_{\infty}^{2}
$$

and the proof is completed.
2. Scalar equations with several delays. The analysis of the previous section can be directly generalized to cover equations with several delays of the form

$$
\begin{equation*}
x^{\prime}(t)=-c(t) x(t)+\sum_{i=1}^{N} b_{i}(t) x\left(t-T_{i}\right) \tag{5}
\end{equation*}
$$

where $T_{i}>0$ is a positive constant $(i=1,2, \ldots, N)$. We use the functional

$$
V(t, \phi)=\phi^{2}(0)+\sum_{i=1}^{N} \int_{-T_{i}}^{0} K_{i}(t+\theta) \phi^{2}(\theta) d \theta
$$

where K_{i} are continuous functions to be chosen below. A calculation of the same sort as in Sec. 1 yields

$$
\begin{align*}
\dot{V}(t, \phi)= & {\left[-2 c(t)+\sum_{i=1}^{N} K_{i}(t)\right] \phi^{2}(0) } \\
& +2 \phi(0) \sum_{i=1}^{N} b_{i}(t) \phi\left(-T_{i}\right)-\sum_{i=1}^{N} K_{i}\left(t-T_{i}\right) \phi^{2}\left(-T_{i}\right) \tag{6}
\end{align*}
$$

When $-\dot{V}$ is viewed as a quadratic form in $\phi(0)$ and $\phi\left(-T_{i}\right), i=1,2, \ldots, N$, it has the following associated symmetric matrix

$$
M=\left[\begin{array}{ccccc}
2 c(t)-\sum_{i=1}^{N} K_{i}(t) & -b_{1}(t) & -b_{2}(t) & \cdots & -b_{N}(t) \\
-b_{1}(t) & K_{1}\left(t-T_{1}\right) & 0 & \cdots & 0 \\
-b_{2}(t) & 0 & K_{2}\left(t-T_{2}\right) & \cdots & 0 \\
\cdot & \cdot & \cdot & & \cdot \\
-b_{N}(t) & 0 & 0 & \cdots & K_{N}\left(t-T_{N}\right)
\end{array}\right]
$$

We now choose

$$
\begin{equation*}
K_{i}(t)=\left|b_{i}\left(t+T_{i}\right)\right| / a_{i}, \quad i=1,2, \ldots, N \tag{7}
\end{equation*}
$$

and note that the principal minors of M are

$$
\begin{aligned}
& 2 c(t)-\sum\left|b_{i}\left(t+T_{i}\right)\right| / a_{i} \\
& \frac{1}{a_{1}}\left|b_{1}(t)\right|\left[2 c(t)-a_{1}\left|b_{1}(t)\right|-\sum_{i=1}^{N} \frac{1}{a_{i}}\left|b_{i}\left(t+T_{i}\right)\right|\right] \\
& \cdot \cdot \cdot \cdot \\
& \frac{1}{a_{1} \cdots a_{N}}\left|b_{1}(t)\right| \cdots\left|b_{N}(t)\right|\left[2 c(t)-\sum_{i=1}^{N} a_{i}\left|b_{i}(t)\right|-\sum_{i=1}^{N} \frac{1}{a_{i}}\left|b_{i}\left(t+T_{i}\right)\right|\right] .
\end{aligned}
$$

If $\left|b_{i}(t)\right| \geqslant \varepsilon>0$ for all i, then the quadratic form $-\dot{V}$ is positive definite whenever there exists $q>0$ such that

$$
\begin{equation*}
2 c(t)-\sum_{i=1}^{N} a_{i}\left|b_{i}(t)\right|-\sum_{i=1}^{N} \frac{1}{a_{i}}\left|b_{i}\left(t+T_{i}\right)\right| \geqslant q>0 \tag{8}
\end{equation*}
$$

Using the arguments of Thm. 2, we can conclude that, if (8) holds, then there exists $\alpha>0$ such that

$$
\dot{V}(t, \phi) \leqslant-\alpha \phi^{2}(0) .
$$

Clearly,

$$
\begin{aligned}
|\phi(0)|^{2} & \leqslant V(t, \phi) \leqslant|\phi|_{\infty}^{2}\left\{1+\sum_{i=1}^{N} \int_{-T_{i}}^{0} \frac{1}{a_{i}}\left|b_{i}\left(t+T_{i}+\theta\right)\right| d \theta\right\} \\
& =|\phi|_{\infty}^{2}\left\{1+\sum_{i=1}^{N} \int_{t}^{t+T_{i}} \frac{1}{a_{i}}\left|b_{i}(s)\right| d s\right\}
\end{aligned}
$$

and we have established the following result.

Theorem 5. Let $c(t)$ and $b_{i}(t)$ be continuous functions satisfying the following conditions:
(i) Given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}\left|b_{i}(s)\right| d s<\eta
$$

for $i=1,2, \ldots, n$ and $t \geqslant 0$.
(ii) $2 c(t)-\sum_{i=1}^{N} a_{i}\left|b_{i}(t)\right|-\sum_{i=1}^{N}\left|b_{i}\left(t+T_{i}\right)\right| / a_{i} \geqslant q>0$, for some constants $q>0$, $a_{i}>0, i=1,2, \ldots, N$ and for $t \in[0, \infty)$.
Then, the zero solution of (5) is uniformly asymptotically stable.
It is easy to derive analogues of Corollaries 1 and 2 of Sec. 1 . We only mention one of these.

Corollary 3. If $c(t)$ and $b_{i}(t)$ are continuous, and $b_{i}(t)$ is periodic of period T_{i}, $i=1,2, \ldots, N$; a sufficient condition for the uniform asymptotic stability of the zero solution of (5) is that there exist $q>0$, with

$$
c(t)-\sum_{i=1}^{N}\left|b_{i}(t)\right| \geqslant q, \quad t \in[0, \infty)
$$

Other results follow from different choices of the K_{i}. For example, the choice

$$
K_{i}(t)=\frac{1}{a_{i}} b_{i}^{2}\left(t+T_{i}\right)
$$

yields the following form for $\dot{V}(t, \phi)$

$$
\begin{align*}
\dot{V}(t, \phi)= & {\left[-2 c(t)+\sum_{i=1}^{N} \frac{1}{a_{i}} b_{i}^{2}\left(t+T_{i}\right)\right] \phi^{2}(0)+2 \phi(0) \sum_{i=1}^{N} b_{i}(t) \phi\left(-T_{i}\right) } \\
& -\sum_{i=1}^{N} \frac{1}{a_{i}} b_{i}^{2}(t) \phi^{2}\left(-T_{i}\right) \tag{9}
\end{align*}
$$

and we have the following result.
Theorem 6. The zero solution of Eq. (5) is uniformly asymptotically stable if $c(t)$ and $b_{i}(t), i=1,2, \ldots, N$, are continuous and
(i') there exist constants $q>0, a_{i}>0, i=1,2, \ldots, N$ with

$$
2 c(t)-\sum_{i=1}^{N} a_{i}-\sum_{i=1}^{N} \frac{1}{a_{i}} b_{i}^{2}\left(t+T_{i}\right) \geqslant q
$$

(ii') $\sum_{i=1}^{N} \int_{t}^{t+T_{i}} b_{i}^{2}(s) d s \leqslant B<\infty$, and given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}\left|b_{i}(s)\right| d s<\eta
$$

for $i=1,2, \ldots, n$ and $t \geqslant 0$.

Proof. Using condition (i') in (9) we note that

$$
\begin{aligned}
\dot{V}(t, \phi) & \leqslant-q \phi^{2}(0)+\sum_{i=1}^{N} \frac{1}{a_{i}}\left[-a_{i}^{2} \phi^{2}(0)+2 a_{i} b_{i}(t) \phi(0) \phi\left(-T_{i}\right)-b_{i}^{2}(t) \phi^{2}\left(-T_{i}\right)\right] \\
& \leqslant-q \phi^{2}(0)-\sum_{i=1}^{N} \frac{1}{a_{i}}\left[a_{i} \phi(0)-b_{i}(t) \phi\left(-T_{i}\right)\right]^{2} \leqslant-q \phi^{2}(0)
\end{aligned}
$$

The condition (ii') immediately implies that

$$
\begin{aligned}
|\phi(0)|^{2} & \leqslant V(t, \phi) \leqslant|\phi|_{\infty}^{2}\left[1+\sum_{i=1}^{N} \frac{1}{a_{i}} \int_{t}^{t+T_{i}} b_{i}^{2}(s) d s\right] \\
& \leqslant|\phi|_{\infty}^{2}[1+B L]
\end{aligned}
$$

where $L=N \sum_{i=1}^{N} 1 / a_{i}$, and the proof is completed.
An immediate corollary is the following.
Corollary 4. If $c(t)$ and $b_{i}(t)$ are continuous and if $b_{i}(t)$ is periodic with period T_{i}, $i=1,2, \ldots, N$, then a sufficient condition for the uniform asymptotic stability of the zero solution of (5) is that there exist $q>0, a_{i}>0, i=1,2, \ldots, N$, such that

$$
2 c(t)-\sum_{i=1}^{N} a_{i}-\sum_{i=1}^{N} \frac{1}{a_{i}} b_{i}^{2}(t) \geqslant q
$$

We note that all of these results can be generalized, at the expense of complicating the stability conditions, by choosing Lyapunov functions of the form

$$
V(t, \phi)=\alpha(t) \phi^{2}(0)+\sum_{i=1}^{N} \int_{-T_{i}}^{0} K_{i}(t+\theta) \phi^{2}(\theta) d \theta
$$

with $\alpha(t) \geqslant \alpha_{0}>0$, a continuously differentiable function. The proofs of the corresponding results proceed in the same manner as before with obvious changes in the stability conditions. For example, the conclusions of Thm. 5 hold if condition (ii) of that result is replaced by

$$
2 c(t)-\alpha(t) \sum_{i=1}^{N} a_{i}\left|b_{i}(t)\right|-\frac{1}{\alpha(t)} \sum_{i=1}^{N} \frac{1}{a_{i}}\left|b_{i}\left(t+T_{i}\right)\right|-\frac{\alpha^{\prime}(t)}{\alpha(t)} \geqslant q>0
$$

for any function α of the type described above. All of our results have analogous extensions.
3. Some simple stability criteria for systems. Consider the system

$$
\begin{equation*}
x^{\prime}(t)=B(t) x(t-T)-C(t) x(t) \tag{10}
\end{equation*}
$$

where x is an n-dimensional vector and B and C are continuous functions whose range is in the set of $n \times n$ matrices. Introducing the functional (the superscript T denotes the transpose of a matrix):

$$
\begin{equation*}
V(t, \phi)=\phi(0)^{T} D \phi(0)+\int_{-T}^{0} \phi(\theta)^{T} K(t+\theta) \phi(\theta) d \theta \tag{11}
\end{equation*}
$$

where $K(t)$ and D are $n \times n$ matrices to be chosen below, and assuming that K is continuous, we obtain

$$
\begin{aligned}
\dot{V}(t, \phi)= & x^{\prime}(t)^{T} D x(t)+x(t)^{T} D x^{\prime}(t)+x(t)^{T} K(t) x(t) \\
& -x(t-T)^{T} K(t-T) x(t-T) \\
= & {\left[x(t-T)^{T} B(t)^{T}-x(t)^{T} C(t)^{T}\right] D x(t) } \\
& +x(t)^{T} D[B(t) x(t-T)-C(t) x(t)] \\
& +x(t)^{T} K(t) x(t)-x(t-T)^{T} K(t-T) x(t-T) \\
= & -\phi(0)^{T}\left[C(t)^{T} D+D C(t)-K(t)\right] \phi(0) \\
& +\phi(-T)^{T} B(t)^{T} D \phi(0)+\phi(0)^{T} D B(t) \phi(-T) \\
& -\phi(-T)^{T} K(t-T) \phi(-T) .
\end{aligned}
$$

If $D=D^{T}$, we have

$$
\begin{align*}
\dot{V}(t, \phi)= & -\phi(0)^{T}\left[C(t)^{T} D+D C(t)-K(t)\right] \phi(0) \\
& +2 \phi(0)^{T} D B(t) \phi(-T)-\phi(-T)^{T} K(t-T) \phi(-T) . \tag{12}
\end{align*}
$$

This quadratic form $-\dot{V}$ has the associated symmetric matrix

$$
\left[\begin{array}{ll}
C(t)^{T} D+D C(t)-K(t) & \frac{1}{2}\left(D B(t)+B(t)^{T} D\right) \\
\frac{1}{2}\left(D B(t)+B(t)^{T} D\right) & K(t-T)
\end{array}\right] .
$$

Several tests can be applied to establish that this is a positive definite matrix.
As a specific example, choose D to be positive definite and symmetric, and let

$$
K(t)=B(t+T)^{T} B(t+T) .
$$

Then

$$
\begin{align*}
\dot{V}(t, \phi)= & -\phi(0)^{T}\left[C(t)^{T} D+D C(t)-B(t+T)^{T} B(t+T)\right] \phi(0) \\
& +2 \phi(0)^{T} D B(t) \phi(-T)-\phi(-T)^{T} B(t)^{T} B(t) \phi(-T) . \tag{13}
\end{align*}
$$

and if we impose the condition

$$
C(t)^{T} D+D C(t)-B(t+T)^{T} B(t+T)-D^{2} \geqslant \gamma I,
$$

where $\gamma>0$ and I is the identity, we obtain from (13)

$$
\begin{aligned}
\dot{V}(t, \phi) & \leqslant-\gamma \phi(0)^{T} \phi(0)-(D \phi(0)+B \phi(-T))^{T}(D \phi(0)+B \phi(-T)) \\
& \leqslant-\gamma \phi(0)^{T} \phi(0) .
\end{aligned}
$$

Moreover, since D is positive definite, there exist constants $\alpha_{1}>0, \alpha_{2}>0$ with

$$
\alpha_{1}\|\phi(0)\|^{2} \leqslant \phi(0)^{T} D \phi(0) \leqslant \alpha_{2}\|\phi(0)\|^{2},
$$

hence, if $\int_{t}^{t+T}\|B(s)\|^{2} d s \leqslant \beta<\infty$, we have

$$
\begin{aligned}
\alpha_{1}\|\phi(0)\|^{2} & \leqslant V(t, \phi) \leqslant \alpha_{2}\|\phi(0)\|^{2}+\|\phi\|_{\infty}^{2} \int_{t}^{t+T}\|B(s)\|^{2} d s \\
& \leqslant\|\phi\|_{\infty}^{2}\left(\alpha_{2}+\beta\right) .
\end{aligned}
$$

Applying Theorem 8 in Sec. 4, we have
Theorem 7. Consider the system (10) and assume B and C are continuous matrix valued functions satisfying the conditions
(i) $C(t)^{T} D+D C(t)-B(t+T)^{T} B(t+T)-D^{2} \geqslant \gamma I$, for some $\gamma>0$ and some positive definite matrix D, and
(ii) Given $\eta>0$ there exists $\tau>0$ such that

$$
\int_{t}^{t+\tau}\|B(s)\| d s<\eta \quad \text { for } t \geqslant 0
$$

Then the zero solution of (10) is uniformly asymptotically stable.
Theorem 7 is an exact extension to systems of Thm. 3 for scalar equations. It is clear that Thm. 6 also has an analogous extension to systems of the form

$$
\begin{equation*}
x^{\prime}(t)=-C(t) x(t)+\sum_{i=1}^{N} B_{i}(t) x\left(t-T_{i}\right) \tag{14}
\end{equation*}
$$

The stability conditions in this case take the form

$$
\sum_{i=1}^{N} \int_{t}^{t+T}\left\|B_{i}(s)\right\|^{2} d s \leqslant \beta<\infty
$$

and

$$
C(t)^{T} D+D C(t)-\sum_{i=1}^{N} a_{i} D^{2}-\sum_{i=1}^{N} \frac{1}{a_{i}} B\left(t+T_{i}\right)^{T} B\left(t+T_{i}\right) \geqslant \gamma I
$$

for some positive definite symmetric matrix D and some constants $\gamma>0, a_{i}>0, i=$ $1,2, \ldots, N$. If D is taken to be non-constant: $D:[0, \infty) \rightarrow$ positive definite $n \times n$ matrices, $D(t)$ continuously differentiable and $D(t) \geqslant D_{0}$, where D_{0} is a constant positive definite matrix, then the second stability condition changes to

$$
\begin{aligned}
& C(t)^{T} D(t)+D(t) C(t)-\sum_{i=1}^{N} a_{i} D^{2}(t)-D^{\prime}(t) \\
&-\sum_{i=1}^{N} \frac{1}{a_{i}} B\left(t+T_{i}\right)^{T} B\left(t+T_{i}\right) \geqslant \gamma I
\end{aligned}
$$

We finally note that our results are intrinsically different from those of Lewis and Anderson [6] because we allow the possibility that the matrices $B_{i}(t)$ in (14) have non-zero diagonal terms. The hypotheses in [6] require that all diagonal terms in the $B_{i}(t)$ be equal to zero. The techniques in [6] can be extended to cover the situation where the $B_{i}(t)$ have non-zero diagonal terms, and stability criteria which differ from those presented here are obtainable in that way. This has been done and will be described in a forthcoming paper of R. Volz.
4. A Lyapunov functional result. In proving the results of the previous sections we have used a version of the Lyapunov asymptotic stability result of Krasovskii that does not require the standard restriction that the right-hand side of the functional equation map
$\mathbf{R} \times$ (bounded sets of C) into bounded sets of \mathbf{R}^{n}. This can be done because of the special form of the functional differential equations that we are considering, namely

$$
\begin{equation*}
\frac{d x}{d t}(t)=F\left(t, x_{t}\right)-G(t, x(t))=f\left(t, x_{t}\right) \tag{15}
\end{equation*}
$$

We assume that $f(t, 0)=0$ and $f: \mathbf{R} \times C \rightarrow \mathbf{R}^{n}$ is continuous and is smooth enough to ensure that the solution of (15) through $(s, \phi) \in \mathbf{R} \times C$ is continuous in (s, ϕ, t) in the domain of definition of f. In this section we shall use the notation of Hale [15, Chapter 5]. The result we need is the following:

Theorem 8. Suppose that there exist continuous nondecreasing functions $u, v, w: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$ with $u(0)=v(0)=0$ and $u(s)>0, v(s)>0, w(s)>0$ for $s>0$. Suppose also that there exists a continuous function $V: \mathbf{R} \times C \rightarrow \mathbf{R}$ such that

$$
\begin{aligned}
& u(|\phi(0)|) \leqslant V(t, \phi) \leqslant v(|\phi|) \\
& \dot{V}(t, \phi) \leqslant-w(|\phi(0)|)
\end{aligned}
$$

Finally, assume that given positive $\eta>0, \gamma>0$ there exists $\tau>0$ such that $\int_{t}^{t+\tau}|F(s, \phi)| d s<\eta$ for all $t>0$ and $|\phi| \leqslant \gamma$, and $x^{T} D G(t, x) \geqslant 0$ for some positive definite symmetric matrix D and for $(t, x) \in \mathbf{R}^{+} \times \mathbf{R}^{n}$. Then the solution $x=0$ of (15) is uniformly asymptotically stable.

Proof. The proof proceeds in the same way as that of Theorem 2.1 in [5, page 105] with the exception of the part of that proof which uses the added assumption that f in (15) take $\mathbf{R} \times$ (bounded sets of C) into bounded sets of \mathbf{R}^{n}. So, we shall present only that part of the proof.

Let $\delta_{0}>0$ be such that $|\phi|<\delta_{0}$ implies $|x(t, \phi)|<1$ for all $t \geqslant \sigma$. Assume that there exists a sequence $\left\{t_{k}\right\}$ such that

$$
\sigma+(2 k-1) r \leqslant t_{k} \leqslant \sigma+2 k(r), \quad k: 1,2, \ldots
$$

and, with $|x|_{D}=\left(x^{T} D x\right)^{1 / 2}$,

$$
\left|x\left(t_{k}\right)\right|_{D} \geqslant \delta, \quad \text { for some } \delta>0
$$

The proof can be completed as in [5], if we can show that there exists $\tau>0$ such that $|x(t)|_{D}>\delta / 2$ for

$$
t \in\left[t_{k}-\tau, t_{k}+\tau\right]
$$

Now, for $|\phi| \leqslant \varepsilon$ choose $\tau>0$ so that

$$
\int_{t}^{t+\tau}|F(s, \phi)| d s<\frac{3 \delta^{2}}{8 d}, \quad \text { where } d=\|D\|
$$

Note that the continuity of $x(t)$ implies that there exist $\tau_{k}>0$ with $|x(t)|_{D}>\delta / 2$ for $t \in\left[t_{k}-\tau_{k}, t_{k}+\tau_{k}\right]=I_{k}$, and for each k let $\tau_{k}>0$ be the maximal such τ_{k}. We shall show that $\tau_{k} \geqslant \tau$. For, supposing that $\tau_{k}<\tau$ we have

$$
\begin{aligned}
\frac{d}{d t}\left(x^{T}(t) D x(t)\right)= & x^{T}(t) D F\left(t, x_{t}\right)+F^{T}\left(t, x_{t}\right) D x(t) \\
& -\left[x^{T}(t) D G(t, x(t))+G^{T}(t, x(t)) D x(t)\right] \\
\leqslant & x^{T}(t) D F\left(t, x_{t}\right)+F^{T}\left(t, x_{t}\right) D x(t)
\end{aligned}
$$

So, for $t \in\left[t_{k}-\tau, t_{k}+\tau\right]$

$$
\left|x\left(t_{k}\right)\right|_{D}^{2}-|x(t)|_{D}^{2} \leqslant 2 d\left|\int_{t_{k}}^{t_{k}+\tau}\right| F\left(s, x_{s}\right)|d s|<3 \delta^{2} / 4
$$

that is $|x(t)|_{D}>\delta / 2$, which contradicts the maximalities of τ_{k}. So $\tau_{k} \geqslant \tau$, and the proof is completed.

Remark. Burton [1] gives extensions of the Lyapunov theorem of Krasovskii for more general equations than (15). In the scalar case $(n=1)$, the condition on $G(t, x)$ reduces to the requirement that $x G \geqslant 0$.

References

[1] T. A. Burton, Stability theory for delay equations, Funkcialaj Ekvacioj 22, 67-76 (1979)
[2] S. Busenberg and K. L. Cooke, Periodic solutions of a periodic nonlinear delay differential equation, SIAM J. Appl. Math. 35, 704-721 (1978)
[3] L. A. V. Carvalho, E. F. Infante and J. A. Walker, On the existence of simple Lyapunov functions for linear retarded difference-differential equations, Tohoku Math. J. 32, 283-297 (1980)
[4] J. Dyson and R. Villella-Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh 75A, 223-234 (1975/76)
[5] J. K. Hale, Theory of functional differential equations, Applied Math. Sciences, Vol. 3, Springer-Verlag, New York 1977
[6] R. M. Lewis and B. Anderson, Insensitivity of a class of nonlinear compartmental systems to the introduction of arbitrary time delays, IEEE Trans. on Circuits and Systems, Vol. CAS27 604-612 (1980)

[^0]: * Received April 22, 1983. This work was partially supported by NSF grants No. MCS-8200503 and MCS-8202052.

