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Abstract. In this paper we present sufficient conditions for asymptotic stability of a

homogeneous equilibrium state of a (nonlinear) elastic body with linear viscosity. The

body is subject to external conditions of zero displacements on a part of the boundary,

zero surface tractions on the remaining part of the boundary and zero body forces in the

interior of the body. The meaning and further qualitative consequence of our conditions

are also discussed.

1. Introduction. We study in this paper stability of an equilibrium state of a continuous

nonlinear elastic body with linear viscosity in a purely mechanical context. Our main

concern is asymptotic stability (the reader is referred to the articles by Knops and Wilkes

[1] and Gurtin [2] for definitions and a discussion of various types of stability within

continuum mechanics). Our results are broadly in line with comments made by Dafermos

[3]. Specifically, we consider the body under external conditions which impose zero

displacement on part of the boundary, zero traction on the remainder of the boundary

and inside the body the body forces vanish. The existence of a homogeneous equilibrium

configuration compatible with the external conditions is assumed. Under certain hypothe-

ses this equilibrium configuration is shown to be asymptotically stable with exponential

decay within the class of all motions consistent with the external conditions (see Theorem

3 below). From this it can be seen that rate-type viscoelasticity provides a powerful form

of dissipation. A special case of Theorem 3 in which both the elastic and viscous responses

are linear has been presented by Duvaut and Lions [4], In this special case the hypotheses

made in this paper coincide with those in [4],

We now briefly discuss the nature and origin of our hypotheses. Essentially they follow

in part from the first and second laws of thermodynamics. This part consists of assumng

the existence of the stored energy function for the static (i.e., elastic) part of the stress.

Then, the positive semi-definite nature of the viscosity tensor appears as a restriction on

constitutive theory.

The remaining hypotheses contain additional assumptions of a more complex nature.

The existence of the stored energy function enables one to define the total stored energy of
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the body as a functional on the kinematically admissible configurations. It is well-known

(see [1,2], and also our Theorem 2) that provided the viscosity tensor is positive

semi-definite, the presence of a strong local minimum of the total stored energy at some

configuration implies Lyapunov stability of that configuration. Our proof of asymptotic

stability requires that the equilibrium configuration be a point of a strong global minimum

of the stored energy functional in the class of all kinematically admissible configurations.

However, we need a further hypothesis on the static part of the response. To see that the

minimum property of the stored energy is not a strong enough assumption to imply the

asymptotic stability we note that there exists a simple but important necessary condition

for asymptotic stability (see [1] and also Sec. 3 below): an asymptotically stable state of

the body under given external conditions must be the only equilibrium state of the body

compatible with the external conditions. Clearly the existence of a strong global minimum

of the stored energy functional does not guarantee this uniqueness, as the global minimum

does not preclude the existence of several local minima leading to further equilibrium

states compatible with the external conditions. It is observed that an analogous situation

may arise for potential energy in Lagrangian mechanics of point particles. Our additional

hypothesis (3.13) ensures positive definiteness of another integral expression which has the

physical dimensions of energy. Condition (3.13) implies the desired uniqueness and even

more: it ensures; the continuous dependence of equilibrium states of the body upon

changes of surface tractions and body forces.

Both the existence of a strong global minimum of the stored energy functional and the

additional inequality (3.13) are conditions which combine the static response functions of

the body with the external conditions, namely with the constraint that part of the

boundary of the body is fixed. We do not pursue in this paper the difficult question of

finding sufficient conditions for the validity of these hypotheses in terms of the pointwise

inequalities on the response functions. We also note that it is a largely open related

problem for which additional constitutive restrictions will have to be imposed on the static

response to obtain a sound theory of equilibrium (see Wang and Truesdell [5] and Ball [6]

for a discussion of this topic).

Our hypotheses on the static part of the response of the body are finally completed by a

technical condition that the stored energy functional is of a quadratic growth.

We also need assumptions on the symmetry of the viscosity tensor. Apart from the

symmetries implied by the requirements that the principle of material frame indifference

and the symmetry of the Cauchy stress be approximately satisfied (see (4.1) and (4.2))

there is a major symmetry of the viscosity tensor saying (cf. (4.3)) that the bilinear form on

the space of all second-order tensors corresponding to the viscosity tensor is symmetric. In

several special cases this symmetry is a consequence of the symmetry of the material (such

is the case of an isotropic material), but generally it is an independent hypothesis. As a

matter of fact, the major symmetry expresses the Onsager reciprocal relations for viscosity.

Closing the discussion of the viscous part of the stress we note that our assumption that

the Piola-Kirchhoff stress depends linearly on the gradient of velocity with respect to the

reference configuration implies that these principles cannot be satisfied exactly (unless the

viscosity vanishes). Their exact validity would require that the viscous part of the stress

depends also on the deformation gradient in a certain way. Hence, our hypothetical body
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must be considered to be only an approximation to a true body; an approximation which

is suitable in situations when the dependence of the viscous part of the stress on the

deformation gradient may be neglected but the non-linearities of the static part of the

response cannot be ignored.

2. Basic equations. We consider motions of the continuous body B subject to zero body

forces, zero surface tractions on a part of the boundary and zero displacements on the

remainder of the boundary. We suppose that there is an equilibrium homogeneous

configuration of the body compatible with these external conditions. The purpose of this

paper is to investigate the asymptotic stability of this equilibrium configuration within the

class of all motions consistent with the external conditions. In this section we record the

basic equations describing this situation. We refer the reader to Wang and Truesdell [5]

and Truesdell [7] for more details concerning the general mechanical concepts employed

below.

We take the equilibrium configuration as the reference configuration, i.e., we label the

typical particle P of the body by the position X e R3 it has in this equilibrium

configuration. We assume that the region V0 C R3 occupied by the body in the reference

configuration has a properly regular boundary dV0 with the unit outward normal N (see,

e.g., Necas and Hlava£ek [8]). A motion of the body is described by the function

x = x(X, t) (2.1)

giving the position of the particle X e V0 at time t > 0. The motion x(X, t) is of class C2

on F0X[0, oo). The displacement u(X, t), the velocity v(X, t) and the deformation

gradient F(X, t) are given by

v(X, /) = x(X, /) = u(X, t), u(X, t) = x(X, t) — X, (2.2)

and

F(X, t) = Vx(X, t) = vu(X, t) + I, detF > 0; (2.3)

where the superposed dot denotes the material time derivative, V denotes gradient with

respect to X and / is the unit tensor. In the absence of body forces the balance of linear

momentum has the form

PoX = DivS, (2.4)

where p0 > 0 is the density of the body in the reference configuration, S is the Piola-

Kirchhoff stress tensor and Div denotes the divergence operator with respect to X. The

boundary dV0 is assumed to be divided into two parts §,, S2 C 0FO in such a way that

§i U S2 = 3F0 and that S, has a positive area. We do not exclude the case S2 = 0 and

S, = 3F0. The following boundary conditions are prescribed

x(X,0 = X, X6§„^0, (2.5)

S(X, f)N(X) = O, Xe§2,P 0. (2.6)

We now proceed to formulate our constitutive hypotheses about the body. We assume that

the stress S = S(X, t) corresponding to the motion x = x(X, t) of the body is a sum of

two parts,

S = Ss + Sp, (2.7)
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where Ss is the static (i.e., elastic) and Sp the viscous part of the stress. The static part of

the stress is given by the constitutive equation

Ss(X,0 = S0(vx(X,0), (2.8)

where S0(-) is a given continuously differentiable function defined on the set of all

deformation tensors F with positive determinant, while the viscous part of the stress is

given by

SP(X, t) = A[vx(X, /)], (2.9)

where A[ • ] is a fourth-order tensor of viscosities, interpreted as a linear transformation

from the space of all second-order tensors into itself.

There will be additional assumptions on the constitutive functions S0( •) and A[ • ] which

we shall formulate and discuss in the next two sections. Now, we have assembled all that

is necessary to introduce the following terminology. We say that a motion x = x(X, t),

X e Vq, t> 0 is an admissible motion of the body if it satisfies the equation of balance of

linear momentum (2.4), the boundary conditions (2.5) and (2.6), and the constitutive

equations (2.7)-(2.9).

Finally, suppose that the reference configuration is an equilibrium configuration of B

compatible with the external conditions, that is to say formally that the rest motion x(X, t)

given by x(X, t) = X, X G V0, t > 0, is an admissible motion. We note that for this

motion the stress S(X, t) is given by S(X, t) = SS(X, t) = S0(I), so that the balance of

linear momentum (2.4) is satisfied. As the boundary condition (2.5) is satisfied, too, the

reference configuration is compatible with the external conditions if and only if (2.6) is

satisfied. We shall consider two cases. First, if S2 = 0 then (2.6) places no condition and

hence, in this case, the reference configuration is for all time an equilibrium configuration

of the body compatible with the external conditions. If S2 =£ 0 then (2.6) reduces to

S0(I)N(X) = O, xe§2. (2.10)

Obviously this is satisfied if

S0(I) = O, (2.11)

i.e., if the reference configuration is a stress-free configuration. The condition (2.11) is also

a necessary condition in the case when S2 contains at least three points at which the

directions of the normal N are linearly independent because the validity of (2.10) at these

three points amounts to (2.11). Hence, if the body is subjected to the boundary condition

of place (§2 = 0) then the reference configuration need not be a stress-free configuration

but if S2 ¥= 0 then almost necessarily the reference configuration is stress-free.

3. Hypotheses on the static part of the stress. Uniqueness. In this section we lay down

the hypotheses on the constitutive function S0 and discuss their consequences. We show in

particular that our hypotheses imply that the reference configuration is the only equi-

librium configuration of the body compatible with the external conditions.

Our first hypothesis may be regarded as a consequence of the first and second laws of

thermodynamics.

HI. (The existence of the stored energy function.) There exists a twice continuously
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differentiable function <p = ^(F) such that

S0(F) = Po3f^(F) (3.1)

for all second-order tensors F with positive determinant.

(Here 9F denotes differentiation with respect to F). The function \p is called the stored

energy function of the body and we use the normalization

*(I) = 0. (3.2)

A standard consequence of H1 is the following variant of the power theorem.

Proposition 1. For any admissible motion of the body we have

K + P = -D, (3.3)

where

K = K{t) = \ f v(X, ?)2Po dV0 (3.4)
1 Jv0

is the kinetic energy of the body at time t,

P = P(t)=U(F(X,t))p0dV0 (3.5)

is the total stored energy of the body at time t and

D = D(t) = [ A[ W(X, t)] • vv(X, 0 dV0 (3.6)
Jy0

is the power of viscious forces in the body at time t.

It is convenient to call any function x = x(X), X G V0 of class C2 on V0, satisfying

det Vx(X) > 0, X E V0,

and

x(X) = X, x e S, (3.7)

an admissible configuration of the body, and to define functionals P and I on the set of all

admissible configurations by

P(x(-)) = f t(vx(X))p0dV0 (3.8)
Jv0

and

7(x(-)) = / S0(vx(X)) • (vx(X) - I) dV0 (3.9)
Jy0

for any admissible configuration x( •). The value P(x( ■)) is the total stored energy of the

body in the configuration x(-), while the meaning of /(x(-)) will appear shortly. We notice

that

/>(x0(-)) = /(x0(-)) = 0, (3.10)

where x0 is the reference configuration given by

x0(X) = X, XEV0 (3.11)
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and where in (3.10), the normalisation condition (3.2) has been used. With this notation

we now state the following hypothesis.

H2. (positiveness of P and I). There exist positive constants c, and c2 such that

P(x(-)) > c,|| Vx - I||2, (3.12)

and

/(x(-)) ^c2||vx - I||2 (3.13)

for each admissible configuration x( •) of the body.

Here || • || denotes the L2-norm on V0, i.e., if / is any measurable scalar-, vector- and

tensor-valued function defined on V0, then

\ '/2

/ 1/1Jy0 I

where | -| denotes any norm on scalars, vectors or tensors. Note that (3.12) together with

(3.10), implies that P attains a strong global minimum at the admissible configuration x0

in the set of all admissible configurations. The relevance of a condition of this type to the

stability of the body is well-known (see, e.g., [1,2]). Nevertheless, it is the second

inequality of H2, (3.13), that is in a certain sense more important for our proof of the

asymptotic stability. We start the discussion of (3.13) by showing that it almost implies

(3.12) More precisely, we have

Proposition 2. Assume that the inequality (3.13) holds in the set C0 of all admissible

configurations x of the body which satisfy

det[l + \(vx(X) - I)] >0 (3.14)

for all X G V0 and all A £ [0,1], Then also (3.12) holds for all X £ V0 with c, = \c2. If the

set of all tensors with positive determinant were to form a star-shaped set with respect to

the identity tensor then the set C0 would coincide with the set of all admissible

configurations and Proposition 2 would say that (3.13) does imply (3.12). This, however, is

not the case as, for instance, the centre of the segment in the space of all second order

tensors with endpoints I — diag(l, 1,1) and diag (- j, -3,1) has negative determinant.

Proof of Proposition 2. If x £ C0, then for each X £ [0,1] the configuration xA given by

xA(X) = x0(X) + A(x(X) - x0(X))

(where x0 is given by (3.11)) satisfies

det vxx(l) = det[l + A(vx(A") — I)] > 0

by (3.14) and also xx(X) = X, X £ S, so that xx is an admissible configuration. One may

hence define a function g(A), A £ [0,1] by setting

g(A) = P(xx(-))= f ^(1 + A(vx(X) — l))p0dV0.
J
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The derivative of g with respect to A is then given by

g'(*)= f 3F*(I + Mvx-I))-(vx-I)porf*o
Jv0

= f S0(I + A(vx - I)) ■ (vx - I) dV0
Jy0

= /(*X(-))A.

see (3.1) and (3.9). Applying (3.13) to the configuration xx yields

l(xa(')) > c2||vx, - if = c2A2|| vx - if

g'(X)>c2\||vx-I||2.

Integrate this inequality with respect to X over [0,1] to find that

g(l)-g(0)>k2||vx-/||2.

Noting that g(l) = P(x,(-)) = P(x(-)) and g(0) = />(x0(-)) = 0 completes the proof.

We next establish a simple static consequence of (3.13). Namely, we shall consider the

equilibrium admissible configurations of the body corresponding to non-zero body forces

and surface tractions on S2 and prove continuous dependence of such configurations on

the body forces and surface tractions. An immediate corollary of this continuous depen-

dence is that the reference configuration x0 is the only equilibrium configuration corre-

sponding to zero body forces and zero surface tractions on S2. We note that this type of

uniqueness is an important necessary condition for the asymptotic stability of the

configuration x0. Indeed, if there were another equilibrium configuration x' of the body

corresponding to the external conditions, then the rest process x'(X, t ) given by

x'(X, t) = x'(X), XeF0,P 0,

would be an admissible process of the body and yet it would not tend to x0 as t -» oo.

Any admissible equilibrium configuration x( •) of the body satisfies

DivS0(vx) + p0b = O in V0, (3.15)

x(x) = x, xeS„

and

S0(vx) • N = s onS2 (3.16)

where b is the body force and s is the surface traction which holds the body in the

configuration x.

Theorem 1. There exists a constant c3 >0 such that any admissible equilibrium config-

uration x of the body corresponding to the body force b and surface traction s on §2

satisfies

II* ~ xoll +l|v(x - x0)|| <c3(||b|| +|| \s\ ||), (3.17)
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where

I |s|2^0
J s.

1/2

and dA0 denotes the element of the surface measure on 3F0.

Proof. The definition of I and the divergence theorem yield

Ax(-)) = ~7 DivS0(vx) . (x — x0) dV0 + f S0(Vx)N • (x - x0) dA0
v0 Jdv0

which in view of (3.15) and (3.16) implies

'(x(-)) = J b • (x- x0)p0 dV0 + j s • (x - x0) dA0.
o0 S2

Applying the Schwarz inequality to the integrals of the right hand side of the equality

shows that

Kx()) < PoM llx - xoll +11 M II II lx - xol II (3-18)
where

/ 2 ^ 1/2

II lX ~ xol 1 = lX _ xol dA0

Since S, is of non-zero area, the Poincare inequality (see Morrey [9]) assures the existence

of a positive constant c4 such that

||x - x0|| <c4||v(x - x0)|| (3.19)

for each admissible configuration x while the trace theorem (Kufner, John, Fucik [10])

assures the existence of a constant C5> 0 such that

II lx - xol 1 <^l|v(x - x0)|| (3.20)

for each admissible configuration x. By (3.18)-(3.20) then

/(x(-)) < (pcAiN + ci\\ lsl 11)11 V(x - x0)||.

On combining this with (3.13) we see that

c2|| V(x - x0)||2 < (p0c4||b|| + c51| \s\ ||)|| V(x - x0)|| (3.21)

The inequalities (3.21) and (3.19) yield (3.17) with

C3 = (P(A + Cs)(1 + c4)A2>

and the proof is complete.

Setting b = O, s = O in (3.17) we obtain the following

Corollary. The reference configuration x0 is the only admissible equilibrium configura-

tion of the body compatible with zero body forces and zero surface tractions on S2.

It is worth mentioning that the corollary remains valid under the weaker assumption

that /(x(-))> 0 for each admissible configuration x different from x0. We close this

section by imposing another condition on P.
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H3. (Growth of P.) There exists a constant c6 > 0 such that

^(*(0) ^cjvx - if (3.22)

for each admissible configuration x.

4. Hypotheses on the viscous part of the stress and Lyapunov stability. In this section we

lay down and discuss the hypotheses on the viscosity tensor A[ • ] which are relevant to our

goal. We also establish Lyapnov stability of the reference configuration. The first

hypothesis on A[-] is

H4. (Symmetries of A[ • ].) If G and H are two second order tensors, the

A[H] = A[Hr], (4.1)

A[H] = A[H]r, (4.2)

and

A[G] ■ H = A[H] • G. (4.3)

It can be shown that the first requirement (4.1) is satisfied if and only if the viscous part of

the stress satisfies approximately the principle of material frame indifference for small

rotations and small values of the gradient of velocity. The second requirement (4.2) is

satisfied if and only if the viscous part of the Cauchy stress is approximately symmetric

for small deformation gradients. We also note that the viscous part of the stress as given

by (2.9) can never satisfy the above principles exactly. The symmetry (4.3) is crucial to our

proof as it implies an important identity (4.4) stated below. As a matter of fact (4.3)

expresses the Onsager reciprocity relations for viscosity. In certain special cases (4.3) is a

consequence of the symmetry of the material. Such is the case in an isotropic body.

Proposition 3. If x = x(X, t ) is any admissible motion of the body, then

U-2K + I + L = 0, (4.4)

where K is the kinetic energy (see (3.4)), I is defined by

1 = 1(0 = f S'-(F-I) dV0

(cf. (3.9)), U — U(t) is a measure of deformation given by

U(t) = {( |x - x0|2p0 dV0 = ip0||x - x0||2, (4.5)

»o

and

L = L(t) — { ( A[vx — I] • (vx - I) dV0. (4.6)
»0

Proof. On forming the inner product of (2.4) with the displacement x - x0, integrating

over V0, using the divergence theorem and the boundary conditions (2.5), (2.6) leads to

U~2K=-f S ■ (vx - I) dV0
Vo
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On invoking the constitutive equations (2.7)-(2.9) we obtain

U-2K=-f S0(vx) • (vx — I) dV0 — [ A[ Vv] • (vx — I) dV0.
Vo \

The first integral on the right-hand side of the last equality is obviously identified with /

while the symmetry condition (4.3) enables one to identify the second integral with L and

the proof is complete.

Our last hypothesis is

H5. (Positive Definiteness of A[-].) //H is any non-zero second order symmetric tensor,

then

A[H] • H > 0. (4.7)

We note that the symmetries (4.1), (4.2) together with (4.7) imply that

A[G] • G > 0 (4.8)

for a general (not necessarily symmetric) second order tensor G. It is well-known that the

inequality (4.8) is a consequence of the second law of thermodynamics. The strict

inequality (4.7), however, is what we need. It is pertinent to notice that one cannot assume

that

A[G] • G>0

be satisfied for each non-zero second order tensor G since the symmetry (4.1) or (4.2)

implies that

A[G] • G = 0

whenever G is skew-symmetric.

Lemma. There exist positive constants c7, cg, c9 and c10 such that

C7II Vv(-, r)||2 « D(t) cg|| Vv(-, r)||2, (4.9)

*c7||vu(-, Of « L{t) *£ ic8||vu(-, Of, (4.10)

U{t) <c9||vu(-,0l|2, (4.11)

and

K(t)<ci0D(t) (4.12)

for each admissible motion of the body.

Proof. We first observe that it follows from H5 that there exists a constant c7 > 0 such

that c71H |2 A[H] • H for each symmetric second-order tensor H. The symmetries (4.1)

and (4.2) imply that

A[vv] • w = A[H] • H

where H = Vv + (Vv)r] is the symmetric part of vv. Hence

2
c7|H| < A[ vv] • Vv
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and integrating this inequality over V0 leads to

cJ |H|2dV0<D(t). (4.13)
"0

Since x = x(X, t) is an admissible motion of the body, it follows from (2.5) that

v(X, / ) = O on S,

and hence the Korn inequality (see Necas and Hlavacek [8]), says that

I ""2%
where c7 > 0 is a constant independent of the motion. Inequalities (4.13) and (4.14) then

yield (4.9), with c1 = c7c7. The same argument leads to (4.10),. Observing that A[G] • G

c81G |2 for some c8 > 0 and all second order tensors leads to (4.9)2 and (4.10)2. Finally,

since x — x0 = O and v = O on §,, the Poincare inequality, the definitions of U, K, and

D, and the inequality (4.9), lead to (4.11) and (4.12). The proof is complete.

Our next result establishes Lyapunov stability of the reference configuration (cf [2]).

Theorem 2. There exists a constant c > 0 such that for each admissible motion of the

body and for each t > 0 we have

IK, Oil <c(||vu(-,0)11 +||v(-,0)||), (4.15)

II Vu(-, t)\\ < c(|| Vu(-,0)|| +1|v(- ,0)||), (4.16)

||v(-, OH < c(||vu(-,0)|| +||v(-,0)||), (4.17)

and

(^'llVv("'T)l|2 dj) <c(llvu(',0)|| +||v(-,0)||). (4.18)

Proof. Integrating the identity (3.6) over [0, f ] yields

K(t) + P(t) + f'D(t) dr = A"(0) + P(0) (4.19)
Jc\

which in view of the identity

K0) = iPolK'. Oil'. (4-20)
and inequalities (3.12), (4.9),, and (3.22) yields

2Polk(-, Oil2 + c,IIVu(•, Olf + c7/'||w(-, r)||2 dr
Jo

^ iPollv(" >0)l|2 + ^l|vu(-,0)||2

< (iPo + c6)(llvu(-,0)|| +||u(-,0)||)2.

The last inequality implies (4.16), (4.17), and (4.18) with the constant c replaced by

[cf'Gpo + c6)]1/2. It follows that (4.15)—(4.18) are satisfied with

c = (iP0 + c6)'/2max{cf1/2,(2pol)1/2,c71/2,c4ci-1/2}.

The proof is complete.
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Setting u( •, 0) = O and v( •, 0) = O, we obtain the following uniqueness results (cf. [2]).

Corollary. If x = x(X, t) is an admissible motion of the body such that x(X,0) = X and

v(X, 0) = O for all X G V0, then

x(x, ?) = x, xev0,t> o.

It is worth mentioning that this corollary can be established under weaker hypotheses,

namely that (4.8) is satisfied for all second order tensors and

P(x(-))>0 (4.21)

for each admissible configuration x. Indeed, (4.8) yields D(t)> 0 for each admissible

motion and the identity (4.19) implies

K(t) + P(t) < K(0) + P(0) = 0 (4.22)

where (4.22)2 follows from the intitial conditions of the special motion about which the

corollary speaks. By (4.21) we have P(t)> 0 and since also K(t) > 0, we see from (4.22)

that K(t) = P(t) = 0. But K(t) = 0 implies v(-, t) = O in V0 and the result follows.

5. Asymptotic stability. We are now able to prove the main result of this paper. We

employ the following terminology: a positive function f(t), t > 0, is said to decay

exponentially with exponent v > 0 as t -» oo if there exists a positive constant A such that

f(t) < Ae~"'. It is possible to prove

Theorem 3. There exists a constant v > 0 such that for each admissible solution

x = x(X, t) the functions ||u(-,OII, ||vu(-,f)ll> ||v(-,f)ll and {/," ||W(-, t)|| </t}1/2 decay

exponentially with exponent v as t -» oo.

Proof. First we show that our hypotheses imply that we can choose the positive

constants vl,v2 and v3 small enough to satisfy the following inequalities:

f,(1 + \w2)K<D (5.1)

-{I + v2P + \vxv2L + {v\v2U < 0 (5.2)

and

P + {vxL- (5.3)

for each admissible solution of the body. Note that from inequalities (3.12) and (4.11)

there exists a positive constant v, such that

P-{v}U> 0 (5.4)

Then, from inequality (4.10), result (5.3) follows with v3 = jvxcv Moreover, from inequal-

ities (3.13), (3.22), (4.10)2 and (4.11) for sufficiently small c, and v2 inequality (5.2) is

satisfied. Finally, on comparing inequalities (4.12) with (5.1) it is clear that (5.1) is valid

provided and v2 are small enough.

Forming (3.3) plus \ of identity (4.4) reveals that

K + P + \vxU — V\K + {vj + \vxL — -D. (5.5)
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Multiply this equation at t — r by e"'"2-7 and integrate over [0, t\ to obtain

K + P + t4 ° (5-6)

= ['{-D + e,(l + v2)K - \vxI + vxv2P + \v\v2U + {v]v2L}e^VirdT.•A)

Next, observe the weighted arithmetic-geometric mean inequality

±U<K/w + wU (5.7)

where the positive weight w is constant. With w = v{ in (5.7) then the right-hand side of

equation (5.6) in combination with inequalities (5.1) and (5.2) yields

K+ P + vxU/2 + f,L/2 ^Ae~2-' (5.8)

where

A = K{0) + i>(0) + ir,C/(0) + ^,L(0) and 2v = vxv2.

A further application of (5.7) with w = i>] provides

\K+ P + \vxL - {v]U Ae-2*'. (5.9)

Thus, from (5.3) and (4.20) it follows that

iPolK" > 0I|2 + "3l|vu(-, r)f ^Ae-2". (5.10)

Hence, both ||v(•, /)|| and ||Vu(-, Oil decay exponentially as / -» oo with exponent v. The

Poincare inequality (3.19) then leads to ||u( -, ?)|| decaying exponentially with exponent v.

Finally, integrating (3.3) over [t, T] with t < T gives

K(T) + P(T)+ [TD(r)dT = K(t) + P(t). (5.11)
■'t

On letting T -> oo and using the established exponential decay of K and P then we obtain

[°°D{T)dT = K(t) + P(t). (5.12)
Jt

The inequalities (4.9), (3.22) and the identity (4.2) provides

Cijt ||w(-,t)||2^t < (ip0 + c6){||v(-, Of +l|vu(-, Oil2}- (5-13)

Then, the exponential decay already established on the right hand side of (5.13) implies

the desired result.

The theorem is proved.
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