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Introduction. We herein continue our investigation of the stability of a solid circular

cylinder, composed of a particular homogeneous isotropic (compressible) nonlinearly

elastic material, that is subjected to compressive end forces in the direction of its axis (so

as to give fixed axial displacements at the ends)1.

The particular material used in this analysis has stored energy function a given by2

o(F) = ^F- F + -(detF)~m
2 m

for some m > 0 and all 3 X 3 matrices F (Blatz & Ko [3] have shown that, with m = 13.3,

this material can be matched to experimental data of Bridgman [4]).

We begin our analysis with a formulation of the relevant non-linear boundary-value

problem and a construction of a trivial homogeneous solution to this problem. We then

consider the superimposed linear (infinitesimal) problem3 about a given solution of the

nonlinear problem.

We first note that a result of Simpson and Spector [9] shows that all solutions4 of the

linear problem, sans the traction free boundary condition on the curved surface of the

cylinder, can be obtained by separation of variables. Thus the question of stability reduces

to proving that a certain determinant, that corresponds to the traction free condition, is

zero at some critical value of the loading.

•Received by the editors April 3, 1983.
'Experiments of Beatty & Hook [2] and Beatty & Dadras [1] have shown that such cylinders retain their

cylindrical shape until a certain critical value of the loading is reached. Further loading of the cylinder results

in buckl ing for thin cylinders and axisymmetric bulging (barrelling) for thick cylinders.

2 Burgess & Levinson [5] have used this material in their analysis of biaxial compression of rectangular rods.

3 The first such analysis was done by Wilkes [11], who assumed that the cylinder was infinite and composed

of an incompressible material.

4 This is a crucial point that (to our knowledge) has not been addressed in the literature. If an additional

solution, not obtainable by separation of variables, exists this solution might satisfy the remaining boundary

condition at a smaller value of the loading than the separation of variables solution.
©1984 Brown University
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We then show that for each eigenmode n = 1,2,3,..., there exists a unique loading

value X(n) that makes the above mentioned determinant zero5 and hence conclude that the

cylinder will eventually become unstable when compressed in an axial direction.

Our main results concern the dependence of the loading value A (where instability

occurs) on the parameter n. These results allow us to conclude that:

(i) for a given value of \ at most two eigenmodes can occur;

(ii) for sufficiently thick cylinders n = 1 is the eigenmode that occurs first6;

(iii) for sufficiently thin cylinders n = 1 is not the eigenmode that occurs first;

(iv) there exist cylinders whose first point of instability occurs at two distinct eigen-

modes simultaneously.

Finally, we use numerical techniques to obtain a global picture of the dependence of \

upon n.

1. Notation. We let

Lin = space of all linear transformations from R3 into R3

with inner product

G H = trace(GHr),

where Hr is the transpose of H and denote

Lin+ = {H6 Lin: detH > 0},

where det is the determinant.

We denote by In(t) the modified Bessel functions of the first kind, so that /„ are globally

analytic solutions of the differential equation

t2i'n(t) + tin(t) - (t2 + n2)I„(t) = 0,

and are given by

This infinite series formula can be used to prove that I0 and /, satisfy the recurrence

relations

70(0 = /,(0, r/,(f) = '/<>(')-/>(') (1-2)

It can be shown7 that /0 and /, have asymptotic expansions

5 In [9] we prove the existence of such a loading value for a larger class of materials, the Hadamard-Green

materials. The existence analysis in this paper is a special case of that result.

6This contrasts with results of Sawyers & Rivlin [7] and Sawyers [8] for incompressible materials. Their

analysis indicates that X increases with n for barrelling and hence the first mode is n = oo. This is thought to

be exhibited physically as surface wrinkling.

7Cf. Copson [6], pp. 72-75 where asymptotic expansions for J0 and 7, are rigorously derived using Watson's

Lemma.
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(1.3)

as t -» oo.

Some of the results in this paper specifically deal with the function

o(0=*/o(0//|(0- (1.4)

A simple consequence of the recurrence relations (1.2) and the infinite series (1.1) is that v

satisfies

tv(t) = t2 + 2v(t) — v2(t), t>(0) = 2. (1.5)

One can also use (1.3) and (1.5) to establish the asymptotic estimates

1 3
v(t) = t + -r + a{t), Limfa(r) = —,

^ t—* oo o

t)(f) = 1 + b(t), Lim;6(/) = 0.
/—00

Finally, we will make use of the following results.

(1.6)

Proposition 1.1 [10].

(i) v(t) is strictly positive for t G (0, oo);

(ii) ii(t) is strictly positive for t G [ 0, oo);

(iii) v2(t) - (t2 + 2) > 0.

2. The constitutive relation. The non-linear problem. We consider a homogeneous body

$ and identify ® with the region (of R3) it occupies in a fixed homogeneous reference

configuration. A deformation f of the body is a member of the space

Def = {f G C2(®,R3): det vf >0}.

We assume that the body in the reference configuration is in the shape of a right

circular cylinder of height L and radius R. In rectangular coordinates we take

% = {(*,, x2, x3): x\ + x\ < R2, x3 G [0, L]}

with lateral surface

S = {(jc,, x2, x3): x2 + x2 — R2, x3 G [0, L]}.

The remaining two pieces of 9®, the top and bottom of the cylinder, we denote by Gr and

Qg, respectively.

We assume that $ is hyperelastic with (Piola-Kirchhoff) stress S: Lin+ -> Lin given by

S(F) = F — (detF)~mF~r, (2j)8

xWe note that we only use this constitutive relation for linear transformations whose determinant is less

than or equal to one.
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while the linear transformation A(F): Lin -* Lin defined by

A(F)H = ( ̂ S(F)|h = H + (det F)~m[w(F~r ■ H)F_r + F"rHrF~r] (2.2)

is called the elasticity tensor.

Let A e (0,1 ] and consider the problem of finding a deformation f that satisfies

divS(vf) = 0 in

h = 0 on GB,

/3 = XL on Qt, (2.3)

^(vf) = 523( Vf) = 0 on and Cr,

S(vf)n = 0 on S,

where n is the outward unit normal to the lateral surface and the parameter X is the ratio

of the final to the initial height of the cylinder.

In view of our choice of constitutive relation it is easy to show that (2.3) has a unique

(up to a rigid deformation) trivial homogeneous solution

'*(*) =

fi,/2

/x'/2
x, n = \-m^m+u. (2.4)

Xl

3. The linear problem. We now investigate the stability of the non-linear solution by

linearizing the boundary-value problem. For a given X E (0,1 ] and f A we linearize (2.3) to

arrive at the problem of finding a nontrivial (cf. [9]) C2 function u that satisfies

divA[ Vu] =0 in

m-i = 0 on(3»and0r,
(3 1)

A[ Vu],3 = A[ Vu]23 = 0 on6fiandSr,

A[ vu]n = 0 on S,

where A = A( VfA) and once again n is the outward unit normal to the lateral surface.

For the remainder of this paper we will only be interested in considering specific types

of instabilities, those that are axisymmetric. We shall therefore consider linear solutions of

the form

u(x,, x2, x3) =

<f>(r, z)xx '

z)x2

, l(r,z)

where r1 = x2 + x\ and z — x3.

If we let 6(r, z) = r2<j>(r, z) a straightforward computation, using (2.2) and (2.4), shows

that (3.1) reduces to

{m + 2)(6r/r)r + dzz/r + tx/2(m + \)lrz = 0 on (0, R] X [0, L], (3.2)
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(rl,)r +[1 + t(m + l)]r/„ + t>/2{m + \)6rz = 0

l{r,0) = l(r, L) = e:(r,0) = dz(r, L) = 0 {orrE(°>Rl> (3-3)

Rlr(R,z) + t'/20;(R,z) = 0 for2 e [0, L], (3.4)

(m + 2)6r(R, z) + tl/2mRlz(R, z) = 2B{R, z)/R

where t = In addition the requirement u E C2 yields

0(r,z)/r~* 0 asr->0 (3.5)

uniformly in z.

Proposition 3.1 [9]. Let A e (0,1). Then any C2 solution (6,1) of (3.2), (3.3), and (3.5)

can be written

00 00

0(r, z) = 2 t(r)oos(pnz), l{r, z) = % l„(r) sin(pnz). (3.6)
n=1 n=1

where p„ = nv/L\ 6n, ln are linear combinations of

L(r) = rI\iPnrei)> lni(r) = DiI0(p„rel), (3.7)

i = 1,2; and

m + 1
e, = l, + +

D\ = D2 = -t]/2/e2.

(3.8)

We next want to show that there is a A £ (0,1) such that our linear problem, in the

form (3.2)—(3.5), has a non-trivial solution. Clearly, Proposition 3.1 reduces this problem

to that of finding a X such that one of the solutions {0,1) to (3.2), (3.3), and (3.5) satisfies

the boundary condition on the lateral surface (3.4). We note that (3.6) and (3.7) give

necessary and sufficient conditions for (6,1) to satisfy (3.4) namely

where

B„ =
(m + 2 )d/dr — 2/r pnti/2mr

— pnt'/2 rd/dr

and (6n, /„) is a linear combination of (0IU, /„,), i = 1,2.

Since we desire a non-trivial solution, (0„, /„) must be non-zero for at least one n. We

therefore conclude, with the aid of Proposition 3.1, that a necessary and sufficient

condition for the existence of a solution to (3.2)—(3.5) is that

det-l B.

for some n.

/T1

M /l ln\
r=R

B"\ /,

4,2

n 2

0 (3.9)
r=R J
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If we substitute (3.7) into the last we conclude, with the aid of (3.8) and (1.2), that

0 = -4t]/2v(pnR) + 2(fl/2 - t~W2) - (r1/2 + t~x/2)[ m + 2 — j v(pnRe2),

(3.10)

where v(r) = rl0(r)/lt(r).

We now prove that for any given value of p = p„ R = nvR/L equation (3.10) is satisfied

by a unique A £ (0,1).

Theorem 3.2. For each p > 0 there exists a unique A(p) such that

H(p,\(p)) = 0, (3.11)

where

H(p, A) = u(p/) - fl(p, A),

4r ,2 , , 2(t — 1)
, —^f v(p) - 7 ~i
1+0 0+0

*(f>. X) =7(3.12)

/2 = e22 = 1 + (/- l)^j, t — A~(3"'+2)/(m+1>.

Moreover A: (0, oo) -» (0,1) and is continuously differentiable in p.

Proof. Existence9. Fix p > 0 and consider H as a function of X. We prove H = 0 has a

root A in the interval (0,1) by showing

|?(P,1)>0, Lim H{p, A) = +oo (3.13)
OA X-0+

(existence clearly follows from (3.13), H(p, 1) = 0, and the continuity of H).

To prove (3.13), we first note that H is a function of A thru the variable t and hence

9 H

3A
/ dt \ _~{3m + 2)(dH\

(p' ) \ dt d\J x=, m + 1 \ 0/ / f=l

r= I

It thus suffices to show that

M
3/

A straightforward computation, involving (3.12), yields (at t - 1)

9// lm+1 > m ~\~ \ / \ . 1
■W=2-^T2'">{l')--^T2v{p) + 2-

and hence by (1.5), we find that (at t = 1)

9 H lm+1

<0. (3.14)

2 , m + 2 2/

8, - 2 m + 2l" ^TT ~ "

Equation (3.14) now follows from (3.15) and Proposition l.l(iii).

(3.15)

'The existence portion of this proof is a special case of the existence result presented in [9]. We have

decided to re-present it since the special material used in this paper allows us to greatly simplify the proof.
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To prove (3.13)2 we note that as X -» 0+ , t -» oo, and hence f2/t -»(m + l)/(m + 2).

It then follows from (3.12)2 that R is bounded as X -» 0+ . But by Proposition 1.1, v and v

are strictly positive. Thus v(pf ) -> +00 and hence by (3.12), we conclude (3.13)2. This

completes the existence portion of the proof.

Uniqueness. By (3.12)3 we see that /is strictly monotone in X so that we could just as

well consider (3.10) as a relation between p and /and seek roots / of H. Thus we rewrite

(3.11) and (3.12) as

H(p,f) = 0, (3.16)

where

H(p,f) = v(pf)-R(p,f), (3.17)

R(p,f) = 2^m+ ^ {(m + 2)(2o - l)/2 + (m + 2 - 2t>)},
[(w + 2)/ + m]

and v = v(p).

We will show that H is a strictly convex function of / for / > 1. This allows us to

conclude that there is at most one/satisfying (3.16) (since H(p, 1) = 0) and hence at most

one \ satisfying (3.11).

Since v is strictly positive (cf. Proposition 1.1), it suffices to show that

^-4<0 for all/s* 1. (3.18)
3/

By direct calculation we find that

32X _ 4(m + 1)

3/ [(m + 2)/2 + m]
(a(w)/4 + b(m)f2 + c(«t)},

where

a(m) = —3 (m + 2)2[(4 m + 2)u — 3m — 2],

b(m) = m(m + 2)[(l2w + 16)t> — 14m — 16],

c(m) = w2(m + 2 — 2t>).

We show that the quantity in braces is strictly negative for all f > 1. Put x = f2 and define

Q(x) to be the quadratic in braces. It clearly suffices to show that both 0(1) and Q(\) are

strictly negative.

Clearly

0(1) = -v(\6m2 + 40m + 24) - (4m3 - 28m ~ 24)

and

0(1) = - (m + 2)[(12m2 + 44m + 24)u - (4m2 + 32m + 24)].

The desired result now follows from v > 2 (cf. Proposition 1.1 and equation (1.5)2). This

establishes the uniqueness of the root X of (3.11).
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Differentiability. By the implicit function theorem the continuous differentiability of

/(p), and hence A(p), follows provided we know that

^(p./(p)) *=0.

Since H is zero at / = 1 and / = /(p), we can apply Rolle's Theorem to conclude that

there exists an f* E (1, /(p)) such that Hf(p, /*) = 0. But H is strictly convex and hence

Hf is a strictly increasing function of /, thus

3 H,
a/-(p,/(p))> 0. (3.19)

This completes the proof. □

4. Discussion. Further results. In this section we derive further information concerning

the dependence of A on p ( = ntrR/L). We show that the function A = A(p) is strictly

decreasing for large p and strictly increasing for small p, and that it has no local minima.

These results along with those of the previous section lead us to the following conclusions.

For a given geometry (ratio R/L) and a given mode number n there is a (unique)

corresponding A„ £ (0,1) such that the linear problem (3.2)—(3.5) has a nontrivial

solution. Letting

Acr = sup{A„: n = 1,2,3...},

and noting that Acr = A„ for some finite value of n, we find that for A G (Acr, 1 ] the

nonlinear homogeneous solution fA (cf. (2.4)) is stable with respect to axisymmetric

(barrelling) perturbations and that at A = Acr this stability breaks down.

In addition, the absence of local minima in the function A(p) implies that at most two

modes can occur simultaneously as nontrivial solutions of the linear problem. Clearly, it

would be of interest to know precisely which value of n yields the largest A„. To date we

have been unable to determine this analytically. However, the results of this section do tell

us that for sufficiently thick cylinders (R/L » 1), n = 1 yields the largest X while for

sufficiently thin cylinders n — 1 does not yield the largest X.

We first investigate the asymptotic behavior of A(p) near zero and infinity.

Proposition 4.1.

(i)

Liminf /(p) > 1;
p-» 00

(ii)

/(p) is bounded as p — co;

(iii)

(iv)

Lim /(p) = +oo;
P — 0

Liminfp/(p) > 0.
p-0
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Proof. Consider the function h(f) = v(pf). If we apply the mean value theorem to h

we find that

v(pf) = v(p) + pv(pf*)(f- 1), (4.1)

where

1 </*</. (4.2)

If we then substitute (4.1) into (3.12) and divide the result by p(t — 1) we conclude, with

the aid of (3.12)3, that

v(p) (m + 2)(t ~ 1) ~ 4t(m + 1) | v(pf*) {m + 1) _ 2f2 ^ .

P (m + 2)(l + t)2 (/+1)(™ + 2) p(l + ;)2

To prove (i) we assume, for the sake of contradiction, that there is a sequence p, -» oo

such that /(p,) -» 1. If we let p = p,■ -» oo in (4.3) we find, with the aid of (3.12)3, (4.2),

and (1.6), that (4.3) reduces to

-4 (m +1) 1 (m + 1)

(m + 2)22 2 (m + 2)

This is clearly impossible for any m > 0. Thus we arrive at (i).

To prove (ii) we assume, again for the sake of contradiction, that there is a sequence

Pi -> oo such that/ = /(p,) -> oo. If we divide (3.17) by p/we find that

2("+1^- f(m + 2 )(2?-i)/'+(!!L±l-^)/},
[(w + 2)/2 + m]2 1 ^ p p

where v = v(p). Letting p = p,: oo we find, by (1.6),, that the left-hand side of the last

equation approaches one while the right-hand side goes to zero. Thus no such sequence

can exist. This proves (ii).

To prove (iii) we multiply (4.3) by p and let p -> 0 to conclude, with the aid of (3.12)3

and (1.6)2, that (4.3) reduces to

. t(2m + 1) + (m + 1) „ .
Lim   i= 0, (4.4)
p~"0 (m + 2)(1 + t)

where t = t(p). Now Theorem 3.2 implies that t(p) is a C1 function for p e (0, oo) and

moreover that t(p) E (1, oo) for the same p. Clearly, the only way (4.4) can be satisfied is

for f(p), and hence/(p), to become infinite. This proves (iii).

To prove (iv) we assume, once more for the sake of contradiction, that there is a

sequence pt -> 0 such that p,/(p,) -» 0. If we let p = p, -> 0 in (3.12) we find, with the aid

of (1.5)2, and (iii) of this proposition, that

2-8^ + 2^ = 0.
m + 2 m + 2

This is clearly impossible for any m > 0. Thus no such sequence can exist. This concludes

the proof of the proposition. □
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To analyze the behavior of d\/dp near zero and infinity, we differentiate (3.11) with

respect to p to conclude

dX _ 3 H, , u 9// , , ^

In view of (3.12)3 and (3.19) we find that Hx(p, X(p)) is strictly negative and hence that

SgnJp = Sgnl)f(p' A^p»" ^

Theorem 4.2. There exists a p0 > 0 such that

^->0 for p G (0, p0). (4.6)

Proof. In view of (4.5) we prove that Hp(p, X(p)) is strictly positive for p E (0, p0). If we

differentiate (3.12) with respect to p we find that

1 3"(p,\(p))=0(p/(p))- 4'(p)/(p),D(p). (4.7)
f(p) dP (1 + t(P))

We note that by Proposition 1.1, v is strictly positive on (0, oo). Thus if we let p -> 0 in

(4.7) we discover, with the aid of (3.12)3, and Proposition 4.1(iv), that the right-hand side

of (4.7) is strictly positive for sufficiently small p. This gives the desired result. □

We next get more precise information on the asymptotic behavior of A(p) near infinity.

Proposition 4.3. As p -» oo X(p) tends to the value T-(m+l>/(3»>+2) wjiere T js the unique

root (greater than one) of the cubic polynomial

3 11m + 6 2 c ,
t - 5t - 1.

m + 2

Proof. For brevity we put

j — —  j — lil 11 (4 g)
1 d + 02' 2 o + o2* (-)

and substitute the asymptotic estimate (1.6),, into (3.12) to get

/[I -fTA=-Yp[l~ r>/2 + 1Ti f2\ ~-p[a(Pf) ~f2Txa{p)]- (4-9)

If we let p -» oo in (4.9) we find, with the aid of (3.12)3, (1.6),, and Proposition 4.1(ii), that

Lim/(p)r,(p) = l. (4.10)
p-» OO

From the last and the definitions of /and J,, we discover that t{p) tends to a nonnegative

root of the quartic polynomial

[ Im + 6
(t - 1)| t3 - -

m + 2
-r — 5t — 1

We note that a simple computation shows that both the cubic polynomial and its first

derivative are negative at one and hence that the polynomial has a unique root greater

than one. Proposition 4.l(i) and (3.12)3 then allow us to conclude that t(p) tends toward

this root. This concludes the proof. □
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We next analyze the behavior of d\/dp near infinity.

Theorem 4.4. There exists a p, > 0 such that X(p) < 0 for p E (p„ oo).

Proof. In view of (4.5) we prove that Hp(p, X(p)) is strictly negative for p £ (p,, oo). If

we differentiate (3.12) with respect to p we find, with the aid of (4.8), that

P^ = pMpD ~ TJ2pv{p).

Substituting the asymptotic expansion (1.6)2 into the last expression yields

= p/t1 - A] +[py&(p/) -/2^p^(p)]-

If we combine the last expression and (4.9) we find that

P^~(P' Hp)) = ~^[l - T,(p)f(p)2 + 2T2{p)f(p)2] + c(p), (4.11)

where

c(p) = (pfb(pf) - pf2Tib(p)) - (a(pf) — /2r,a(p)).

It is clear from Proposition 4.3 and (1.6) that c(p) tends to zero as p becomes infinite. To

evaluate the expression in square brackets on the right-hand side of (4.11) we use (4.10),

(4.8), and Proposition 4.3 to conclude that

LimPXr(P> Mp)) = t4(3t + 1)(T - 1).
p—oo 9p 8t

where r is the unique root (greater than one) of the cubic polynomial constructed in

Proposition 4.3. This yields the desired result. □

Finally, we show that the function \(p) has no local minima.

Theorem 4.5. If A(p) = 0 for some p > 0 then X(p) < 0 at the same p.

Proof. We first note that by (3.19) and the implicit function theorem, the function A(p)

is C2. If we differentiate H(p, A(p)) = 0 twice with respect to p and let X = 0 we find that

H„ = 0, X = ~Hpp/Hx.

By (3.12)3 and (3.19) it therefore suffices to prove that Hpp < 0 whenever Hp = 0.

If we differentiate (3.12) with respect to p we find that

Hp=fv(pf) ~ — f2v(P)> Hpp =f2v(pf) ~ I' z/^p).

Thus, using Hp = 0, we conclude that

HPP = p~'/«Kp/)Mp/) ~ w(p)],

where

w(t) = tv(t)/i>(t).

Now, by Proposition 1.1, t) is strictly positive, while by the proposition in the Appendix

w is strictly decreasing. Thus, since /> 1, we conclude that Hpp < 0. This concludes the

proof. □
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5. Numerical results. In Fig. 1 we plot the curve A(p) that solves H(p, A(p)) = 0 when

m = 13.3. Other values of m between .1 and 1000 gave essentially the same picture.

If one wants to find the mode and loading value at which instability first occurs, first fix

values of R and L and plot the points p„ = n it R/L (for n = 1,2,...) on the p axis. Then

plot the points (p„, A(p„)) using the graph. The highest point A(p„) determines both the

eigenmode n and the first A. We note that if ttR/L > .59 then n = 1 is the first eigenmode

to bifurcate. If ttR/L G (.32, .59) then n = 2 comes first and if nR/L G (.23, .32) then

n = 3 comes first, etc.

Remark. It follows from Theorem 4.2 and Theorem 4.4 (or the above graph) that there

exists geometries (ratios R/L) such that the largest A, at which instabilities occur, can

have two eigenmodes associated with it. Since the maximum value of A, Amax, and the

asymptotic value of X, are so close to .45 for any R/L the corresponding value of Acr

will always be near .45, i.e. instability always occurs for A near .45.

Remark. We note that our numerical results are not consistent with the experiments of

Beatty & Hook [2] and Beatty & Dadras [1]. While our largest value of Acr never exceeded

.45, their smallest value was never less than .70. The most likely reason for this is that our

choice of constitutive relation ((2.1)) is not appropriate for solid rubbers.

Appendix. We prove a result concerning the function w(t) = tv(t)/v(t).

Proposition. vv(/) is strictly negative for t G (0, oo).

Proof. If we differentiate (1.5), we find that

M0 = - »(0 + 2.

and hence that

i*(f) = -2[u(?) - t>(/)]/t5(/),

where

u(t) =[2t + i>\t)]/2v(t).

To finish the proof we will show that

u(t) > v(t) forallf>0. (A.l)

To show that (A.l) is true near t = 0 define

q(t) =c(f)[«(0 - o(f)]. (A.2)

Then by differentiating (1.5), and (A.2) a sufficient number of times one can show that

*5(0) = 0, v(0) = j, 6(0) = 0, u(4)(0) = -f1

and hence that

q(0) = 0, g(0)=0, <?(0) =0, q(0) = b

We conclude that (A.l) holds in a neighborhood of zero.

Next, assume for the sake of contradiction that (A.l) is not true on (0, oo) and define

s = inf{/ G (0, oo): u(t) = »(?)} ■
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It is clear that i>(s) > u(s). However

ti(s) - u(i) = [u3ii + (c — sv) - v3]/i>2

= [u3i> + (2vv - 2s) - v3]/v2

= v(s)v(s) > 0,

a contradiction. Thus no such s can exist. □
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