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Abstract. A non-orthogonal curvilinear coordinate system is used to formulate the

Dirichlet problem of potential theory associated with the interior of a general twisted tube

with a slowly varying circular section. A solution scheme is presented for two cases of a

tube of finite length.

Introduction. Recently [1] a method of solution has been presented for the Dirichlet

problem of potential theory associated with the interior of a general twisted tube with a

uniform non-rotating section. For such a tube it was possible to construct an orthogonal

curvilinear coordinate system which could be employed to formulate the boundary-value

problem. However, for a tube with a non-uniform section a non-orthogonal curvilinear

coordinate system must be used.

It is the purpose of this paper to use the non-orthogonal curvilinear coordinate system

established in [2] to formulate the Dirichlet problem of potential theory for the interior of

a general twisted tube of finite length and slowly varying circular section. The method of

solution presented in the analysis is based on an iterative scheme and involves, respec-

tively, two and three small parameters for the two cases considered.

l.The coordinate system. The interior and boundary of a tube of finite length / in /?3 is

denoted by D3 and 3D3 respectively and the tube orientation is specified by a curve L (Fig.

1) which has a prescribed unit tangent vector The coordinate £' measures the arc

length along L from the origin O to the point O'. The point O' is the centre of the circular

section denoted by D2 U 3D2 which is normal to L and has radius a(£'). If B denotes the

curved part of 3D3 then 3Z)3 is the union of B, D2 U 3D2 (I1 = 0), and D2 U 3D2 (£' = /).

The unit tangent vector t, is given by

ncos 6

t, = sin 6 sin$ , (1.1)

t sin 6 cos <j>,
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*3

Fig. 1.

where the angles 6 and <t> are prescribed twice-differentiable functions of In what

follows we will also need the two unit vectors t2 and t3 where

t2 = [ cos* )\ (1.2)

-sin<f>

-sin 0 \

t3 = |cos0 sin<#> I (1.3)

cos 6 cos <(> )

respectively. The vectors t,, i = 1,2,3, are then mutually orthogonal.

It has been shown [2] that a non-orthogonal curvilinear coordinate system can be

constructed for the tube when the unit normal to 3D2 which lies in the section D2 U dD2 is

prescribed. These coordinates are denoted by £', i = 1,2,3, where £2 = 0 on 9D2 and

I2 = — oo at O' for all values of £' and £3. The transformation from Cartesian coordinates

x\ i = 1,2, 3, to the curvilinear coordinates £', i = 1,2,3, is given by

X'\
X2 , (1.4)

\ X3I

x<

x2

x3

= T,(<p)-,T2(0)-{v} +

where

TM
1 0 0 '
0 cos <(> -sin <p

0 sin $ cos <(> !
(1.5)

(cos 6 0 sin 6 \
0 1 0 , (1.6)

-sin 6 0 cos 61
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Fig. 2.

A"

X2

X31

= f%(V)dV- (1-7)
J(\

The point O' is represented by the vector in (1.7) and the functions «(£', £2, £3) and

u(£', £2, £3) are given by

v + iu = a(^)e(1+*\ (1.8)

Moreover O'v, O'u are the axes of a Cartesian frame of reference and coincide with the

unit vectors t2 and t3 respectively and the coordinate £3 measures the angle between

O'v and O'P (Fig. 2). Additional properties of the coordinate system are given in [2]

and will be employed in the analysis which follows.

2. Formulation of the boundary-value problem. Laplace's equation in the non-orthogonal

curvilinear coordinate system i = 1,2,3, has the form

7 — [jgij— )=0, (2.1)3 af I 3^ /

where J is the Jacobian of the transformation given by Eqs. (1.4)-(1.7) and g'J, i,

j — 1,2,3, are the components of the contravariant metric tensor. Employing the expres-

sions for J and g'J which were established in [2] together with the relation y = -t — u [1],



(2.2)
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we find that Eq. (2.1) can be written in the form

b,—2 + bxa-2{e~2?b] + d2)~ + b,(a-2e~^2b2 + o>2)~
3£' V ' 9|2 V ' 9£

. d2V „ , d2V 92V , f2, dV
— 2a ab,—-—- — 2a 'aub,—-—- 4- 2ub,—-—- + aei b2—~

3£'3£2 ' 3£23£3 0{3a€' 9£'

+ (a~2(a2 — aa)b] — de^b2 — a~]e~^b2 Ksin/j)-^^

+ (w£, + ae^ub2 — a~'e~(2b2KCOS/3)-^j = 0,

where b, = 1 — icae(2sin/?, b2 = ksin/? — ktcos/?, /? — y + £3, 0 = Kcosy, <j>sin# =

k sin y and « = <j>cos 6. The curvature and torsion of L are represented by «(£') and r(£')

respectively and the dot notation denotes the operation d/d£'.

The quantity u represents the rate at which the frame O'v, O'u rotates about L as £'

varies and can be eliminated from Eq. (2.2) by employing the transformation

f'=£\ r2 = £2, £'3 = £3-X, (2.3)

where x = /<f "(I1) d£'. Eq. (2.2) now reduces to

, 32F , , _2, _2rh2 , d2V , _2 _2,,2 92K
bi-— + b]a [e 26 b2 + a2)-— + b]a 2e 2(  

9ri 9f2 ar3

. -I l d2V , e.iL W
— 2a aby—-   + ae' b7  

afaf2 3£"

+ (a 2{a2 — aa)bx — ae*1b2 — a xe £'2£2Ksin

— a~]e~( 2b2kcos = 0.
9f3

The coordinate |'3 now measures the angle between O'P and i (= cosxt2 + sin xt3)

and the vector i does not rotate about L as varies (see [1]).

The boundary conditions satisfied by V on 9D3 have the form

F=F0(f\f3) on B, (2.5)

F=F,(r2,r3) on D2 U 9£>2 (£'' — 0), (2.6)

K= K2({'2,€'3) on Z>2U9Z>2 (£'" = /), (2.7)

where V0, F, and V2 are prescribed functions. This completes the formulation of the

boundary-value problem.

3. Solution scheme. If Q = max0<£.iti a, e (< 1) = max^'i^ kQ and rj] — i''/Q we

can write kQ = e,//?}1) where /,(?)') is 0(1). Also if tQ is 0(1) for 0 < I'1 ^ / we can

write tQ = f2(r)]) where f2( 171) is 0(1). Moreover, since the tube section is slowly varying

(2.4)
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we can write a = Q( 1 + e^t}1)) where 0 < e3 < 1 and /3(V) is 0(1). With ij2, tj3 = £'2,

|'3 equation (2.4) can be written in the form

v,i i + ^ V = ei/i^ (s(3 V11+3s^2V + (f2cp - M1 (|/'Ity) V j

+ M2(F))-e3/3(2F11 -2M1(|/3|)^2K12 ^(l/^l)^2 F2)

- *\f\e2 "2 ̂ (3^ V2 F + 2M2 (F)) - e\fl(V,1 + M\(|/3 |)e2 n2 K22

- 2Af,(|/3 |)e"2 V12 + M1(|/3 0(2^(1/3I) |))^2 F2)

+ ^63/^3^(3^Fi , + 3S(JV2 F- ^(1/3 |)S^2 F12

+ 3(f2Cp - M1(\fl \)sp)Vtl -M,(I/3 IX^d/a,! I) -*,(1/, l))sp

+ /2c^2F2 + M2(F))

+ e3/,V^2(^V2F+ M2(F)) - 2e2£3/2/3e2^(3^V2F + 2M2(F))

+ E.^/,/M3^Fn + M2(|/3|)^e2"2F22 - 4M,(|/3|)V"2FI2

+ 3(/2^-M,(|/,|)^)f1

+ 2M1(|/3|)(^(MI(|/3|) - M,(|/3j1|) + M.0/,1)) -/2^)e"2F2)

+ 3ej!£3/13/3e3<^(.yC72F + M2(F))

+ e1e3/1/33e^^(F11 + M2(|/3|)e2"2F22 - 2A/,(|/3|)e"2F12)

+ (/z^-A/.d/.D^jF,

-^(l/aDM^M - 2M,(|/3|) - M.d/.l)) +/2c^)e"2F2

-£?e3/i2/32e2"2^(35/SV2F + 2M2(F))

+ ^£Uif\%2eWSp(sflV2V

+ M2(V)) + e3e3/,3/3V^2(^v2F + M2(F)), (3.1)

We will seek a solution of (3.1) in the form

00

F= 2 ei^F^, i + k = n. (3.2)
n = 0

The system of equations for V-£\ n 3= 0, is

Cn + V2Fr = 0, (3.3)

together with

KPu + V2^n) = t#" '>, i + k = n,n> 1, (3.4)
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where U,^~ '* is given by

U/Tl) =f^\spV^u + ^V2v^ + (f2Cp - M.d/J)^)

X^-VJ + M2(V^)) -/3(2^r.,J1 - 2M,(|/3|)^2^rilJ2

-M1(|/3|)M1(|/3,1|)e''2^"_-11j)

+ 2M2(V(_"2-/c2>))

~h2[ + M,2(|/3|)e2^r22]2

-2M1(|/3|)e"2^n_-22|2 + M1(|/3|)(2M1(|/3|) - M,(|/3J))e^_"22l)

+Uf^\^V^k2ly u + 3^V2^r,2i, - 2M,(|/3|)V"2I/<_V,2iu2

+ 3(/2cj8-M1(|/1|)^)^_V^,,1

-W,(l/3l)((^.(l/3,.l) - MU\))sP+f^yv^a +

+/,3e3^2(^V2^3) + M2(V£ 3",3>))

-2/2/3e2"2^(3^V2^V^ + 2A/2(^L"2-,32,))

+/,/M3^(-"u\„ + (1/31) 27,2 ^(-2.22

-4A/1(|/3|)V"2^322,12 + 3(/2c, - Mx{\fx\)sp)v^l2A

2M,(|/3|)(^(M,(|/3|) - M,(|/3>1|) + M,(|/,|)) -/2cA)e"2^_"r,3->2,2)

+ 3/,3/3e3^2(^V2^3-^i + M2{V^k\))

+f^\Sp[V^l3.,! + M2(|/3|y^r*423,22 - 2M1(|/3|)e"2^u4»3,,2)

+ (/2^-M1(i/1iK)K(-r^3,.

Ar1(|/3|)(s/l(Af.(|/3,.|) - 2M,(|/3|) - M,(|/,|)) +f2c,)e^V^l3,2)

-/.2/,V'y3^v2«2 + 2A/2(^V»2))

+ 3/13/32e3"252(^v2^_v/22 + m2(^.<_v,522))

+/.3/33e3"V(^V2^V»3 + M2{V^U)), (3.5)

with ^72'' '1 + '2 ~ w> a°d derivatives of V^"0 identically zero when < 0 or i2 < 0.

Eq. (3.3) can be considered as Laplace's equation in the cylindrical coordinate system

(tj\ tj2, tj3) with scaling factors 1, er, ev and is solved subject to the Dirichlet boundary

conditions (2.5)-(2.7). Eqs. (3.4) are Poisson-type and are solved subject to homogeneous

boundary conditions. The method of solution of these boundary-value problems is the

same as that employed in [ 1 ] and the details can be omitted for brevitv.
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When | t | Q < 1 for 0 < < / we can write tQ = e2/2(7j') where e2(< 1) = max0^^is/

| t | Q and /2(V) is again 0(1). Eq. (2.4) can now be written in the form

V.n + V2F= exf^\sfiVu + 3s$V2V - My{\fx\)spVA + M2(V))

~e,f3(2Vu - 2M1(|/3|)e"V12 - M1(|/3|)M1(|/3>1|)e"Vi2)

-eVy^SpV'V + 2M2(V))

-e2f2{vM+M2(\f3\)e2^V22

-2M,(\f3\)e^Vn + M1(|/3|)(2M1(|/3|) - M1(|/3,I|))e"2K2)

+ ele2fj2ev2cliVi + e^fJ^\3spV,, + 3Sl)V2V - 2M1(|/3|)s^"2F12 - 3Mx{\fx\)spVx

-M1(|/3|)(a/1(|/3,1|) - mM)s^2v2 + M2(V))

+ £3/13e3^(^V2F + M2(V)) - 2efe3fl2f3e2r,2Sp(3s/3V2V + 2M2(V))

+exe23fj32e^\(3VIX + M2(\f3\)e^V22 - 4M1(|/3|)e"V12 - 3Mx{\fx\)Vx

+ 2M,(|/3|)(M1(|/3|) - M,(|/3,,|) + M,(|/,|))^F2)

+Wjlf2f3e%(3Vl - M,(|/3|)e"V2)

+ 3Efe/,V^2(^V2F + M2(F))

+ exe33fxf33e"\(vix + M2(|/3|)e2"2F22 - 2M,(|/3|)e"2F12

-M.(l/,l)K.i - M1(|/3|)(M,(|/3il|) - 2M,(|/3|) - M.d/.l)),"2^,)

-e2e2f2f2e2"\(3sfiV2V + 2 M2(V))

+ wlfJ2f32e*cli{3VA - 2M,(|/3|)e"2F2)

+ 3e3e2/13/32e3"25 2(^V2F + M2(F))

+ Wlfj2f^2c/3{V, ~ M,(|/3|)e"2F2)

+e^/13/3V^/s2(s/3V2F + M2(V)). (3.6)

In this case we seek a solution for F in the form

00

V=2e\ e{e*Vt%\ i+j + k = n.
n = 0

The system of equations for V$, n > 0, is

C,„+ViC = 0, (3.7)

and

V$M + v2v$ = i+j + k = n,n> 1, (3.8)
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where U^"k~X) is given by

KTV) =^\spV^M + 3spV2V(»-$ - M.d/.l)^+ M2{v^))

-f^Vfr-Wu - 2M1(|/3|)e"2^I11)12 - M,(|/31)M,(|/3>11)e"2\]2)

~S\e 27,2sp ( 3-fyV 2 V,(-2jk + 2 M2(vfr$))

-lM(\f,\y2Vfr-ln + M1(|/3|)(2M1(|/3|) - Mx{\fyx\))e*V,%Z%)

+/./2^2^(-.7-)u,1

+fjr\^Pv:-^y,u + 3^v2^,-|l,

-2A/,(1/31)"2,,,2 - 3M,(|/J)^,"?-.,.

-M.d/sDjM.d/,,!) - +m2(^_"1-i>_1))

+/,V^2(^V2^3> + A/2(^V))

+ 2 M2(v&$_x))

+fJi2e%{lV^/kl2M + M?{\f3\)e^V^2r

-4^,(I/31)e"22.,2 - 3M1(|/j)^L"1-3>_2,

+ 2M1(|/3|)(M1(|/3|) - M.d/,,,!) + Mi(|/1|)),'-2^1-])_

+/,/2/3^2^(3^1-3Ju_1j1 - M.d^De"2^.-3-',,-,^

+ 3/13/3e3^|(^v2^3-,4>_1 + M2(^L,))

+/,/33^^(^1-?_3,11 + A/,2 (I/31) ^ 27,2 3,22

-2M,(|/3|)e^-<>„3,12 - M.d/.l)^,,,

^.(l/3l)(^.(l/3,.I) - 2M,(|/3|) - M1(|/1|))e"2^_"1-?_3.2

-fi2f32e2v\{^V2V^_2 + 2M2(V,%V_2))

+/./2/32^^(3^.-4-)U-2,1 - 2Mx{\f,\yWfr£xk_12)

+ 3/,3/32e3"2s2(^V2^>_2 + M2(^5L2))

+/i/2/33^^(^-,7-U-3,, - ^.(1/31)^^^-0-^-3,2)

+/.3/33^3S2(^V2^V_3 + M2(^_"gL3)), (3.9)

with i 1 + (2 + /3 = w, and all derivatives of identically zero when < 0,

i2 < 0 or i3 < 0. The solution of equations (3.7)-(3.9) subject to the given Dirichlet

boundary condition is formally the same as the case when tQ is 0(1).

2,22

1

I / l\\ „712t/(«-3)
2,2 I
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The above analysis can readily be extended to include the cases of a semi-infinite,

infinite and closed tube as was done in [1].
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