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Abstract. We consider the shearing adiabatic flow of an incompressible Neutonian fluid

with temperature dependent viscosity caused by a time dependent "oscillatory" body

force. We show that, as t -* oo, the flow converges with exponential rate to a rigid

"oscillatory" motion at fixed temperature.

1. Introduction. We consider an incompressible Newtonian fluid with temperature

dependent viscosity in an adiabatic shearing flow caused by a time dependent body force

f(t). The fluid is confined in the strip between the planes x = 0 and x = 1. The contact of

the fluid with these planes is assumed frictionless. The body force fit) and thereby the

flow is in the direction of the axis y, perpendicular to x.

We assume the fluid has unit density and unit specific heat, so its internal energy is

identical to temperature, i.e., e = 6. On the other hand the stress is given by

o(x,t) = n(e(x,t))vx(x,t), (1.1)

where the viscosity /x(6) is a know, C2 smooth, function which satisfies

H(6)> 0, (1.2)

M'(0)<O, (1.3)
O

Iu(0) dd = oo. (I-4)
/Jo

Thus, the balance laws of momentum and energy take the form

v,(x, t) = ax(x, t) +f(t) (1.5)

6,(x, t) = a(x, t)vx(x, t). (1.6)

Since the contact of the fluid with the boundary is frictionless,

a(l, t) = a(0, t) — 0, 0 < f < oo. (1.7)

We specify initial conditions

u(x,0) = u0(x), 0(x,O) = 0o(x), 0<x<l, (1.8)
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with

o,(0,0) = o,(0,0) = o,(l,0) = 0. (1.9)

We assume the body force is "oscillatory", in the sense

I/;f(r)dr < A" < cc, 0<f<oo. (1-10)

Then, (1.1), (1.5), (1.6) and (1.7) admit the solution

v(x, t) = v, + f'f(r) dr, (1.11)
Jo

6 (x, 0 = 6x(x), (1-12)

which represents a rigid motion at constant (in time) temperature.

Our objective is to investigate whether this rigid motion is asymptotically stable, i.e.,

whether the solution (v(x, t), 0(x, t)) of (1.1), (1.5), (1.6), (1.7), (1.8) has, as t -* oo, the

asymptotic form (1.11), (1.12), independently of v(x), 60(x).

We will show the following

Theorem. Assume v0(x) £ W2,2(0,1), 60(x) e W''2(0,1), 0o(jc) > 0, 0 < * < 1.

Then there exists a unique classical solution of (1.1), (1.5), (1.6), (1.7), (1.8) and (1.9) on

[0,1] X [ 0, oo) and, as / -> oo,

v(x, t) = f'f(r) dr + f'v 0(x) dx + 0(e'Kl), (1.13)
•'o Jo

a(x, t) = 0(e~K'), (1.14)

e(x,t) -«,(*) >0, (1.15)

\ex(x,t)\<K, (1.16)

uniformly in x on [0,1],

The proof of this theorem, presented in Section 2, is based on a priori estimates for

solutions of (1.1), (1.5), (1.6), (1.7) and (1.8) under the assumed properties of the functions

f(t) and n(6). Essentially we show that viscosity in the momentum balance equation (1.5)

wins over the destabilizing effect of stress power in the energy balance equation (1.6) and

enforces the decay of the velocity gradient to zero.

The problem of uniform shearing of a fluid of this type was investigated in [1] and an

analogous asymptotic stability result was established there.
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2. Proof of the theorem. In this section we assume that («(jc, t), 6(x, t)) is a solution of

(1.1), (1.5), (1.6), (1.7), (1.8) on [0,1] X [0, oo) such that v(-,t), vx(-, t), v,(-, t), vxx(-, t),

9(-,t), 6x(-,t) are all in C°([0,oo); L2(0,1)), vxt(-, t) is in C°((0, oo); L2(0,1)) and

v„(-, t) is in L2OC((0, oo); L2(0,1)).
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Throughout this section, K will denote a generic constant which can be estimated in

terms of properties of the viscosity function n(0) and upper bounds of the W2a(0,1)

norm of u0(x) and the ^''2(0,1) norm of 00{x).

Lemma 2.1.

rt r\
f ( a2(x, t) dxdr < K, (2.1)

Jo Jo

f a2(x, t) dj < K, (2.2)
Jo

f a2(x,r)dx<K. (2.3)
'C\

Proof. We multiply (1.5) by (v,(x, t) — /(?))» we integrate over [0,1] X [0, t] and

integrate by parts to obtain

f f [v,(x, t) —/(t)]2 dx dr + f f]vlx(x, t)o(jc, t) dx dr = 0. (2.4)
Jo Jo Jo Jo

Then, using (1.1),

rt /-Ir / \ ./ \t9 . ftr\

f'[ [«,(*> f) ~ f(j)]2 dxdj + f f ii(6(x, t))[v2(x, r)]tdxdT = 0, (2.5)
Jn •'n •'n JnJ0 -"o •'O •'o

whence, after an integration by parts,

c /•' ->, ^ . . . 1 /•'
[' ( o2(x, t) dx dT + - f fx(6(x, t))v2(x, t) dx
Jo Jo 1 •'o

f f v'(0(x' T))v(0(x' T))v?(x, t) dxdT (2.6)

/V(0<o(x))vL(x)dx.
Jn

1
2

Hence, (2.1) follows from (2.6) by account of (1.2) and (1.3).

In view of (1.7), (2.2) follows immediagely from (2.1) and Schwarz's Inequality.

To show (2.3), we use (2.6) together with

f a2(x, t) dx < max n(d(x, t))v2(x, t) dx
xrFfO.ll*e[0,i]

< max n(0o(x)) [\(0(x, t))v2(x, t)dx. □
*£[0,1] Jc\

Lemma 2.2.

60 (x)<e(x,t)<K. (2.7)

Proof. We multiply (1.6) by ju(0) and use (1.1) and (2.2) to deduce

f = f'°2(x, t) dr < K. (2.8)
Je0(X) Jo

Hence, (2.8) and (1.4) imply (2.7).

We now proceed to estimate the L2 norm of ax(x, t).
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Lemma 2.3.

fa2(x, t) dx < Ke'Kt. (2.9)
:

Proof. Using (1.5), (1.7), (1.6) and (1.1),

= C°x(x, t)axl(x,t)dx
Jo

= /"'[«,(*> t) -f(t)\axl(x, t) dx = [lv,(x, t)oxl(x, t) dx
Jo Jo

= - f'a,(x, t)vlx(x, t) dx
Jo

= ~f*n(0(x, t))vxt(x, t) dx

-J\'(0(x, t))n(0(x, t))v3x(x, t)vxl(x, t) dx,
Jo

or, by virtue of (1.5) and (1.1).

(2.10)

dtJ0°*(X' dX + 2I0 tl^X' ') dx

= — 2J n'(0(x, t))ii(0(x, t))vl(x, t)vlx(x, t) dx.
(2.11)

:

Because of (2.7), \n'(0(x, /))|< K, ju,(0(x, t)) > Kx > 0, 0 < x < 1, and hence (1.1),

(1.5), (1.2), (1.3), (1.4), (2.7), (2.11) and the Cauchy Inequality imply

^ J ax(x, t) dx + K\j oxx(x, t) dx «£ K2f a6(x, t) dx. (2.12)

On account of (2.3),

M
[lo6(x, t) dx max <j4(x, t) f o2(x, t) dx

j 0 ^£[0,1] ■'0

k( max a2(x, r))
\*e[0,i] '

< AT| fio2(x, t) dx Jlax(x, t) </xJ;

hence

f'o6(x, t)dx < K forx2(*, 0 dx. (2.13)
Jo J0

Combining (2.12) and (2.13), we have

f'o2(x, t)dx< K Co2(x, t) dx. (2-14)
at J a •'o
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Integrating (2.14) over [0, t] and using (2.1), we deduce
'i

279

f a2(x,t)dx<K. (2-15)
Jo

Now, combining (2.12) with

o2(x, t) < f o2(x,t)dx
Jo

0 < fl°?x(x> *)dx,
Jo

and putting

HO =f f l°x(x, 0 dx, (2.16)

we obtain the integrodifferential inequality

^p- + (2.17)

where, by account of (2.1) and (2.15),

fj(r)dr<K0, (2.18)

and

(2-19)

By (2.18) and (2.19), we can find a t0 E [0,2KjK2/K] ] such that

H'o)<^K{/K2.

Therefore, for t > t0,

Hence

<H0 ^Ht0)e~Kl('~'o)/2, for t>t0.

Combining this with (2.19), we obtain (2.9) for t > 0. □

On account of (2.9), (1.7),

a2(x,t) ^ Ke~K', (2.20)

which proves (1.14).

Using (1.1), (1.2), (1.3), (1.4), (2.20) and (2.7).

v2(x,t) <Ke'K'. (2.21)

Hence, as t -* oo,

v(x,t) = vc0(t) + 0(e-Kl). (2.22)

Integrating (1.5) over jc = [0,1] and using (1.7) and (2.22), we arrive at (1.13).
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Combining (1.1) with (1.6),

o2(x, t) = n(0(x, t))0,(x, t). (2.23)

Differentiating (2.23) with respect to x, integrating over [0, t] and using iix{6(x, t))0,(x, t)

= nt(0(x, t))6x(x, t), we obtain

n(8(x, t))6x(x, t) = n(60(x))60x{x) + 2 f'a(x, r)ax{x, t) di. (2.24)
•'o

using (2.20) we find

f ( axx(x> T) dx dr < K. (2.25)
J(\ J(\

Integrating (2.12) over [0, f] and using (2.20) we find

n /•'

'o •'o

Using (2.25), (2.20), (2.9), (2.24),

= f]o?(x,t) dx + 2 P f ox(t,t)oxx(£,t)dtdy,
J0 J0 y

and Schwarz's Inequality, we obtain (1.16).

Since, for every 0 < x < 1, 0(x, t) is an increasing function of t, 6(x, t) converges as

t -» oo, to ^,(jc) < oo. Furthermore, by (1.16) and the Arzela-Ascoli theorem the conver-

gence is uniform in x. This proves (1.15). Once the a-priori estimates have been estab-

lished, the existence of solutions can be established by standard techniques so we will not

give the details here.
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