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Abstract. Using a comparison theorem technique, we study the long time behavior of

certain classes of nonlinear difference-differential systems. Zero is a solution for these

systems. We are concerned in this paper with conditions forcing nonconvergence to zero

of solutions as time approaches infinity; that is, we obtain threshold properties of the

systems. The results parallel results by Aronson and Weinberger on reaction-diffusion

equations somewhat, and the study was motivated by consideration of models for

myelinated nerve axons.

1. Introduction. In this paper we study the long time behavior of solutions of nonlinear

difference-differential systems of the form

duj/dt = uj+x - 2 Uj + Uj_, + /(Uj) (j e Z) (1.1)

where /(h) will be allowed to have various qualitative behaviors to be specified below.

System (1.1) arises as a model in various contexts and we will consider forms of the

function f(u) suggested by some of these applications. For example system (1.1) occurs in

the study of population genetics where spatially discrete (i.e. isolated) populations of

diploid individuals are considered. One can derive (1.1) from model-derivation arguments

given in [1] if the author' continuously distributed habitat assumption is replaced by an

appropriate discrete populations assumption. In [1], Aronson and Weinberger consider

three possible types of /(w), specified below by (2.1)—(2.3). Our results also apply to these

classes of /'s.

Another application from which system (1.1) is derived concerns the propagation of

nerve pulses in myelinated axons where the membrane is excitable only at spacially

discrete sites. In the Appendix we give a derivation of (1.1) based on modeling myelinated

nerve axons which motivated consideration of the particular questions addressed in this

paper. Specifically, a question of importance for any nerve model is whether it displays
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threshold behavior. To explain this more fully, let «•(*) represent the potential at the /th

active site at the time t. If we give conditions on the initial voltage distribution, {w;(0)}y6Z

such that lim,^^ u-(t) = qj = 0, for all j, then we have established subthreshold condi-

tions. If the limiting sequence q; is nonzero, then threshold conditions have been obtained.

One can loosely interpret subthreshold as decay of a nerve response while interpreting

threshold to firing of the nerve.

Such conditions were discussed in [2] for (1.1), as well as a more complicated model,

with f(u) having behavior given by (2.3) below. In [2] a subthreshold condition was given

for (1.1) using a comparison theorem, and a threshold condition was given using a

Lyapunov function. In this paper we concentrate on establishing threshold conditions for

(1.1) using comparison theorem techniques. Using the comparison theorem approach the

results presented here are stronger than what can be obtained by Lyapunov methods, so

that this paper can be considered an extension of [2],

Of course, if time and f(u) are rescaled to have h2 as multiplicative factor, (1.1) could be

considered a spatially discrete approximation to the limiting equation

3u 32u

¥ = <L2>

where the second differential operator is approximated by the central difference operator

with Uj(t) — u(t, Xj), with Xj —jh. Indeed, the asymptotic behavior we obtain in this

paper for (1.1) has its analogue for (1.2). But in the context of our physical motivation

explained in the Appendix, it is inappropriate to interpret (1.1) as a spatially discrete

approximation to (1.2). Nevertheless, equation (1.2) can be considered a nerve axon model

where the nerve membrane is continuously excitable, and one can proceed to address the

analogous threshold questions. This is what Aronson and Weinberger do in [1], and so this

paper follows their format. The main tool of [1] and this paper is the comparison

principle, which both (1.1) and (1.2) have. In some situations we obtain results identical to

the analogous ones in [1], while in other situations there are substantial differences. But

there is a crucial difference in the analysis of (1.1) versus (1.2). Various steady state

solutions for (1.2) can be constructed using phase plane methods and these solutions are

used with the comparison theorem in [1] to obtain threshold results. But in considering

(1.1), we do not have at our disposal the powerful phase plane technique and other

methods of ordinary differential equations to construct our steady state solutions. Thus, to

construct steady state solutions of (1.1) for comparison purposes, we must report to more

ad hoc approaches.

In the next section we present the appropriate comparison theorem and use it to prove a

lemma which is our main tool for developing threshold results. Subthreshold and threshold

results are then obtained in section three. Although we develop these results for (1.1) for

j E Z analogous results could be derived for the initial-boundary value problem (that is,

for7 = 0,1,2,--- with u0(t) specified as well as Uj(0)) without introducing any essentially

new ideas.

In Sec. four we give results related to the asymptotic speed of propagation of a "wave

of excitation" for system (1.1). These results are motivated by similar work on (1.2) in [1]

and work on an epidemiological model due to Aronson (personal communication). Again

the principal tool in this section is the comparison theorem.
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2. Comparison principals. To study (1.1) we impose some restrictions on/(«). We always

assume f(u) is piecewise C1 on [0,1], and C1 in a neighborhood of any point where

/(m) = 0. We also assume without further mention that /(0) = /(1) = 0. Thus Uj = 0 and

Uj = 1 are always solutions to (1.1). We will be interested in solutions Uj(t) of (1.1) with

Uj E [0,1] for all j E Z, and all t > 0.

Standard results [7] on ordinary differential equations in Banach spaces insure that if

{Uj(0)}JeZ is specified, there exists a local solution to (1.1) in /°°(Z). Further, the set

{(©,•) e /°°: 0 Vj <\, j E Z) is invariant, so if 0 < u,(0) < 1 for all j, then the solution

is global and 0 wy(f) < 1.

To obtain the results on the asymptotic behavior of solutions of (1.1) we must impose

additional conditions on /(h). We consider three cases. The first case is

/(«)> 0 for 0 < « < l,/'(0) > 0. (2.1)

This is the heterozygote intermediate case discussed in [1], The next case (Aronson and

Weinberger's heterozygote superiority case) is

for some a E (0, l),/(a) = 0, with/(«) > 0 for 0 < u < a and/(w) <0 , .

foro<n< l;/'(0),/'(l)>0. ('

The last case, which corresponds to Aronson and Weinberger's heterogyzote inferiority

case, and which is the case most pertinent to the axonal modeling situation, is

for some a E (0,1 ),/(a) = 0, with f{u) < 0 for 0 < u < a and/(m) >0 , .

for a < u < 1. ' '

Lemma 1. Suppose that wy(r) and i>■(*) satisfy the following conditions:

For i <j < k,

dUj dv
V1) ~ "J+1 + 2uJ ~~ UJ~1 VJ+1 +2vj- vj-i ~ /(Vj),

(ii) Uj(t),Vj(t) E [0,1], (2-4)

(iii) 0 « Vj(0) < Uj{0) 1.

Further, if i > -oo and/or k < oo,

«,(') ^ «/(0 and/or vk(t) < uk(t). (2.5)

Then for all t > 0, / <j < k,

(2.6)

Remarks. Lemma 1 is a comparison theorem, analogous to Proposition 2.1 of [1], and

can be proved via essentially the same methods. (Since the second derivative is replaced by

a second difference there are some slight changes in the proof of the maximum principle,

but the changes are minor.) Note that condition (2.4)(ii) need not hold for j = i or j = k.

Lemma 2. Suppose that for i <j < k, {qj} satisfies 0 < 1 and

1j+1 ~ + q)-1 + /(?,) = 0; (2.7)
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if i > -oo assume qt < 0 and if k < oo assume qk < 0. Let {«7(0} be a solution of (1.1)

with Uj(0) = qj for i <j<k and Uj(0) = 0 for all other values of j. Then for each j, Uj(t)

is a nondecreasing function of t, with

lim Uj(t) = t (2.8)
t~> 00

where {t,} is the smallest nonnegative solution to (2.7) valid for all j E Z which satisfies

Tj > qj for i <j < k.

Proof. By Lemma 1, 0 < Uj(t) < 1 for all j. Also, for i<j<k, Uj(t)>qj. Thus

Uj(t) > Uj(0) for all j, so that for any h > 0, Uj(h) > Uj(0). Again, lemma 1 applies and

yields uit + h) > Uj(t) for any t,h> 0 and any j. Hence for each j, Uj(t) is monotoni-

cally increasing in t. Since Uj(t) is monotonically increasing and bounded above, uf(t) T t;

as t -» oo for some r;. For each j, duj/dt can be expressed as the right side of (1.1). Since

lima, 1^(0 = Tj for all j, it follows that as / -» oo, duj/dt approaches some constant

value for each fixed j. Now Uj(t) is nondecreasing so that lim,_x (diij/dt) 2* 0. If

lim,_x (duj/dt) = e > 0 then for; > t0, t0 sufficiently large, Uj(t) > (e/2)(t - t0), which

contradicts the fact that u/ < 1 for all t. Hence {tj} represents a steady state of (1.1), that

is {tJ satisfies (2.7) with 0 < 1 for j £ Z.

If {oj} represents another global steady state for (1.1) with ay > q} for i <j < k and

Oj > 0 elsewhere, then af > wy(0) for all j. By Lemma 1, Uj(t) < Oj and hence t;

Remarks. If w (0) 5= but w7(0) z qf then Lemma 2 does not apply to Wj{t). In

particular, Wj(t) need not increase monotonically. However, we may compare Wj(t) with

Uj(t) via Lemma 1 to conclude that w;(/) ^ Uj(t), which is how the lemmas will be used in

what follows.

3. Threshold results. Using Lemma 2 of the last section we now establish a number of

threshold results depending on the particular type /'s given by (2.1)—(2.3).

Theorem 1. Suppose {«/0} satisfies (1.1) with Uj(t) E [0,1] for all j e Z, t > 0.

(i) If (2.1) holds then either Uj(t) = 0 for all j or lim^^ wy(r) = 1 for all j.

(ii) If (2.2) holds then either Uj(t) = 0, Uj(t) = 1, or lim^^ Uj(t) = a for all j.

Proof (i) First we must analyze the steady states of (1.1) under hypothesis (2.1). Suppose

that {qj} is a steady state of (1.1) with 0 *£ q} 1 and qj s 0. Since (1.1) is invariant

under shifts j -»j + k and reflections j -> -j we may assume that 0 < q0 and qx < q0

without loss of generality. If q, < q0 then q0 — qx — e > 0. By (1.1) q2 — qx = q\ — q0 —

f(q\) < q^ - q0 = -e since f(u) > 0. In general, ^ - qJ_] < q^_, - ^_2; so by induction

q, - qj-\ < -e for j > 0. We have qn = q0 + 2"=, (^ - ^_,) < q0 ~ ne. Since e > 0,

<70 — ne < 0 for n sufficiently large, so eventually Thus there can exist no global

nonconstant steady states for (1.1) under hypothesis (2.1). If q • = q0 then q0 must satisfy

f(qn) = 0 so q0 — 0 or q0= 1. Thus the only global steady states for (1.1) under

hypothesis (2.1), are = 0 and qt = 1. However, it is possible to construct nonglobal

steady states which can be used in Lemma 2 as comparison functions. If we choose a value

for q0, we may then set q±] = q0 — {f(q0). Then the steady state Eq. (2.7) holds for j — 0.

If q±x < 0 then we can use {<?_,, q0, q{] for comparison with a general solution in Lemma
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2. If q± \ > 0 then let q±2 — 2q±\ ~ q0 — f(q±i) and so on. With such a choice for <7y,

-ft <j < ft, we see that (2.7) holds for all j with -ft <j < k. Also, we have the following

estimate, derived as before:

n

qn^io+ 2 (?j ~ ij-\) < % ~ «/(<?o)/2 (3-i)
7= i

and similarly for <7_„. Thus for some ft we have qy > 0 for -k <j < k and q±k< 0.

To see that all nonzero solutions of (1.1) approach qj = 1 if (2.1) holds, we will show

that if 1 > « ■(0) > 0 for somey, then {«,(/)} is bounded below by a solution that tends to

qj — 1. Suppose without loss of generality that m0(0) = > 0, and that 0 « Uj(0) < 1 for

ally. By (1.1),

du0/dt = u, - 2u0 + n_, +/(«0) ^ -2"0

so m0(O > w^e"2'. Similarly,

du\/dt = u2 — 2m, + u0 + /(«,) > -2W] + w*e~2';

Thus e2'[^M,/<fr + 2m,] = d(e2'ux)/dt > ut. Since m,(0) > 0, we have «,(?) > te~2'ut. By

the same arguments h_,(0 > te~2'uSuppose that

uj{t)>e-2,tjujj\.

Then ,/<// = uJ+2 - 2uJ+, + w, + /(«,.) s* -2m>+ , + Uj so

since m -(0) > 0, we have

jt(e2,uJ+l)>e2'Uj> ju.\

, v _ <rV+1«y+i(0
0'+ I)'

Thus, by induction,

> e~jTu* forall>- (3-2)

By (2.1) and the general assumptions on /(«), we have/'(0) = /, > 0 and /(0) = 0 so for

some p > 0, f\u)>f\/2 and thus f(u) > (f]/2)u for 0 < u < p. Applying the last

estimate to the inequality (3.1) for the steady state {</7} yields qt *£ (1 — f{j/4)q0 as long

as q0^p. Choose TV >4//,. By (3.1), the steady state {qj} will then satisfy (2.7) for

-k <j < k, and q±k < 0, with k ^ N. (As <70 changes, A: may also change, but as long as

q0< p, ft < N.) Let t = 1 in (3.2); then «7(1) > e'2u^/j\ for all j. Choosing q0 with

0 < q0 < min{p, u„e~2/N\} we have wy( 1) > q0 > qj for |y'|< N. Let Wj(t) = Uj(t + 1)

and let Vj(t) be the solution to (1.1) with i>y(0) = qjt -ft <j < ft, and u/0) = 0, \j\> ft.

Then wy(0) = u;(\) > Vj(0) for all j, so by Lemma 1, Uj(t) = Wj(t — 1) > Vj(t) for all

t> \. Also, Lemma 2 applies to »,•(/); however, we have established that the only global

steady state for (1.1) subject to (2.1) which lies above {<?■} is t = 1. Thus by Lemma 2

Vj(t) T 1 and t -* co. Hence as t -» oo, Vj(t) 1 1 so the conclusion of (1) holds.
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The analysis in case (ii) is very similar to that in case (i). First, we see by the same

reasoning as in (i) that there are no nonconstant global steady states. (Any steady state

which is nonconstant must eventually leave the interval [0,1].) Any solution which is not

identically zero or one will have 0 < Uj(0) < 1 for some j, and, as in case (i), the solution

will be bounded below by a solution, constructed as in (i), which tends to a as t -> oo. A

similar construction (or the same one applied after a change of variables wy = 1 — h •)

shows that {«,(*)} is also bounded above by a solution which tends to a, yielding the

desired conclusion.

Remarks. Note that the condition /'(0) > 0 and the smoothness of /(«) were only used

to obtain the "hair-trigger" effect, and that it is enough to assume that /(0) =/(l) = 0,

f(u) > 0 on (0,1) if we only wish to exclude the possibility of nontrivial global steady

states for (1.1).

As noted above, if (2.1) or (2.2) holds then (1.1) has no nontrivial global steady states.

The situation is different under hypothesis (2.3) in that various types of nontrivial steady

states may occur. For example, suppose that there exist a, b e (0,1) such that 0 < a < a

< b < 1, with 2(b — a) + f(a) = 0 and 2(a — b) + f(b) — 0, and let q0 = a, <?, = b,
qJ+1 = qj for all j. Then {qj} is a nontrivial global steady state for (1.1). Some specific

cases occur when

/(1/4) = -l,/(3/4) = 1, soa = 1/4, b = 3/4;

/(1/3) = -2/3,/(2/3) = 2/3, so a = 1/3, b = 2/3.

The existence of such steady states depends only on the value of /(«) at two points, so

these steady states cannot be eliminated by any integral condition on /(«), and a given

function f(u) may admit many such steady states.

Similarly, it is possible to give criteria for existence of global steady states of the form

q0 = a, qx— a, q2 = b, qj+3 = <7, for all j\ other forms can also occur. Another type of

steady state may occur. Suppose that f(u) satisfies (2.3) with a = { and is symmetric in

the sense + v) = — t>) for 0 < v < j. Consider the equation

uj+, - 2Uj + Uj_, + e/(uj) = 0, (3.3)

where e > 0. Let u0 = E (j, 1), let me±1 = u, — (e/2)f(u^) and define wj for other

value of j via (3.3). We have

u\ = 2u\ ef(u\) = u,~ e[/(«t) -/(«[)];

"3 = "* - - 2f(u\) —/(«|)],

and in general it follows by induction that

n- 1

?/(«•) + 2 (»- k)f(uk)
k= 1

(3.4)

Thus if u'j > a for j < N, ueN < - Nef(uJ/2. Also, if sup06lifi;1 \f(u)\= f0, u%<u+-

eCNf0 where CN is independent of e or It follows that if we choose > a, then we can
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extend {wj} outward until for some N, ue±N < a. If ue±N — a then ueN+] = 2u'N — ueN_x —

f(u%) = 2a — so ueN+1 — a — -(hJv-i — a). Since f(u) was assumed to be symmet-

ric in the odd sense about u = a, the steady state {mJ} can be extended from -N < j < N

to -3N <j<3N by symmetry and so on repeatedly to obtain a global steady state. If

ueN< a then as e > 0, uN will increase toward and eventually pass through a. The point

is that by varying and e appropriately, a wide variety of periodic steady states can be

obtained. If is taken near one and e is small, such steady states may have long periods

with respect to j. Since any such steady state only involves finitely many values of «•, once

a steady state has been found, adding "spikes" to e/(w) at points not on the original

steady state will not destroy that steady state, although it may produce others such as the

two point type discussed previously.

The point of the above discussion is that under hypothesis (2.3) Eq. (1.1) may have a

wide variety of steady states. Since there may be various steady states, there are more

possibilities for the asymptotic behavior of solutions to (1.1) under hypothesis (2.3) than

under (2.1) or (2.2). Three possible behaviors are decay to zero, growth to one, and

evolution to some other nontrivial solution, possibly a steady state. The next lemma gives

a condition for the decay of a response. This lemma was proved in [2] but is included for

completeness.

Lemma 3. Suppose (2.3) holds, {h/O} is a solution of (1.1) and 0 w;(0) < a — e for

some e > 0. Then u(t) -» 0 as t -» oo for all j.

If (1.1) admits steady state solutions of the form {q}} with qr qk =£ 0 and > 0 for

i <j < k, then any solution Uj(t) with w;(0) > qj for i <j < k and m;(0) > 0 for other

values of j will satisfy Uj(t) > q^ for i <j < k and all t by Lemma 1. Thus if such steady

states exist, Eq. (1.1) displays a form of threshold (or at least non-decay) behavior. The

following result gives conditions for the existence of such steady states.

Theorem 2. Suppose /(«) satisfies (2.3). Let m — -inf0euSl f(u) > 0. Suppose that for

some q„ > a,

f(q*f ~ 2"i/(<7.) - S* 0. (3.5)

Then (1.1) admits steady state solutions of the form {q^, i <j < I with qn q, < 0, and

hence displays threshold behavior. In particular if {u;(0} satisfies (1.1) with wy(0) s* 0 for

all j and Uj( 0) 5s qj for i <j < I, then for some fixed k between i and /, uk(t)> q* for all t.

Finally

4(?» - «) 2f(qm)
I — i <

/(<?*) m

Proof. The steady state we construct will be symmetric about a central point. Without

loss of generality we may assume that the point is j = 0. Given qif> a satisfying (3.5), let

q0 = q„ and let q±l = qn - if(qj. Extend {^} via (2.7). As long as qj > a we have

9j+1 - 1j = Qj ~ Qj-1 - f(lj) ^ qj ~ Qj-1; also, q{ - q0 = ~(})/(q,) so qJ+, - q, «

-(i)f(q*) as long as > a. Suppose that qk+x is the first term less than a in {<7 }. Since



8 JONATHAN BELL AND CHRIS COSNER

q,+i - Qj < -(i)f(q*) for 0 <7 *£ k, qj (j/2)f(qJ so ^ < a when j > 2(qm -

«)//(<?*) and thus k < 2(qif - a)/f(qj. To estimate q; for j > k observe that qk+] - qk

< Qk+1 - <lk+1 = 9k+1 ~ ?*-/(?*+1) < "(i)/(9 J + and in general <?*+„

- <7*+„-i ̂  - 1) by induction. Hence

n 1 n — 1

?*+» ~ 9*+1 = 2 Qk+i+1 ~ 9/t+z"5 2 [- (l/2)/(?,) + w/|
/=i /=i

Since qk +, < a, we have

^ ("-')// \ , »(» ~ l)w ,
Qk + n ^   2 q*>  2 "

(m\ , //(«•) + w\ / 1 \ / \

= (t)"  2 )" + «+ (2 )'(«*)• (3-6)

If the quadratic in n on the right side of (3.6) is nonpositive on an interval containing a

positive integer, then we have qk+n < 0 for some n. The quadratic will be nonpositive on

such an interval provided it has real roots at a distance at least one unit apart, which is

true when

[(/(?») + ™)/2]2-4(f)(«+ ^/(<7*))}/(f) >1- (3-7)

Simplifying (3.7) yields (3.5). The larger of the two roots of the quadratic in (3.6) is

1
n\ = ~

m

m

f(qm)+m\ [//(?♦) +m\2
1/2

+ j —■=  - f(qm)m ~ 2ma

/(?•) + m /(<?*) - m

= /(<

Hence, (3.5) implies there is an n < f{q*)/m such that qk+n < 0. By (3.6), however,

qk+n^ a as long as

+ 0.

that is, for n < /(<7*)/w; so we have qk +n<«<q* until n is large enough that qk+n < 0.

By the way {^} was constructed, q_f = qp so the same estimates hold for negative values

of j. The estimate (3.6) combined with (3.5) implies that for some n < fiqj/m, qk+n 0;

therefore q_(k+n) *S 0, establishing the existence of the desired steady state. Furthermore,

for all j such that -(« + k) <j «£ (n + k), qj *S q„, and n + k < 2{qif — a)/f(q„) +

f(q*)/m- Thus if «y(0) ̂  q„ for an interval of j values larger than 4(q^ — a)/f(q „,) +

2f{q*)/m, then a translate of {q,} lies below {wy(0)} so {«7(f)} is bounded below by that

translate of {qj} for all t, by Lemma 1. In {^} there is always the center point with value

q„, so for some j, Uj(t) > qt.
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Remarks. It is easy to find examples where the hypotheses of Theorem 2 are satisfied.

Suppose that sup0<u<1/(m) = 2 = /(2/3), inf0<u6i/(m) = - j, and a = 1/2. Choose

q„ = 2/3; then f(qj2 — 2mf(q^) — 8wia = 0 so Theorem 2 applies and a steady state

exists. Also, the last inequality in the statement of Theorem 2 yields I — i< 25/3; so if

Uj(0) > 2/3 for i *£ j < i + 25/3, then for somej, Uj(t) > 2/3 for all t.

We can carry through the same type steady state construction in the theorem's proof

without the symmetry assumption by specifying that q_] is some multiple of qx, but no

new ideas are introduced by that generalization.

In general solutions to (1.1) under hypothesis (2.3) which are bounded below by a

steady state as in Theorem 2 need not have lim,^ Uj(t) — 1. Thus there are cases where

solutions may be bounded away from both Uj = 0 and Uj = 1.

Example. Suppose that in (2.3) we have a = 1/2, /(1 /3) = -4/3 and /(2/3) = 4/3.

Suppose that 0 =£ m0(0) < 1/3, 2/3 < m,(0) < 1, and 0 < Wy(0) «£ 1 for all j. The values

<7_! = 1, q0 = 1/3, <7, = 1 satisfy (2.7) for j = 0; since u±x(t) < 1, we may apply Lemma

1 and conclude that u0(t) 1/3 for all t. Similarly q0 = 0, qx = 2/3 and q2 = 0 satisfy

(2.7) at j — 1, and u0(t), u2(t) > 0, so «,(/) s* 2/3. Since u0(t) *£ 1/3 and ut(t) > 2/3,

the solution m (f) to (1.1) can neither go to zero nor to one. (This example also shows that

data with m •( 0) = 0 for some values of j and u/0) = 1 for the remaining values of j cannot

evolve to a travelling wave front which goes from zero to one). Theorem 2 can also be used

to give a criterion for guaranteeing that a solution {«y(0} of (1-1) cannot converge to one.

If {qj} is a solution to (2.7), then p)— 1 — q/ is a solution to pj+, — 2/>■ + + F( pJ)

= 0, where F(p) = -/(1 — p) also satisfies (2.3). Then one can give analogous arguments

as in Theorem 2 if some p^ = 1 — q^ > 1 — a is considered such that f(q„ )2 + 2 Mf(qJ

- 8M(1 — a) > 0, where

M — sup /(<?)= inf F(p).

In fact, the same sort of reasoning used in Theorem 2 can also be used to provide

criteria for the existence of steady states which start at or above one, dip below a, then

come back above one over a finite range of values of j. If such steady states exist, such as

in the last example, solutions may be bounded away from either zero or one or both, and

hence certain types of initial data, for example u/0) = 0 for j < 0 and w/0) = 1 fory > 0

may not be able to evolve to wave fronts going between zero and one. However,

conditions can also be given which exclude the possibility of certain steady states and

allow the solution (t/-(f)} of (1.1) to converge to one.

Theorem 3. Suppose f(u) satisfies (2.3). Let m = -inf0SMa;1 f(u) > 0, M =

suPo<«si /(") > 0 and suppose there exists constants /?, y with a < fi < y < 1 such that

2m— /(m)<0 for u6(j8,t) with 2m— /(«) = 0 at u = /3, y. Suppose one of the

following holds:

2/? + m < y; (3-8)

p+\ + M<2y. (3.9)
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If {«■(*)} is a solution to (1.1) with wy(0) > 0 for all j and Uj(0) s* /? for some /, then

lim uit) = 1, for all j.
t~+ 00

Proof. First we will show how the hypothesis (3.8) of the theorem excludes certain

steady state solutions to (1.1). Suppose {q^ is a steady state for (1.1) and that for some j,

y. Then qJ+l + = 2qt - /(</,) < 0 so qJ+] < 0 or qj_x « 0. If either qj+]

or <7^__, is less than zero, {q;} is not a global nonnegative steady state for (1.1). If, say,

qJ+x = 0, then qj+2 = 2qJ+l - qj ~f(qJ+i) = -qj < 0 so again, {qj\ is not global. Thus

(1.1) cannot have a global nonnegative steady state with any points in [/?, y]. Suppose now

that a steady state has a point, say q0, with q0 < /?. Then by (3.8),

1\ + <7-i = 2<lo-f(<lo)^2P + m^y'

If {qj} represents a global nonnegative steady state then < y and q< y; but we have

already seen that for any such global steady state, no value of qj may lie in [/?, y], so

q±\ < /3. Thus if q0 < /?, then <?, < (3 and q_l < /?. It follows by induction that qj < /3 for

all j. We have proved that under the hypotheses of Theorem 3, any nonnegative global

steady state for (1.1) that has any value below /? must have all its values below /?. Finally,

suppose that q0 G(/J, 1) for some steady state. (Actually, since we have excluded the

possibility that g0 e [/?, y], we need only consider q0E.(y, 1).) Then, since /3 > «,

<7, 4- q_i = 2q0 — f(q0) < 2q0, so either qx < q0 or q^] < q0. Since the equation is sym-

metric there is no loss of generality in assuming q] < qQ. As long as ql > a we have

qj+1 - qj = qj ~ qJ-] ~ f(q}) < q, ~ <7,_„ so q]+] - ^ ^ qx - q0 = -e < 0, and thus

qj+1 < q0 — e(j + 1). It follows that for j sufficiently large, qJ+, < a < /?. By the previous

argument, q} < /S for all j, which is a contradiction to our assumption that q0 E (/?, 1).

Thus, the only possiblity for a global nonnegative steady state with any points above ft is

the case when q0 = 1, which implies that qj — 1-

Suppose that wy(0) > 0 and that w0(0) > (3. (If Uj(0) > /? for some other j, then simply

make a translation in j.) Let {^(0} be the solution of (1.1) with initial data uy(0) = 0 for

j =£ 0, uo(0) = p. Then since the three points q_x = 0, q0 = qt = 0 yield a solution of

(2.7) at j = 0, we may apply Lemma 2 and conclude that for each j, Vj(t) is a monotone

increasing function in t, with lim,^ t>;(/) = t-, where {r,} is the smallest global steady

state for (1.1) with points lying above /?. However, the only such steady state is t■• = 1, so

lim^ooUif) = 1. Since Uj(0) ^ Vj(0), Lemma 1 implies Uj(t) > Vj(t) for all t, j so

lim,^ Uj{t) = 1 for all j.

Condition (3.8) in the proof was used to show that if a global steady state for (1.1) has

any value below /?, then all its values are below /?. Similarly, condition (3.9) can be used in

the same way to show if a global steady state has any value above y, then all its values

must lie above y, so the steady state must be constant and hence identically 1. Then the

rest of the arguments go through to complete the theorem's proof.

Remark. It is interesting to compare this result with a similar result for the continuous

membrane case (1.2). Theorem 3.3 in [1] gives a condition for the solution u(x, t) to (1.2)

to satisfy lim,^ m(x, t) = 1, uniformly in x. The condition can be interpreted to say that

the initial condition u(x, 0) must be large enough, that is above the threshold level, over a
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long enough x interval. Very few conditions on f(u) are needed. In contrast, for Theorem

3 we needed to restrict our class of /'s, but we only needed m ■(0) to be big enough at one

node.

4. Propagation. Let {«,} be a solution to (1.1) where / satisfies (2.3). Throughout this

section, assume

lim uit) = 1 for all j E Z. (4.1)
t~> 00

In what follows we will consider the behavior of uj±[ct](t) as t -* oo, where the square

brackets denote " integer part".

Theorem 4 shows that if m;(0) is nonzero for only finitely many values of j, then for c

sufficiently large, Hy±(c,](f)-> 0 as t-* oo, so that if we move rapidly enough we

outdistance the "wave of excitation" and see only an unexcited state. Theorem 5 shows

that if Uj(0) is sufficiently large for some values of j, then for c sufficiently small,

uJ±[a]{t) s* Uj(0) for all t. Together, the results give bounds on the speed of propagation

of a wave of excitation.

Theorem 4. Suppose that Uj(t) satisfies (1.1), (1.4), and

Uj( 0) = Uj G [0,1 ] for all j, w° = 0 for \j |> J. (4.2)

Suppose that f(u) satisfies (2.3). Then there exists a c>0 such that for each j E Z,

lim^oo «7±[c(](0 ~ 0, if c>c.

Proof. Let a = sup0<u<1 (f(u)/u) and define the operator &a on /°°(Z) componentwise

by (&„u)j = uj+l + Uj_ | — (2 — a)Uj. We will abuse notation by writing &auJ for {&,au)].

Then (1.1) may be rewritten as

du/dt - &aUj =f(Uj)-0Uj*z 0,

The inequality follows from the definition of a and the comparison theorem since

E [0,1] implies Uj(t) E [0,1]. Define wt(t) = Ap(t)e'M~a\ where /x, c, A are positive

constants to be determined. A simple calculation shows that <-E0w, =

where

r, = r#(#i) = f e" + e"" - 2 + a, i # 0
(2e->-2 + o, i = 0.

Thus

^ f + (tic ~ r,>)

>Ae-m-c)\dt +(juc_r)/7j

if^(r) > 0 and T = r(ju) = max, r,(ju) = e~* + e* — 2 + a. Let p(t) = then

dw, du,
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Now w,(0) = m,° if we define A = sup, which is finite because of the

compact support assumption (4.2). Therefore, by the comparison theorem, wt{t)> ut{t)

for all /, all t 0; that is

If y — mn + b represents the tangent line to r(ju), \x > 0 at \x = ju0, then m = 2sinh ju0

and b = r(ju0) — 2/x0sinh(yu0). Let jtl be the value of ju0 such that the tangent line at

(fx, T(jl)) passes through the origin. Then

r(ju ) = 2/1 sinh(ju )

cosh(ju ) — 1 + a/2 = jisinh(/i), and m = c = 2sinh(jS ).

If c > c, there are jii± = /x± (c) > 0 such that for ju < /x < ju+ , c > r(ju)/^. Let i = j ± [cf],

then | /1 —ct > ±j — 1 for t sufficiently large, and thus

Ae*i*r>e-nc-r/M)f ^ Uj^[cl]{t).

For c > c and \i in the appropriate interval mentioned above, taking the limit as t -» oo of

this expression yields the desired result.

Theorem 5. Suppose that (1.1) admits a steady state {^}, L/|<./ < oo with qj > 0 for

\j\< J and q±J < 0. Suppose further that the only nonnegative global steady state {ry} for

(1.1) with Tj > qj for [/|< J is Tj■ = 1. If {u,(t)} satisfies (1.1) with ui+J(0) > qj for |y'|< j,

then there is a constant c > 0 such that for any c < c and e > 0 there exists T(e, c) < oo

so that h,±[c,](0 > 1 — e for all t > T(e, c).

Proof. We may assume without loss of generality that i = 0 and recover the original

result via a translation in j. Let {w,(/)} be the solution to (1.1) with vv^O) = q, for \1\<J

and w,(0) = 0 for all other values of /. By Lemma 2, w,(t) — 1 monotonically for each / as

t -» oo. Thus, for each e > 0 there is a ?,(e) such that for / 3= /,(e), w0(t) > 1 — e. Also,

since there are only finitely many values of / with | /|< J, there exists t2< oo such that for

t > t2 and | /1< y, w/+l(;) > w/O). Since w^O) = 0 for \l\> J, w:+\{t) > iv^O) for all / as

long as t > t2. In particular, wl+l(t2) > w,(0) so by Lemma 1, w/+1(f + t2) > w,(t) for all

r s* 0. By induction it follows that wk(t + kt2) > w0(t) for t > 0, k £ Z+ , which implies

that wk(t) > w0(t — kt2) for t^kt2. By a similar analysis, w,_ ,(/3) > w/O) for some

t3< oo so w_k(t) ^ w0(t — kt3) for t>kt3. Let t4 — max{r2, r3}; then w±k(t)>

w0(t — kt4) since w0(f) increases monotonically.

Consider vv±[cr)(r) where c < c = 1 /t4. For someS > 0 depending on c, c = (1 — S)/t4.

Let T(e, c) = When t > T(e, c) we have (using the fact that w0(r) is monotone

increasing)

w±[cr](0 > *oU ~ [^]^4) > "U'O - ct4))

> w0(8t) > w0(/,(e)) > \ - e.

(When t > T(e, c), we have t — [ct]t4 > 0.)
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To obtain the conclusion of the theorem we observe that w,(0) > qt = w^O) so by

Lemma 1, ut{t) > w:(t) for t > 0. Thus m±[c(](0 > w±[cr](0 1 — e for t > T(e, c).

Remarks. The hypotheses of Theorem 5 will be satisfied if f(u) satisfies (2.1) or if f(u)

satisfies (2.3) and the hypotheses of Theorems 2 and 3 hold.

Appendix. Modeling myelinated nerves. A large precentage of nerve processes in man

are mylinated. That is, the axonal membrane of the nerve cell is wrapped in a layered,

fatty myelin tissue which is periodically spaced so that small, excitable membrane sites

called nodes of Ranvier are exposed. The nodes have conduction properties similar to

unmyelinated nerve membrane, while the myelin has a much higher resistence and lower

capacitance than the axonal membrane [4]. We assume the myelin is a perfect insulator,

the nodes are resularly spaced and identical electrically, the axon is infinite in extent, and

use the circuit model of Fig. 1. This is, of course, an idealized viewpoint of myelinated

fiber. In the central nervous system nodes tend to have a relatively large surface area and

synapses often arise at the nodes. Hence, the model more appropriately represents the

morphology of peripheral myelinated nerve.

—VWV—^—MAr
R

nMAr
R

J C | ^jKuj) c{j^

Figure 1

The R and C in Fig. 1 represent lumped resistance and capacitance, and ip up I(Uj)

represent internodal current, membrane potential and ionic current at the yth node

respectively (; running over the intergers). Applying Kirchoffs laws to the circuit yields

uj-i - uj - R'j. ij -ij+\ = C du/dt + /(Uj).

This circuit has been used by other authors, e.g. Scott[6], but different nodal dynamics,

I(u), were considered than in this article and other authors were not concerned with

threshold questions. At each node we adopt FitzHugh-Nagumo dynamics which have been

studied extensively in modeling unmyelinated axons. For some background on the

spatially continuous FitzHugh-Nagumo model, see [5]. Thus, the model becomes

"/-i ~ uj = Rij'

dUj

ij-ij^ = C~df -f(uj) + wj' (A.l)

dwj
atij — ywj = dt
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where w- represents a recovery variable at node j, a and y are nonnegative constants, and

/(«) has the bistable behavior given by (2.3).

In this paper we consider the case of no recovery at the nodes, that is w- = 0 for all j, so

that the last equation in (A.l) can be ignored. Cohen [3] suggests this might model the

treatment of the nodal membranes by certain toxins. By eliminating the variables ij from

the first two equations in (A.l) and scaling R = C = 1, we obtain system (1.1). In Bell [2],

subthreshold and threshold conditions were given for the full model (A.l) using Lyapunov

techniques.
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