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Summary. Within the framework of a purely mechanical rate-type theory of finitely

deforming elastic-plastic materials, a simple proof is given of a normality condition which

has been shown by Naghdi & Trapp [6] to follow from a physically plausible work

assumption. In addition, a variation of the proof is used to demonstrate convexity of yield

surfaces for a special class of materials, a result which was also originally established by

Naghdi & Trapp [10].

1. Introduction. Work inequalities have played an important role in the development of

the theory of plasticity. Indeed, a unified approach to infinitesimal plasticity was first

made possible by Drucker's postulate [1] concerning the nonnegativity of work in a cycle

of stress. With the use of this postulate, restrictions on constitutive equations could be

derived in a systematic way. In particular, Drucker's postulate provided a rigorous means

of establishing the convexity of the yield surface in stress space as well as the result that

the plastic strain rate is directed along the normal to the yield surface in stress space. A

detailed account of Drucker's postulate and its consequences, together with proofs, may

be found in the survey article by Naghdi [2],

Another work postulate, also stated in the context of small deformations, but this time

involving a cycle of strain was proposed by Il'iushin [3]. As noted in [3], Il'iushin's

postulate is less restrictive than that of Drucker.

A general thermodynamical theory of finitely deforming rate-independent elastic-plastic

materials was presented by Green & Naghdi [4, 5], The corresponding purely mechanical

development is contained in the paper of Naghdi & Trapp [6], which incorporates those

parts of [4, 5], specialized to the isothermal case, that are independent of the Clausius-

Duhem entropy production inequality. With the object of deriving more specific restric-

tions on the general constitutive equations of [4, 5] than was possible using thermody-

namical arguments, a physically plausible work assumption was introduced in [6]. This

assumption concerns the nonnegativity of external work done on a body in a cycle of

homogeneous deformation, and leads to a work inequality involving the stress power. In

the context of small deformations, when no distinction is made between different

measures of stress, the latter inequality has the same form as that of Il'iushin.
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A number of important consequences follow from the work assumption of Naghdi &

Trapp. Foremost among these is the result that a certain second order tensor oKL, which

depends on elastic-plastic response functions, is necessarily directed along the inward

normal to the yield surface in strain space [6], It should be emphasized that oKL is not

parallel to the plastic strain rate tensor, except in the case of special constitutive equations.

The normality of aKL in turn implies that the basic measure of strain-hardening under

multiaxial loading is related to the inner product of the normal to the yield surface in

strain space and the normal to the yield surface in stress space [7, 8, 9], Further

consequences of the work assumption were established in [10], where in particular it was

shown that for a special class of elastic-plastic materials, both the yield surface in strain

space and the yield surface in stress space are convex.

In connection with the development in [6], it is pertinent to add that while no explicit

use was made of loading criteria, the main discussion was conducted in a strain space

setting. The question therefore arose as to whether the stress space formulation utilized in

[4, 5], and in particular the loading criteria, might not be advantageously replaced by a

strain space formulation. This matter was investigated by Naghdi & Trapp [11], who

showed that in fact, the stress space formulation has certain defects which can be

remedied by an alternative strain space formulation. A summary of [6, 10, 11] may be

found in [12],

While the main result of [6], i.e. the normality of aKL, is appealing in its simplicity, the

method by which this result is derived is rather complicated and involves detailed

estimates of the various contributions to the work inequality for a finite cycle of

deformation. A more readily accessible proof is given in the present paper. As in [6], a

family of special finite strain cycles is employed here also, but the cycles are simpler and

the work done on the cycles is estimated in a more direct way. It is especially transparent

from the present method of derivation as to why the result holds: the dominant part of the

"elastic" contribution1 to the work inequality is cancelled during the return portion of the

cycle.

Necessary background material on the strain space formulation of plasticity is sum-

marized in Sec. 2 and the proof is contained in Sec. 3. In Sec. 4, after first illustrating the

consequences of the normality of aKL for a restricted set of constitutive equations, a

variation of the proof given in Sec. 3 is used to demonstrate convexity of yield surfaces in

a special case.

2. Background material. Consider a deformable elastic-plastic continuum moving in a

three-dimensional Euclidean space. Let the components of the Lagrangian strain, plastic

strain and symmetric Piola-Kirchhoff stress tensors be denoted by EKL, EPKL and SKL,

respectively, and let k be the work-hardening parameter. Geometrically, EKI and SKl may

be regarded as the coordinates of points in six-dimensional Euclidean strain space and

stress space, respectively.

1 I.e. the part which contains the function h(t) in (3.6),
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Suppose that the stress is specified by a constitutive equation of the form [4, 5]

$KL~ Skl(Emn> K)' (2-1)

For brevity, let

r dSKL T T /*»
Lklmn ~ Tr ~ Llkmn = Lklnm. (2.2)

® MN

In addition, assume the existence of a smooth scalar-valued yield function g(EMN, E^n,k)

such that for fixed values of EfcN and k, the equation g = 0 represents a closed orientable

yield surface of dimension five enclosing the elastic region (g < 0) in strain space [11].

For any given motion, one may associate with each particle X of the elastic-plastic body

a smooth oriented curve Ce which lies in strain space and is parametrized by time; Ce will

be referred to as a strain trajectory. The six-dimensional tangent vector at a point of Ce is

Ekl, where a superposed dot signifies material time differentiation. The inner product of

the tangent to Ce and the outward unit normal to the yield surface is given in the usual

form by

z=^E^L^KL, (2-3)

evaluated at g = 0.

As in [7], a strain space formulation is adopted as primary. The constitutive equations

for the rate of plastic strain and the rate of work-hardening are then given by [ 11 ]

EL

0 if g < 0, (a)

0 if g — 0 and g < 0, (b)

0 if g = 0 and g = 0, (c)

xPklS if g = 0 and g > 0, (d)

(2.4)

and

* QklE^li (2-5)

where X is a scalar-valued function of (EMN, EfaN, k), and pK! and GKL are tensor-valued

functions of the same variables. The conditions involving g and g in (2.4) are the loading

criteria of the strain space formulation and in the order listed correspond to: (a) an elastic

state; (b) unloading from an elastic-plastic state; (c) neutral loading from an elastic-plastic

state; and (d) loading from an elastic-plastic state. The following geometrical interpreta-

tion may be given [7]: In an elastic state the strain trajectory Ce lies in the elastic region.

During unloading, Ce intersects the yield surface and points into the elastic region. During

neutral loading, Ce continues to lie on the yield surface. In these three cases, the yield

surface remains stationary. During loading, Ce intersects the yield surface and is pointing

outwards. It is stipulated by the "consistency condition" that in this case the yield surface

is pushed outwards by Ce, so that during loading g remains equal to zero, and hence g is
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zero also. It then follows that2

,+Ap"{4r+^e"}=0, A>0- <26)

and that not all components of pKL are zero. An elastic-plastic material is defined by

prescribing the constitutive functions SKL, pKL, QKl and g. The Lagrange multiplier A may

be calculated from (2.6).

Along a strain trajectory Ce it follows from (2.1), (2.2), (2.4 a, b, c, d) and (2.5) that in an

elastic state, and during unloading and neutral loading

whereas during loading

where the abbreviation

$KL ~ ^KLMN^MN' (2-7a)

S/CL ~ ^KLMN^MN + ^SaKL

= + ^°KL 0£^ \^MN> (2-7b)

^ = l^ + %e„4pK1, (2.8)[9 Eg,N 9k

has been introduced.

With particular reference to elastic-plastic materials, the work assumption of Naghdi &

Trapp [6] may be stated as: The external work done on an elastic-plastic body by surface

tractions and body forces in any sufficiently smooth homogenous3 cycle of deformation is

nonnegative.

Suppose that at any time a homogeneous elastic-plastic body has values of strain,

plastic strain and work-hardening parameter which are independent of X. Let the value of

the strain be denoted by E%L. Suppose in addition that the body is subjected to a

sufficiently smooth homogeneous cycle of deformation which ends at time t2. For this

cycle, the strain trajectory Ce is a closed curve beginning at E%L at time r, and returning to

Ex, at time t2. It was shown in [6] that for any such cycle, the work assumption of Naghdi

& Trapp implies that4

f'2

/
Skl^kl dt > 0. (2.9)

11

2 For further details, see [9],

3 Recall that in a homogeneous deformation, the deformation gradient, and hence also the Lagrangian strain, is

independent of X.

4 An inequality of the form (2.9), without the equality sign, is the starting point of Il'iushin's development [3]

which, however, is confined to small deformations of a special class of materials. It should also be noted that

Il'iushin considers his inequality to be synonymous with plastic behavior; in contrast, Naghdi & Trapp [6] regard

their work assumption not as a definition of plastic behavior, but as an additional restriction on the response of

elastic-plastic materials.
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Since E%L — 0 and EKL(tx) = EKL(t2) = E%L, an integration by parts leads to

f%L{EKL-E0KL)dt^ 0. (2.10)

By applying (2.10) to an infinite sequence of nested strain cycles, Naghdi & Trapp [6]

deduced that the tensor aKL is directed along the inward normal to the yield surface in

strain space:5

°KL = -y*^-L> y*^o, (2.ii)

where y* is an undetermined scalar-valued function of (EMN, EfcN, k). In the next section,

(2.11) will be proved by a simple argument.

For later reference, we note that the substitution of (2.11) into (2.7b), leads to the result

that during loading

SfCL ~ ^KLMN^MN = *8 ftp • (2-12)

Furthermore, upon contraction of both sides of (2.12) with EKL, it follows that

Skl^kl ^ LklmnEklEmn. (2.13)

3. Proof of the normality of aKL. Choose f, = 0 and let E%L be any point on the yield

surface. Also, let mKL be a unit vector in strain space, such that on the yield surface

— >0 (mKLmKL = 0- (3-1)3 EKLm"L

Consider the following special homogeneous cycle:

F (,\ — \ + 1 mKL> 0 < / < e,
EklV) I p0 I (7 c , <- -5 )

[ekl + (2e ~ ')mKL< 2e,

where e is any positive real number which is sufficiently small that E%L still lies in the

elastic region at time e. Clearly,

WO- |_mKL> e<t^2e. (33)

Also, at t = e, the limit of EKL from the left side is mKL, while its limit from the right is

-mKL. In accordance with the criteria in (2.4), the cycle described by (3.1) and (3.2)

involves loading along the straight line of length e which joins E%L and the point

E%l = Exi + e mKL. At time t — e, the direction of traversal is reversed, and elastic

behavior ensues until the point E%L is reached again at time t = 2e.

For the above cycle, with the help of (2.7) the inequality (2.10) can be written as

ff,(e) - ff2(e) + ff(e) < 0, (3.4)

5 It is worth emphasizing that (2.11) holds for all motions, and not just for homogeneous motions with

homogeneous initial values of (EMN, E^n,k). For a discussion of this point, see [6, p. 40] or [10, p. 63],
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where for convenience we have set

H,(e) = f h(t)tdt, H2(e) — f efi(t)(2e — t) dt, (3.5)
J0 Je

K(e) = fk(t)tdt,
Jo

with

0 a
MO ~ ^KLMNmKLmMN' MO = ^°KLTp mKLmMN• (3-6)

MN

The functions Lklmn, X, oKL, dg/dEMN in (3.6) are understood to be parametrized by

time, while mKL is independent of time.

Assuming sufficient smoothness, we apply Taylor's Theorem to the functions in (3.4) to

obtain

ff,(0) - H2(0) + K(0) + {H[(0) - H'2{0) + AT'(O)}e

+ {//['(0) - H'{(0) + AT"(0)} j + 0(e3) < 0, (3.7)

where O is the usual order symbol. The derivatives of the functions in (3.5) may be

calculated with the use of the Fundamental Theorem of integral calculus and Leibniz's

Formula,6 and are given by

H[(e) = /j(e)e, H\'(e) = h(e) + h'(e)e,

K'(e) = k(e)e, K"(e) = k(e) + k'(e)e, (3.8)

H'2{t) = 2 f2(h(t) dt - h(e)e, H'{{e) = 4A(2e) - 3h(e) ~ h'(e)e.

Setting e = 0 in (3.5), (3.6) and (3.8), we find that

H,(0) = H2( 0) = K(0) = 0, //f(0) = H'2(0) = AT'(0) = 0,

H"( 0) = H2(0) = h(0) — Lklmn \,=0m KLm mn > (3-9)

Substitution of (3.9) into (3.7) leads to

mKLmMN-

t=0

Xa
KLdF0C'MN

-2

mKLmMNj + °(£3) (3-10)

1 = 0

Dividing (3.10) by e /2 and taking the limit as c tends to zero, we obtain

{'""all}mKl mMN ^ °' (311)

1 = 0

Hence, invoking (3.1) and (2.6)2, we deduce that at any point on the yield surface

°Kl mKL < 0 (312)

5 See, for example. Sec. 23 of Bartle [13].
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for all mKL satisfying (3.1). Since aKL is independent of mKL, it follows readily7 from

(3.12) that aKL must satisfy (2.11).

4. Results for a special class of elastic-plastic materials. Prior to discussing a special set

of constitutive equations, we first note that if the response function SKL in (2.1) is

invertible at fixed values of E^N and k, then a yield function / in stress space may be

defined by [11]

E&L' K) = Si^MN' k)- (4-1)

The equation / = 0 then represents the five-dimensional yield surface in stress space, and

/ < 0 corresponds to the elastic region in stress space. Also, at g — f = 0, the normal to

the yield surface in strain space is related to the normal to the yield in stress space by

_!!S_ = L JLL u 2)
aE- ^KLMN ar • V*-*-)
aC/MN 0l3KL

The latter equation may be solved for df/dSKL by multiplying both sides by the partial

derivatives of the inverse of Skl> taken with respect to EMN.

Consider now a special stress response which is linear in the expression EMN - E^N but

with coefficients that depend on EjiQ and k:

S/cl ~ Lklmn{Emn — EfcN), (4.3a)

with

Lklmn ~ K) = Lmnkl- (4.3b)

Il'iushin's development [3] is based on a constitutive equation of the type (4.3a) but

without the dependency on k. We may calculate the derivatives

$kl = LKLmn{Emn ~ E&n) + Lklmn{Emn — EfoN} (4.4)

and

*SKL _ dLKLpQ r _ , _

dE&N 3e^n [tpQ Eh> Lklmn'

<^KL = dLKfQ f £ _ Ep 1

0K 0K [LpQ LPQi-

(4.5)

During unloading and neutral loading, as well as in an elastic state, (4.4) reduces to the

form (2.7a).

4.1. Normality. Substitution of (4.5) into (2.8) gives

= -LklmnPmn + [Epq - EFq) (4.6)JKL

7 See Sec. 5 of [6] for this detail.
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Multiplication of both sides of (4.6) by Xg leads with the aid of (2.4d) and (2.5) to the

following expression which holds during loading:

XgaKL = -LklmnE^n + (Epq - E£q)|E&n

= ~LKLMNE£fN + Lklmn{Emn — EfoN}. (4.7)

If (4.4) and (2.11) are used in (4.7)2, the resulting equation coincides with the normality

condition originally given by Il'iushin [3].8 It should be noted that while Il'iushin [3]

considers a constitutive equation of the form (4.3a)-but without the dependency on K-his

discussion is confined to small deformations. In particular, Il'iushin [3] identifies the term

Ekl — EfcL with elastic strain. No assumption regarding smallness of deformation has

been made in the present section, and the results hold in the presence of finite deforma-

tion.

In the remainder of this section, we will suppose that Lklmn are constants. Then by

(2.11) and (4.6)

LklmnPmn = Y* qeki ' Y* > 0, (4.8a)

where the inequality follows from the invertibility9 of Lklmn and the fact that not all

components of pMN vanish. Hence, by (4.2) and (4.3b)

<48b>

and therefore, in view of (2.4d),

Hl = (4-9)
KL.

during loading10. Thus, the plastic strain rate is directed along the normal to the yield

surface in stress space. With pKL satisfying (4.8b), (2.6) can be solved for the product Xy*.

We observe that if both sides of (4.8a), are contracted with XgEKl and use is made of

(2.3), (2.4d), (2.6)2 and (4.8a)2, it may be deduced that during loading

^KLMN^KL^ltN > 0- (4-10)

Noting from (4.3a) that SKL = Lklmn{Emn — E^N}, we can immediately establish an

inequality which has the same form as (2.13) except for the equality sign, and invoking

(4.3b) we may also obtain the complementary inequality

SklE£l> ~LklmnE&lEmn- (4-H)

Results of the type (2.13), (4.10) and (4.11) (with equality signs added) were derived by

Naghdi & Trapp [10] for the case of constant Lklmn. For a discussion of the significance

of these inequalities, the reader is referred to [10, 12].

8 See Eqs. (8) and (9) of [3],

'i.e., as a linear transformation on the six-dimensional space of symmetric second order tensors.

"'The normality conditions (4.8) and (4.9) also hold under less restrictive conditions than the constancy of the

fourth order tensor in (4.3a). See [6, 10, 12].
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4.2. Convexity. For the case of constant Lklmn, both the yield surface in strain space

and the yield surface in stress space are convex [10]. It is instructive to establish this result

by a variation of the proof given in Sec. 3.

First observe that when Lklmn are constants, the inequality (2.10) may, with the aid of

(4.4), be written as [10]

/ ~Tt ~ Emn) {^kl ~ dt

(4-12)
/ ^klmn^^n{^kl Ekl) dt 0.
Jh

The first integral in (4.12) vanishes, its value at both the beginning and end of the cycle

being zero. Imagine any strain trajectory beginning at E%L, and intersecting the yield

surface for the first time, which we may take to be t — 0, at the point EfcL. Let the line

segment joining E%L to E£L be expressed as

EkL~ E/<L~ &KL (nKLnKL = £ 38 0)- (4-13)

Let the cycle be continued along the trajectory

ekl(') = E£L + 'mKL, 0 (4.14)

with mKL and e satisfying the same conditions as in Sec. 3. Finally, let the cycle be closed

by any strain trajectory that joins the point E£L = E£L + emKL to E%l and does not

involve loading. A cycle of the type just described is illustrated in Fig. 1.

Fig. 1. A sketch of a hypothetical yield surface in strain space together with a strain cycle of the type employed

in the convexity proof. The cycle begins at E{!, and first intersects the yield surface at E&,. It continues along a

straight line segment of length e pushing the yield surface outwards to Eh- The cycle then closes by any path

that joins ££, to E£z and lies in the new elastic region. In the cycle, loading occurs only along the segment

joining E}kl to E*KL.
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With the aid of (2.4d), the inequality (4.12) reduces to

~f0^ ^KLPQPPQ g E\1N { EKl ~ Ekl) dt ^ 0. (4.15)

Hence, using (4.13) and (4.14), we may write (4.15) in the form

K(e) + K(e) « 0, (4.16)

where K(e) is defined in (3.5)3, with k(t) in (3.6)2 being now given by"

0 Q
k(t) = ~^LKLPqPPq-^= (4-17)

The function K(e) in (4.16) is defined by

K(e) = ifk(t)dt, (4.18)
Jo

with

  0 n
k{t) ~ -\LklpqPpq-^. nKLmMN- (419)

0ClMN

The first and second derivatives of K(e) have already been calculated in (3.8)34. Similarly,

K'(e) = £k (e), K"(e) = £P(e). (4.20)

The values at e = 0 of K(e) and its first and second derivatives are given in (3.9), while

from (4.18) and (4.20) we obtain

K(0) = 0, K'(0) = (k(0), K"(0) = lk'(0). (4.21)

A Taylor expansion of (4.16) about e = 0 then implies that

(k (0)e + {*(0) + ^'(0)} J + 0(e3) < 0, (4.22)

and hence that

£k (0) + {k(0) + tk'(0)} | + 0(e2) < 0. (4.23)

If £ is chosen to zero in (4.13) then from (4.23) we obtain the result k(0) *£ 0, which was

established for general constitutive equations in Sec. 3. Consequently, as would be

expected, the normality condition (4.8a) follows from the present proof when £ = 0.

Taking £ > 0 and letting e approach zero in (4.23), we deduce that

k (0) « 0. (4.24)

It then follows with the help of (4.19), (2.6)2, (3.1) and (4.8a) that on the yield surface in

strain space

dg

dE/<L
nKL> 0 (4.25)

'1 On purpose, we do not invoke the normality condition (4.8a), because it is interesting to see how it emerges as

part of the present proof.
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or, recalling (4.13), that

-^-l{E£l-E°kl}> 0. (4.26)

Since E%L may be chosen anywhere in the region g < 0, and EfcL can be any point on the

yield surface g = 0, the inequality (4.25), or equivalently (4.26), ensures convexity of the

yield surface in strain space.12

The convexity of the yield surface in stress space follows from (4.1), (4.2), (4.3a) and

(4.26). Thus, for the same value of plastic strain, let S^N be the stress corresponding to

E%l- Then S%,N lies in the region /< 0 and SfoN is on the yield surface /= 0 [11, 7].

Conversely, if S%,N is any point in the region / < 0, the corresponding strain E%L is in the

region g < 0, and if S^N is any point on / = 0, the corresponding strain E£L is on g - 0.

The inequality (4.26) therefore leads to the conditon that

>0 (4.27)
°^MN

for all SjljN on / = 0 and S^N in / < 0, which implies convexity.
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