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1. Introduction. Ever since its first use in continuum mechanics by Richter [1] in 1952,

the polar decomposition

F = RU = VR (1.1)

has played a major role in theoretical studies. Here, the invertible (second-order) tensor F

is the deformation gradient; the orthogonal tensor R is the rotation tensor-, and the positive

definite, symmetric tensors U and V are the right and left stretch tensors, respectively.1 The

stretch tensors are related to the right and left Cauchy-Green strain tensors, C and B, by

U2 = C = FrF, V2 = B = FF7". (1.2)

Additional formulas implied by Eqs. (1.1) are

R = FU\ V = FU"'Fr. (1.3)

Presuming that F is known, we see from Eqs. (1.2) that C and B are easy to calculate,

but U and V have traditionally presented considerable computational difficulty since they

are square roots. Of course, once U is known, R and V follow readily from Eqs. (1.3).

In this paper, we point out that by a trivial, but evidently heretofore unnoticed,

application of the Cayley-Hamilton theorem, U can be calculated directly from C without

recourse to tensor square roots, eigenvalues, and principal axes when the underlying vector

space has dimension less than five. In the higher-dimensional cases, the eigenvalues of C

are needed—but not the eigenvectors.

In Sec. 2, we determine the inverse of a tensor of the form C + cl, c > 0, which is a

result needed throughout. The observation alluded to in the previous paragraph is made in

Sec. 3. To facilitate the calculation of R and V a formula for U"1 is derived in Sec. 4.

Finally, in Sec. 5, we complete our study by giving formulas for the invariants of U in

terms of the readily computed invariants of C in the two- and three-dimensional cases.

* Received by the editors April 21, 1983.

1 Reference may be made to the recent text by Gurtin [2] for a clear statement and proof of the polar

decomposition theorem and for its use in the present context.
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While our results are couched in continuum mechanical terms with particular attention

given to the two- and three-dimensional cases, it will be clear that our approach to

determining the factors in the polar decomposition without resort to tensor square roots

goes through in general for underlying vector spaces of any finite dimension.

2. The inverse of (C + cl). If C is positive definite, I is the identity tensor, and c > 0,

then the tensor C + cl is positive definite and hence invertible; (C + cl)-1 will be needed

repeatedly in the following sections. The details of the calculation depend on the

dimension of the underlying vector space.

Two-dimensional case. By considering the spectral resolution of C + cl, one is led to

seek (C + cl)"1 in the form

(C + cl)"1 = aC + fil.

We can find a and fi in terms of c and the invariants of C from the condition

(C + cI)"'(C + cl) = (aC + j8I)(C + cl) = I,

which yields

[(c + Ic)a + P]C + (— IIca + cj8 - 1)1 = 0,

when C2 is eliminated via the Cayley-Hamilton theorem.2 Setting the coefficients in the

last equation equal to zero, we find that

(C + cl)"1 = -[c(c + 7C) + 7/c]-'[C - (c + 7c)l], (2.1)

Three-dimensional case. Here, we seek (C + cl)"1 in the form

(C + cl)"' = aC2 + fiC + yl.

The outcome is

(C + cl)"' = {c[c(c + Ic) + IIC\ + IIIc}'1

X (C2 - (c + /C)c + [c(c + Ic) + 7/c]l}. (2.2)

3. Determination of U. While our scheme of using the Cayley-Hamilton theorem to

determine U in terms of C = FrF goes through in general, the specific details depend on

the dimension of the underlying vector space.

Two-dimensional case. In this case, the Cayley-Hamilton theorem states that

U2 - 7yU + 77^1 = 0. (3.1)

Here, IL, and llv denote the fundamental invariants of U, i.e.,

lv — trU, 77l/ = detU. (3.2)

Since U2 = C, we have immediately from Eq. (3.1) that

U = 7J>(C + 77{,I). (3.3)

Simple formulas for Iy and IIL, in terms of the invariants of C will be derived in Sec. 5.

2The invariants of a tensor and the Cayley-Hamilton theorem are considered more fully in the next section.
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Three-dimensional case. Here, the fundamental invariants of U are

Iv — trU, II y = 4[(trU)2 — trU2], ///„ = detU, (3.4)

and the Cayley-Hamilton theorem is

U3 - luU2 + 7/yU - IIIuI = 0. (3.5)

With U2 = C, Eq. (3.5) can be written as

(C + IIu I)U = 7yC + IIIu I-

Thus,

U = (C + 7/l/I)-,(/l/C + IIIV\). (3.6)

Substituting for (C + //c, I)1 from Eq. (2.2) and using the Cayley-Hamilton theorem to

reduce the degree of the resulting polynomial, we get

U = {//„[//„(//„ + Ic) + IIC] + 7//c}-'

X {- (Iullu - 777(/)C2 + {lullu ~ 777t/)(77[/ + 7c)C

+ (7[/777c + 777t/[77l/(77t/ + 7C) + 77c] }l}. (3.7)

Formulas for the invariants of U in terms of the invariants of C will be given in Sec. 5.

4. Determination of U"1. As noted earlier, knowledge of U"1 leads us directly to R and

V via Eqs. (1.3).

Two-dimensional case. Eqs. (3.3) and (2.1) imply

U-1 = -IuiHuilla + Ic) + 77c] '[C - (77y + 7c)l], (4.1)

The invariants IL, and IItJ will be given in terms of 7C and IIc in Sec. 5.

Three-dimensional case. Eq. (3.6) implies

U-' = 7j'(c + ^l) (C + 77^1).

Substituting for (C + IIIv I/76,) 1 from Eq. (2.2) and using the Cayley-Hamilton theorem

to eliminate C3, we get

U-1 = { Ml! ( IIIu + IJc) + WuII'c + Illume)}''

X {7^(7^77^ - IIIu)C2 - (.IuIIu ~ HIu)(IHu + Vc)C

+ [ II u Illy (IIIu + Iulc) + Iu( IIu He + IIIc)]:I} • (4.2)

The invariants of U are given in terms of the invariants of C in the next section.

5. Invariants of U in terms of the invariants of C. Our Eqs. (3.3), (3.7) for U and Eqs.

(4.1), (4.2) for U"1 involve the invariants of U. Here, we provide explicit formulas for the

invariants of U in terms of the invariants of C for the two- and three-dimensional cases so

that U and U"1 may be written entirely in terms of C and its invariants. Procedures for

higher-dimensional cases are discussed briefly.
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Two-dimensional case. In terms of the principal stretches A, and A2 (the eigenvalues of

U), we have

I u = ^ 1 ^ 2 > H u ~ ^ 1 ̂ 2

and

Obviously,3

and

Ic — A2, + A22, H( — A2, A22.

/iv={TTc, (5.1)

/y — A2 + A22 + lA^j,

Iv = pc + 2{lfc ■ (5.2)

Three-dimensional case. In this case,

/y = A, + A 2 + A 3, II y — A, A 2 + A2A3 + A 3 A,, Illy = A, A 2 A 3

and

lc — A2 + A22 + A2, IIc = A2A22 + A22A23 + A23A2, IIIc = A2A2A23.

Thus,

mu={m^, (5.3)

ll = Ic + 2IIUt

and

III = 11 c + 2/777c/w. (5.4)

Elimination of //(2, between the last two equations leaves us with

It, - 2Icll - 8/TTT^ + Uc - 4//c) = 0.

The invariants of C determine the squares of the A's via the characteristic equation of

C; consequently, the invariants of C uniquely determine the invariants of U. Therefore,

the above quartic for Iy can have but one positive root (possibly repeated). Forearmed

with this knowledge, the usual procedure for solving quartics leads us to the following

algorithm for the determination of Iy through the invariants of C.

Let

25
I = Yj{III - 9Icnc + 27IIIC),

j\0

T) = jy(4III - llul + 4Ilinc - 18IcUcnic + 27IIll),

3 Here and in the sequel all square roots are taken as positive.
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y(/2/c + £ + J2IC~S + + S ), f*-2/c,

r—7= (5'5)pc + 2{lfc , f = -2/c.

Of course, once IL, has been found, IIv is given by Eq. (5.4).

Higher-dimensional cases. In general, one can proceed by solving the characteristic

equation of C for the squares of the X's. Then the invariants of U can be constructed

directly. In the four-dimensional case, the characteristic equation of C is a quartic and can

be solved algebraically.
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