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Abstract. A non-orthogonal curvilinear coordinate system is used to formulate the
Dirichlet problem of potential theory associated with the interior of a general twisted tube
with a slowly varying circular section. A solution scheme is presented for two cases of a
tube of finite length.

Introduction. Recently [1] a method of solution has been presented for the Dirichlet
problem of potential theory associated with the interior of a general twisted tube with a
uniform non-rotating section. For such a tube it was possible to construct an orthogonal
curvilinear coordinate system which could be employed to formulate the boundary-value
problem. However, for a tube with a non-uniform section a non-orthogonal curvilinear
coordinate system must be used.

It is the purpose of this paper to use the non-orthogonal curvilinear coordinate system
established in [2] to formulate the Dirichlet problem of potential theory for the interior of
a general twisted tube of finite length and slowly varying circular section. The method of
solution presented in the analysis is based on an iterative scheme and involves, respec-
tively, two and three small parameters for the two cases considered.

1.The coordinate system. The interior and boundary of a tube of finite length / in R; is
denoted by D, and 9D, respectively and the tube orientation is specified by a curve L (Fig.
1) which has a prescribed unit tangent vector t,(£'). The coordinate ¢' measures the arc
length along L from the origin O to the point O’. The point O’ is the centre of the circular
section denoted by D, U 9D, which is normal to L and has radius a(¢'). If B denotes the
curved part of 9D, then 9D; is the union of B, D, U 3D, (¢' = 0), and D, U 3D, (¢' = 1).
The unit tangent vector t, is given by

cos
t,=|sind sing |, (L.1)
sind cos¢
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D, U D,
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D, U 2D, (¢! = 0) / D, UaD, (' =9

FiG. 1.

where the angles 6 and ¢ are prescribed twice-differentiable functions of ¢'. In what
follows we will also need the two unit vectors t, and t, where

0
t,=| ¢0s¢ \, (1.2)
-sin ¢
—sin @
t,=|cosf sing |, (1.3)
cosf cos¢

respectively. The vectors t;, i = 1,2, 3, are then mutually orthogonal.

It has been shown [2] that a non-orthogonal curvilinear coordinate system can be
constructed for the tube when the unit normal to 3D, which lies in the section D, U oD, is
prescribed. These coordinates are denoted by ¢/, i = 1,2, 3, where £2=0 on 9D, and
¢2 = — o0 at O for all values of ¢' and £3. The transformation from Cartesian coordinates
x',i = 1,2,3, to the curvilinear coordinates ¢, i = 1,2, 3, is given by

x -1 1[0 X’
x| =T(¢) T(6) |o]+| x|, (1.4)
x3 u X3
where
1 0 0
T(¢)=|0 cos¢ -sing|, (1.5)

0 sing cos¢

cos@ O siné
o=l o 1 o |,
-sinf 0 cosé

(1.6)
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N u

FiG. 2.
X! ,
x| =[t(3)dE". (1.7)
x3)

The point O’ is represented by the vector in (1.7) and the functions u(¢', €2, ¢3) and
v(¢', 2, &%) are given by

o+ iu=a(g)et . (1.8)

Moreover O’v, O’u are the axes of a Cartesian frame of reference and coincide with the
unit vectors t, and t, respectively and the coordinate £3 measures the angle between
O'v and O’P (Fig.2). Additional properties of the coordinate system are given in (2]
and will be employed in the analysis which follows.

2. Formulation of the boundary-value problem. Laplace’s equation in the non-orthogonal
curvilinear coordinate system &', i = 1,2, 3, has the form
l_a__(J ija_V) =0, (2.1)
J 3¢ ot/
where J is the Jacobian of the transformation given by Egs. (1.4)-(1.7) and g", i,

j = 1,2,3, are the components of the contravariant metric tensor. Employing the expres-
sions for J and g/ which were established in [2] together with the relation y = -1 — w [1],
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we find that Eq. (2.1) can be written in the form

2 2 2
1 a4 + bla—z(e—zezb% + dz)ﬂ + b,(a_ze_zfzbf + wz) o’V
aﬁlz aﬁzz a£32
2 2 2
_2a_ldb] 9°V —20—ldwb|i+2“’bliV_+ae€zb2—a—V—
a¢'a¢? ¢20¢° ag%ag! ag! (22)
+(a_2(d2 — aa)b, — aet’b, — a~ e ¥'biksin ,B) 4

ag?

+ (@b, + aet’wb, — a”le bk cosB)aa—:; =0,
where b, = 1 — kaet'sin B, b, = ksin B — krcos B, B=y + £, 6 =«xcosy, psinf =
ksiny and w = ¢ cos §. The curvature and torsion of L are represented by k(£') and 7(¢')
respectively and the dot notation denotes the operation d/d§'.

The quantity w represents the rate at which the frame O’v, O’u rotates about L as §'

varies and can be eliminated from Eq. (2.2) by employing the transformation

gll — gl’ £/2 — &2’ £73 — 63 - X, (23)
where x = [§ w(£')d&". Eq. (2.2) now reduces to

2 2 2
b,———a Vz + b,a"z(e_ze'zb? + dz)—a Vz + b?a‘ze_zf'z——a V2
agrl a£/2 6513

2
_ 2a__ldbl a V €/2 aV

+ ae —_—
11y gr2 2 1
9¢7d¢ 9 (2.4)

+ (a"z(d2 — aa)b, — aet’b, — a”'e ¢"b3xsin B)%
—a~'e b3k cos Ba—V3 =0
&’
The coordinate £ now measures the angle between O’P and i (= cos xt, + sin xt;)
and the vector i does not rotate about L as ¢! varies (see [1]).
The boundary conditions satisfied by ¥ on 9D, have the form

V="V (¢"¢%) onB, (2.5)
V="/(£%¢3) onD,UdD, (¢ =0), (2.6)
V="1,(¢%¢%) onD,UdD, (¢ =1), (2.7

where V,, V; and V, are prescribed functions. This completes the formulation of the
boundary-value problem.

3. Solution scheme. If Q = max < 1< 4, € (< 1) = maxgepi<) kQ and 7' = ¢''/Q we
can write kQ = ¢, f,(n') where f,(7') is O(1). Also if 7Q is O(1) for 0 < ¢! </ we can
write 7Q = f,(n') where f£,(n') is O(1). Moreover, since the tube section is slowly varying
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we can write a = Q(1 + ¢, f,(n')) where 0 <&, < 1 and f;(7') is O(1). With %, n* = ¢72,
¢’? equation (2.4) can be written in the form

Vi + V2V = e fien (sgVy, + 35592V + (fyes — My(If, Dsg) V.,
+M(V) — €3£V, 1, — 2M,(F3 )5V 1, = My (1f; DM, (13, Den* V)
— 2 f1e2n 5,35,V V + 2y (V) - E72(V ,, + MA(If, Derm* V5,
~2M(53DeV 1 + M5 DM (3 ) - My(1fy, 1) V)
+ €63 fif3e BsgV,yy + 35572V = 2M (If3 D)sgen? V
+3(fhe5 — My(Ufy Dsg) V= My (13 D@, (15,1 D) — My (1f; D)sg
+ fye0)e’ V., + My (V)

+6 /26753 (557 + My(V)) — 2ede, 2077 s5(35,9 2V + 2M,(V'))
+eedf, £ 355V 11 + ME(1]) 53¢V 0y — 4M,(|3]) 5™V
+3( fucs — Mi(IA])s5) V.,
+2M,(1A) (s5(Mi(15]) = Mi(15.40) + Mi(1A])) = frgg)e™'V )
+3ele; /2753 (559 2V + My(V))
+eiedfi e ss(Va + M4V o, — 2M,(|fl) eV )
+ (s = Mi(1£i1)35) V.,
=M (14D (s(M,(1511) = 28,(14]) = Mi(1£]) + fcg) eV,
—efed [P e M sp(355V 2V + 2M,(V))
+3elel £ 126 s} (5,0 2V
+M,(V)) + 86l 212> s3 (5,9 2V + My(V)), (3.1)
We will seek a solution of (3.1) in the form
y= §Oege§w>, i+ k=n. (32)
e

The system of equations for V{, n =0, is
Vion + vV =0, (3.3)
together with
Vith + vV = Uy, it k=nn=1, (3.4)

1
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where U~ " is given by
UL™D = fiesgh i + 359 VR + ( focg — Mi(1£1])55)
XV + My(VR)) = A2vesh — 2my(A])em vt
M (IA)M (150 e" Vi)
—f2e27 553559 2V, + 2My(V52))
—fA(VeA + MR e Vi
—2M,(IA) e Vi3, + M (AN M4 — Mi(14.1)) e Vi)
+f, £ (3502 0 + 355V VT2 = 2M((f])sge™ V2 s
+3( fiep = M(UAi1)56) Vo2 1
=M (AN (M (15.21) = MAIA]))sg + fcg) e Vim21 5 + My(V521))
+12e3 53557 V50 + My(V5D))
—2f2fe?sy(35,9 V52 + 2My (V52 )
+h fe 35V 020 + ME(I])spe? V2220
—aM,(|£3])sge™ V2000 + 3(f2cﬁ (|f||)sﬂ)V TR
2M,(5) (sp(M(1A]) = M(15.1) + M(IA1)) — focg) e VR250)
431213 sp (559 V50 + My(Vi2))
+12 12 sp(Vin2a + M(14])e WY = 2M(1A)em VIR )
+( foeg = My(1£1])55) Vi,
M) (se(Mi(15,]) = 2M,(1461) = M(IA])) + focg) e V0252)
—f2f2e* sy (35,9 2V, 50, + 2M (V32 ,))
313126353 (5,9 V52, + My(V32,))

2 —
+f2feT S;(Sﬁsz("3k6)3 + Mz(V( 3k6)3)) (3.5)

with V7, i) + i, = m, and all derivatives of V/\") identically zero when i, <0 or i, <0.
Eq. (3.3) can be considered as Laplace’s equation in the cylindrical coordinate system
(n', *, n*) with scaling factors 1, e", e" and is solved subject to the Dirichlet boundary
conditions (2.5)-(2.7). Egs. (3.4) are Poisson-type and are solved subject to homogeneous
boundary conditions. The method of solution of these boundary-value problems is the
same as that employed in [1] and the details can be omitted for brevity.
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When | 7| Q < 1 for 0 < ¢" </ we can write TQ = ¢, f,(n') where &,(< 1) = max s,
| 7| Q and f,(n') is again O(1). Eq. (2.4) can now be written in the form

Vi + vV = fie"(sgV 1y + 35,92V — M(If,])ssV ) + My(V))
—es 52V = 2M(1])e" V. — M(I6)Mi(1f5,1]) ™V 2)
— e f2e¥s5(35,9 2V + 2M,(V))
=’ (V. + M) eV 5
—2M,(|A) eV 10 + M(IAD)(2M{I5]) = Mi(155,40)) eV o)
+ee, fihem gV + e fihe(3sgV 1 + 3559V — 2M,(Ifi])spe™ V1, — 3M, (1)) 55V
M(IAD(Mi(I5.1) = Mi(IA]))sge™ V2 + My(V))
+8 12353 (5,9 + My(V)) — e3¢, f2f3027s5(355v 2V + 2My(V'))
+e,edf, e sg(3V 1 + MA(|£]) eV 5, — aM(Ifi])em V1, — 3M(I11])V
+2M(IA)(M(IA]) = Mi(15.41) + M(1A1)emV )
+eies63 1 fo fre"ca(3V 1 — M(fil)em V)
+38le, 21 3 (559 2V + My(V))
+ei83fi e sg(Var + MI(15])e2™V oy = 2M,(IA]) eV 1
M|(|f1|)Vl - M1(|f3|)(M (|f3 1|) - 2M1(|f3|) - M|(|f||))e"2V‘2)
—ele2 f2f e sﬂ(3s v+ 2M2(V))
+eje 63 f) £ e ey(3V, — 2M\(Ifs])e™V )
+3e}e2 £12e3s3 (559 2V + My(V))
+eesedf fo e ea(V. = Mi(Ifil)en V)
+eled 21253 (5,92 + My(V)). (3.6)
In this case we seek a solution for ¥ in the form

V= 2882631/:]2), i+j+k=n.

The system of equations for V,ﬁz), n=0,is
Vi + v =0, (3.7)

and

Vion + VYR =Ug™,  itjtk=nn=1, (338)
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where U$;™" is given by
UGV = fieM(sgV i, + 355920000 — M(IA])sgViidy + My(VP))
_/'3(2’/:&2:11),11 —2M,(If])e™ Vit — M, (16)M\(1f;1]) e Vi(f/l:'l).z)
— e sy(3s59 2V R + 2M (Vi )
— (V5= + ME(|A) e Vi
—2M\(A])e" V5221 + Mi(IAD) 2M(1A]) — Mi(1£41)) e Vii=35)
+f 1" egV TP 1
+1 135V T+ 35V VT
=2M,(I)sge™ V. R 112 = 3M, (A1) gV R
M (IA)(M(1£.4]) = Mi(1£1]))see™ ViR 12 + Ma(ViE2-))
+12e2Vs3 (5,9 V5D + My(Vins D))
—2f2f,ess(35,9 V50 + 2My (VD)
1 sp (V0 + M)V
—4M, (1) e VT2 = IM(IAN VTR
+2M(IA) (M (A1) = M(14.0) + M(1A]))em Ve 22)
+hhhemea (VT2 — M) e VT2 1)
+3£3£e3s3 (5w V5D + My(VOSD L))
+f e sg (VO + MA(IA) e VTR,
—2M,(IA]) e VG 10 = M4V,
M(IAD(M(15.0) = 284(15]) = Mi(1A]) e V505 )
— [ 2 sy 35,V VTR, + 2My (Vs )
11 1o f2e g (V0 man — 2M (1) e VT2 122
+312 12 s (5,9 V5, + My(VEsy))
Hhif e gV 230 = M(IA)e™ V2032
TS50 VI + My(VsRs)), (3.9)

with V™ i + i, + i, =m, and all derivatives of V("')3 identically zero when i, <0,

INPLEY iyigi

i, <0 or i; <0. The solution of equations (3.7)-(3.9) subject to the given Dirichlet
boundary condition is formally the same as the case when 7Q is 0(1).
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The above analysis can readily be extended to include the cases of a semi-infinite,
infinite and closed tube as was done in [1].
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