QUARTERLY OF APPLIED MATHEMATICS 295
OCTOBER 1984

STABILITY CONDITIONS FOR LINEAR NON-AUTONOMOUS
DELAY DIFFERENTIAL EQUATIONS*

By
STAVROS N. BUSENBERG ( Harvey Mudd College)
AND

KENNETH L. COOKE ( Pomona College)

Abstract. We derive new sufficient conditions for uniform asymptotic stability of the
zero solution of linear non-autonomous delay differential equations. The equations
considered include scalar equations of the form

¥(0) = ~e(0x(0) + L ()x(t 1)

where ¢(t), b,(¢) are continuous for ¢ > 0 and 7; is a positive number (i = 1,2,...,n), and
also systems of the form

x(t) = B(t1)x(t = T) = C(1)x(1)

where B(t) and C(t) are n X n matrices. The results are found by using the method of
Lyapunov functionals.

1. Scalar equations with a single delay. The purpose of this paper is to derive some new
sufficient conditions for stability of linear delay differential equations. We first consider
the scalar equation

x(t) =b(0)x(1 = T) = c(1)x(1) 1
where b and c are given continuous functions and T is a positive constant. Extensions to
scalar equations with several delays and to systems of equations are given in Secs. 2 and 3.

The simplest available sufficient condition for asymptotic stability is contained in the
following theorem of Hale [5, page 108].

THEOREM 1. Suppose that b and ¢ are bounded continuous functions on R and satisfy
(1) ¢(t) = 6 > 0 for all 7, and
(i1) |b(t)] < 06 for all ¢, and for some 8,0 < 6 < 1.

Then, the zero solution of (1) is uniformly asymptotically stable.
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In this result, the function ¢ is required to dominate the function |b| in the very strong
sense that the supremum of |b| must be less than the infimum of ¢. Some such condition is
needed, since if b and ¢ are constants and b > 0, then b < c is necessary for stability. In
the theorems that we give here the hypotheses on b and ¢ are less stringent. For example,
when b and ¢ are periodic with period T, the hypothesis |b(¢)| < c(¢) suffices. This can
also be shown to hold in more general circumstances by applying a stability theorem of
Dyson and Villella-Bressan [4].

Our results are obtained by using certain simple Lyapunov functionals V(¢, ¢) rather
than the autonomous functionals V(¢) used in proving Thm. 1. Although the theory of
Lyapunov functionals has been extensively developed for autonomous equations, for
example by Carvalho, Infante and Walker [3], a similar development is still lacking for
non-autonomous equations.

Our first result for Eq. (1) is contained in the following theorem.

THEOREM 2. Suppose that b and c¢ are continuous and assume that the following conditions
are satisfied:
(a) Given n > 0 there exists 7 > 0 such that

f’”|b(s)|ds <n fort>0
t

(and consequently for some B > 0

[ b+ T+6)ld8 < B < oo,
-7

1> 0).
(b) There exist a > 0 and ¢ > 0 such that

2¢(t) —alb(t)|—|b(t + T)|/a>q fort>0.

Then the zero solution of (1) is uniformly asymptotically stable.
Proof. The proof consists in applying the Lyapunov theorem for functional differential
equations given in Sec. 4 with a Lyapunov function ¥: R X C — C of the form

V(1,9) = ag’(0) + [ K(1+0)9%(8) a6

where K is a continuous function, K: R = R, to be chosen later. Let x(s, ¢) denote the
solution of (1) satisfying x, = ¢ and, for simplicity, let x(¢) denote the value of x(s, ¢) at
t. Then
. — 1
V(t,9) = Tim o [V(r+h, x,.,(1,6)) = V(1. 6)]
hl0
_4d
=% (1)

+ lim l{/h K(t+ 8)x*(t+8)do —fo K(t+8)x*(t+6) dﬁ}
hl0 h -T+h -T

=2ax(t)x'(¢) + K(t)x*(t) - K(t = T)x*(t = T).
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Since x satisfies (1), we have
V(t,¢) = [K(1) = 2ac(1)]$*(0) + 2ab(1)$(0)¢(~T) — K(1 = T)¢*(~T). (2)

Letting K(¢) = |b(t + T)| in (2), we note that the discriminant of the resulting quadratic
form is

4a?b%(1) + 4lb(1)|[|b(r + T)| = 2ac(1)]
= 4lb(0)|[a’lb ()| +1b(r + T)| = 2ac(1)] < ~4aqlb (1),
(3)
the inequality following from condition (b). Now, whenever |b(?)| > q/8a, we see from
(3) that the quadratic form (2) is negative definite (uniformly for all such 7). Hence, there
exists a constant a; > 0, such that V(t, ¢) < —a,0%(0) for all ¢+ where |b(1)| > q/8a.
However, if |b(¢)| < q/8a, we have from (2) with K(¢) = |b(t + T)|:
V(t,9) = [Ib(t + T)| = 2ac(£)] 4*(0) + 2ab(1)$(0)$(~T) —[b(1)[¢?(~T)
< —aq¢?(0) + 2ab(1)$(0)¢(~T) —[b(r)|¢*(~T) (4)
since from (b) we have |b(t+ T)| — 2ac(t) < —aq. Now, if 2ab(t)¢(0)p(—T) —
16(1)|¢*(—T) > 0, then 2a|$(0)| > [¢(— T)|, hence
2ab(1)9(0)¢(—T) —[b(2)l¢* (= T)| < 4a*b(1)|¢*(0) — |b(¢)|¢*(~T)
< 4a?b(1)|92(0) < %"-&(0).

Using this in (4) we obtain
V(t,¢) <~ %&(0), whenever |b(1)| < g/8a.

Letting a = min(a,, ag/2), we see that V(z, ¢) < —a¢?(0) for all 7 > 0 and all ¢ € C.
Moreover, the inequalities

ag2(0) < V(1, ) < (B + a)|o|m

follow directly from (a) and the definition of V; and the zero solution is asymptotically
stable. This completes the proof of the theorem.

Remark. The condition (a) can hold even when c¢(t) —
b(t)>qg>0 and c(t) — b(t+ T) > q > 0 fail to hold. In fact if we take a = 1 and
q = 1/2 in condition (a), we see that it holds for the special case

T=3, c(t)=1,

3
b(1) = 5[1 —len+3—1], re(6n+2,6n+4),n=0+1,+2,. ..,

0, otherwise.

However, c(6n + 3) — |b(6n + 3)|= —1/2 <0, and c(6n) — |b(6n + 3)|= —1/2 < 0.
Note that the stability conditions of Dyson and Villella-Bressan [4] when applied to Eq.
(1) require that c(¢) — b(z) = ¢ > 0.
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Theorem 2 has some immediate corollaries that are worth stating because they deal with
situations that are frequently encountered in applications.

COROLLARY 1. Suppose that ¢ is continuous and b is continuous and periodic of period 7.
Then, if there exists ¢ > 0 such that
c(r)=|b(t)|=q, >0,
the zero solution of (1) is uniformly asymptotically stable.
Note that if b and ¢ are constants, then condition (a) with a = 1 reduces to ¢ — |b| > 0.

This is the best possible stability condition regardless of the size of the delay T in this case
([5], page 108). So, in this sense, the condition (a) is also the best possible condition of this

type.

COROLLARY 2. Assume that b and ¢ are continuous and that:

(b) There exists A € (0, 1) such that |b(¢)| < Ac(t), t > 0,

(c) ¢(2) = ¢, > 0, and either c(¢) is non-increasing or |b(¢)| is non-increasing.
Then the zero solution of (1) is uniformly asymptotically stable.

The above results were obtained by choosing K(z) = |b(¢ + T)| in (2). If different
choices of K are taken, then other stability conditions can be obtained. For example, we
shall prove the following theorem by choosing K(¢) = b?(t + T).

THEOREM 3. The results of Theorem 2 hold provided that
(a") 2ac(t) — b*(t + T) — a* > q, for some a > 0, g > 0, and
(b)) [+ Tb%(s) ds is bounded and given n > 0 there exists 7 > 0 such that

[ Ib(s)lds <
fort > 0.
Proof. If K(t) = b%(t + T), then (2) has the form
V(t,¢) = [b2(t + T) = 2ac(r)] $*(0) + 2ab(1)$(0)¢(~T) — b*(1)$*(~T).
Using (a"), we obtain
V(t,9) < —(a®+ q)¢*(0) +2ab(1)9(0)¢(~T) — b*(1)¢*(~T)

< —4¢(0) ~[a#(0) — b(1)$(~T)]”

< —4¢°(0),
for all ¢ € C. Moreover, V(t, ¢) > a¢*(0) and

V(1,¢) < as*(0) + |¢|if°rb2(z +T+6)dé

< ag*(0) +1ol%. [ b2(s) ds.
t
By condition (b’), there is a constant B such that

2
V(t,¢) < Blo|o-
As for Thm. 2, uniform asymptotic stability follows from Theorem 8, and the theorem is
proved.
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A special case occurs again when b is periodic of period 7. Then conditions (a") and (b’)
are implied by the single condition
2ac(t) — b*(t) —a®>>0, O0<t<T.
As a final example, we examine the consequences of choosing
K(t)=b*(t+ T)/c(t+T),
as was done in [2].

THEOREM 4. Assume that b and c are continuous and that the following conditions hold.
(a”) There is a constant A such that b*(¢ + T)/c(t)c(t + T)< A < 1fort > 0,
(b”) [}*Tb?(s) ds is bounded and given > 0 there exists 7 > 0 such that

+7
[ Ib(s)lds <
t

forz > 0.
(c”) There is a constant ¢, such that ¢(¢) > ¢; > 0 for¢ > 0.
Then the zero solution of (1) is uniformly asymptotically stable.
Proof. If K(t) = b*(t + T)/c(t + T), then (2) has the form

Vi, ¢) = [bci((t':—%) - 2ac(t)]¢2(0) +2ab(1)9(0)9(-T)
- bc—z((;’)—)&(—T)-
From (a”) and (¢”’) we get
(1,8) < (A = 20)e()6°0) + 2a0(1)6 O 6(~T) - 2 (- 1)

= —[(2a = X)c?(1)¢*(0) — 2ab(t)c(1)$(0) 6 (—T) + b2(1)$* (= T)] /e ().
Choosing a = 1, we have, for all ¢ € C,
V(t,0) < —(1 = N)e(1)9*(0) —[c(1)$(0) — b(1)$(—T)]* /(1)
< —(1=2)e(1)9(0) < = (1 = A)c19%(0).
Moreover,
r+Tb2(s)
c(s)

#(0) < V(1. 8) <|¢li(1 v ds) < Blol’

and the proof is completed.

2. Scalar equations with several delays. The analysis of the previous section can be
directly generalized to cover equations with several delays of the form

x(t) = —e()x(t) + X b(1)x(t - T) ()

i=1

where T, > 0 is a positive constant (i = 1,2,...,N). We use the functional

V(1,9) =40 + L [° K.(t+0)¢(0) ab,
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where K are continuous functions to be chosen below. A calculation of the same sort as in
Sec. 1 yields

V(t¢) = l—2c(t) + L K(1)[4%(0)
+26(0) X b()(=T) = L K,(1 = T)¢*(=T)). (6)

When — V is viewed as a quadratic form in ¢(0) and ¢(—7,), i = 1,2,...,N, it has the
following associated symmetric matrix

2¢(1) - ; K,(1) —b,(1) —b,(1) —by(t)
M= —by(1) K(t-T) 0 0
_b2(t) 0 Kz(t— TZ) 0
| —'bN(t) 0 0 KN(I; TN)_

We now choose
K. (t)=|p(t + T)|/a,, i=1,2,...,N, (7)

and note that the principal minors of M are

2¢(r) = Xb(t + T)|/a,
ail|b1<z>|[zc<t> —alby()] = X g lbc+ 7)

i=1%i

1 N N

_—albl(t)l IbN(t')|[2c(t) -X alb,(1)] - > %lbi(t + 7).
N

a, - i=1 i=1%i
If |b,(t)] = € > O for all i, then the quadratic form — V is positive definite whenever there
exists ¢ > 0 such that

N N
2e() = Lalt (0]~ T 2+ T)|> 0> 0. (8)

Using the arguments of Thm. 2, we can conclude that, if (8) holds, then there exists a > 0
such that

V(t,4) < —ag’(0).
Clearly,

al 1
6(O)" < ¥(1,9) <|¢|i{1 + L s+ T+ 0)|d0}
i=1" —4"1

a;

2 N t+T, 1
=lol(1+ T [T bo)lds ),
i=1

and we have established the following result.
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THEOREM 5. Let c(¢) and b,(¢) be continuous functions satisfying the following condi-
tions:
(i) Given 1 > 0 there exists 7 > 0 such that

[ b(s)lds <
t

fori=1,2,...,nand¢ > 0.

(i) 2¢(r) — XN a,|b(1)| — ZM|b(t + T))|/a, > ¢ > 0, for some constants g > 0,
a;>0,i=1,2,...,Nand fort € [0,0) .
Then, the zero solution of (5) is uniformly asymptotically stable.

It is easy to derive analogues of Corollaries 1 and 2 of Sec. 1. We only mention one of
these.

CoroLLARY 3. If ¢(¢) and b,(¢) are continuous, and b,(t) is periodic of period T,
i=1,2,...,N; a sufficient condition for the uniform asymptotic stability of the zero
solution of (5) is that there exist ¢ > 0, with

C(t) - Z |bi(t)|2 q, te [0’00)

i=1

Other results follow from different choices of the K. For example, the choice
K,(1) = 23t + T)
yields the following form for V(z, ¢)

P(1,0) = [2¢(t) + ¥ 202(c + T) [6(0) + 20(0) T b,(1)#(~T,)
i=1 %

i=1

- T SB()$(-T), 9)

i=1 "1
and we have the following result.

THEOREM 6. The zero solution of Eq. (5) is uniformly asymptotically stable if ¢(z) and
b,(t),i=1,2,...,N, are continuous and
(i’) there exist constants g > 0,a; > 0,i = 1,2,...,N with
N N
2(1) = La,- ¥ b1+ T) > q,

i=1 i=1 "1

@W)YZN, [/ Tib(s)ds < B < oo, and given 5 > 0 there exists 7 > 0 such that
[ le(s)lds <
t

fori=1,2,...,nand ¢t > 0.



302 STAVROS N. BUSENBERG AND KENNETH L. COOKE

Proof. Using condition (i’) in (9) we note that

V(t,¢) < —q¢’(0) + X —[-a $°(0) +24,b,(1)9(0)¢(~T;) — b7(1)¢*(~T,)]

i=1
N

< —q¢*(0) — —[a¢(0) b(1)e(—-T))]* < —q¢*(0).

1=1

The condition (ii’) immediately implies that

6(0)|" < V(1. ) slqbli[ +¥

i=1

Q|»—A

ft+T )ds]

<|ol[1 + BL],

where L = NXY | 1/a,, and the proof is completed.
An immediate corollary is the following.

COROLLARY 4. If ¢(¢) and b,(¢) are continuous and if b,(¢) is periodic with period T,
i=1,2,...,N, then a sufficient condition for the uniform asymptotic stability of the zero
solution of (5) is that there existg > 0,a;, > 0,/ = 1,2,..., N, such that

N N o

2e(1) - Ya,- ¥ 2520) > q
i=1 i=1 %
We note that all of these results can be generalized, at the expense of complicating the

stability conditions, by choosing Lyapunov functions of the form

N
V()= ()@@ + L [ K, (1 +0)¢%(6) do,
i=1" -
with a(?) > a, > 0, a continuously differentiable function. The proofs of the correspond-
ing results proceed in the same manner as before with obvious changes in the stability
conditions. For example, the conclusions of Thm. 5 hold if condition (ii) of that result is
replaced by
- (1)

26(0) = () Lalb (0] = o5 T b+ D=5 > a0,

i=1
for any function a of the type described above. All of our results have analogous
extensions.

3. Some simple stability criteria for systems. Consider the system

x'(t)=B(t)x(t = T) - C(t)x(1) (10)
where x is an n-dimensional vector and B and C are continuous functions whose range is

in the set of n X n matrices. Introducing the functional (the superscript T denotes the
transpose of a matrix):

V(t.9) = 9(0)Ds(0) + [° 9(8) K (1 + 0)0(0) a8 ()
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where K(¢) and D are n X n matrices to be chosen below, and assuming that K is
continuous, we obtain

V(t,¢) = x(£)"Dx(t) + x(1)"Dx'(t) + x(¢) K () x(¢)
—x(t—T)'K(t - T)x(t - T)
= [x(¢+ = T)"B(1)" = x(1)"C()"] Dx(t)
+x(8)'D[B(t)x(t = T) - C(t)x(1)]
+x(1)"K()x(t) - x(t = T)'K(t - T)x(t - T)
= =4(0)"[c(1)"D + DC(1) - K(1)] 9(0)
+¢(=T)"B(1)"Dg(0) + $(0) 'DB(1)¢(~T)
~¢(=T)"K(1 = T)¢(~T).
If D = D7, we have
V(1,9) = =4(0)"[c()"D + DC(1) - K(1)](0)
+2¢(0) ' DB(1)¢(~T) = ¢(~T)'K(1 = T)$(-T).  (12)
This quadratic form — ¥ has the associated symmetric mattix
c(1)’D + DC(1) -~ k(1) 3(DB(r) + B(1)"D)
1(DB(r) + B(¢)"D) K(1-T) '
Several tests can be applied to establish that this is a positive definite matrix.
As a specific example, choose D to be positive definite and symmetric, and let
K(t)=B(t+T)'B(++ T).
Then
V(1,4) = —6(0)"[C(+)"D + DC(¢) - B(t + T)"B(t + T)] (0)
+26(0) ' DB(1)$(~T) - (~T)"B(1) 'B(1)$(~T). (13)
and if we impose the condition
c(t)'™D+DC(t)-B(t+ T)"B(t+ T) - D? > v,
where y > 0 and [ is the identity, we obtain from (13)
V(1,9) < ~1$(0)"¢(0) — (Do (0) + B&(~T)) " (Dp(0) + Bo(—T))
< —v9(0)"4(0).
Moreover, since D is positive definite, there exist constants a; > 0, a, > 0 with
2
als @1 < ¢(0)"D4(0) < a6 O)I,

hence, if [/*T||B(s)||*ds < B < oo, we have

alle O < V(t, ) < ayll6 (O)]” + 1ol /

t+T,

1B(s)I” ds

<6l (a; + B).
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Applying Theorem 8 in Sec. 4, we have

THEOREM 7. Consider the system (10) and assume B and C are continuous matrix valued
functions satisfying the conditions

(i) C(t)™D + DC(t) — B(t + T)™B(t + T) — D* > vlI, for some y > 0 and some posi-
tive definite matrix D, and

(ii) Given 1 > 0 there exists 7 > 0 such that

[ 1B (s)llds < fort> 0.
t

Then the zero solution of (10) is uniformly asymptotically stable.
Theorem 7 is an exact extension to systems of Thm. 3 for scalar equations. It is clear
that Thm. 6 also has an analogous extension to systems of the form

N
x'(t) = =C()x(t) + ¥ B()x(1 = T). (14)
i=1

The stability conditions in this case take the form
N
t+T, 2
[ TIB(s) ds < B <
=171

and

N N

c(t)'p+DC(t) - Y aD* - ¥ —B(1 + T)'B(t +T) > I,

i=1 i=1 %
for some positive definite symmetric matrix D and some constants y > 0, a; > 0, i =
1,2,...,N. If D is taken to be non-constant: D: [0,c0) — positive definite n X n
matrices, D(t) continuously differentiable and D(¢) > D,, where D, is a constant positive
definite matrix, then the second stability condition changes to

C()D(1) + D()C(1) - ¥ a,D*(r) - D'(1)

i=1

N
-y alB(t +T)B(1+T) >+l
i=1 %

We finally note that our results are intrinsically different from those of Lewis and
Anderson [6] because we allow the possibility that the matrices B,(¢) in (14) have non-zero
diagonal terms. The hypotheses in [6] require that all diagonal terms in the B;(¢) be equal
to zero. The techniques in [6] can be extended to cover the situation where the B;(¢) have
non-zero diagonal terms, and stability criteria which differ from those presented here are
obtainable in that way. This has been done and will be described in a forthcoming paper
of R. Volz.

4. A Lyapunov functional result. In proving the results of the previous sections we have
used a version of the Lyapunov asymptotic stability result of Krasovskii that does not
require the standard restriction that the right-hand side of the functional equation map
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R X (bounded sets of C) into bounded sets of R". This can be done because of the special
form of the functional differential equations that we are considering, namely

20 = Flt,x) = 6(1,x(0) = £, %), 1s)

We assume that f(¢,0) = 0 and f: R X C —» R" is continuous and is smooth enough to
ensure that the solution of (15) through (s, ¢) € R X C is continuous in (s, ¢, ¢) in the
domain of definition of f. In this section we shall use the notation of Hale [15, Chapter 5].
The result we need is the following:

THEOREM 8. Suppose that there exist continuous nondecreasing functions u, v, w: R*—> R™
with u(0) = v(0) = 0 and u(s) > 0, v(s) > 0, w(s) > 0 for s > 0. Suppose also that there
exists a continuous function V: R X C — R such that

u(lo(0)]) < (1, ) < v(l9),

V(1,9) < ~w(|s(0)]).
Finally, assume that given positive 7 > 0, y > 0 there exists 7> 0 such that
JTTIF(s, ¢)|ds <m for all >0 and |¢| <y, and x"DG(¢t, x) > 0 for some positive
definite symmetric matrix D and for (¢, x) € R*X R Then the solution x = 0 of (15) is
uniformly asymptotically stable.

Proof. The proof proceeds in the same way as that of Theorem 2.1 in [5, page 105] with
the exception of the part of that proof which uses the added assumption that fin (15) take
R X (bounded sets of C) into bounded sets of R". So, we shall present only that part of
the proof.

Let §, > 0 be such that |¢| < §, implies |[x(z, $)| < 1 for all z > a. Assume that there
exists a sequence { ¢, } such that

o +(2k—-1)r<t, <o+ 2k(r), k:1,2,...
and, with |x|, = (x"Dx)'/?,
|x(#:)|p = 8, forsomeéd > 0.
The proof can be completed as in [5], if we can show that there exists 7 > 0 such that
|x(8)|p > 8,2 for
te€ 1, — 1,0, + 7).
Now, for |¢| < € choose 7 > 0 so that
2

fH |F(s,¢)|ds < i, where d =||D||.

. 8d
Note that the continuity of x(¢) implies that there exist r, > 0 with |x(z)|, > §/2 for
te [t — 1, t, +7]=1I, and for each k let 7, > 0 be the maximal such r,. We shall

show that 7, > 7. For, supposing that 7, < r we have
d
—(x"(¢)Dx(t)) = x"(¢+) DF(t, x,) + F'(¢, x,) Dx(t)

dr
—[xT(t) DG (1, x(t)) + G7(t, x(1)) Dx(t)]
< x"(t)DF(t, x,) + FT(t, x,) Dx(1).
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So, fort € [¢, — 7,1, + 7]

(e[ = 1x (1)l < 24 < 38%/4,

J* TR Gs, x,)1ds
t

k

that is |x(¢)|p > 8/2, which contradicts the maximalities of 7,. So 7, > 7, and the proof is
completed.

Remark. Burton [1] gives extensions of the Lyapunov theorem of Krasovskii for more
general equations than (15). In the scalar case (n = 1), the condition on G(¢, x) reduces to
the requirement that xG > 0.
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