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Abstract. Bucklings of biaxially deformed annular, rectangular and arbitrary regions are

considered. It is found that for many different configurations the buckling conditions are

governed by the same equation x = 0, where x is merely a material function. Further-

more, the buckling solutions are completely unrelated to the buckling loads.

1. Introduction. The buckling of a half space subjected to free-surface-parallel compres-

sion was first solved by Biot [1], The buckling of an infinite space containing a crack and

subjected to crack-parallel compression has recently been studied by Wu [2, 3]. Both

problems turn out to have the same buckling condition and hence the same buckling load.

One of the objectives of this investigation is to find an explanation for this seemingly

peculiar coincidence. In the process, we found that the same buckhng condition also

applies to several other cases. For the rather large class of problems that shares the same

buckling condition, there is another anomalous phenomenon. There are infinitely many

solutions associated with each one of the finite number of buckling loads. This is not quite

the same as that for a standard linear eigenvalue problem involving an infinite region for

which the Fourier-transform parameter may be interpreted as the eigenvalue and, for the

sake of argument, one may make the convenient statement that the eigenvalue can take on

any value but the associated eigensolution is fixed. The class of problems studied in this

paper is governed by linear equations derived from a small-superposed-on-large analysis.

The eigenvalue of the physical problem, however, is not coupled with the " Fourier-trans-

form parameter". Thus one may arbitrarily form Fourier sums to obtain infinitely many

eigensolutions for a given eigenvalue. This immediately leads to the uncertainty about the

post-buckling solution which, in an ordinary case, would be just the associated eigensolu-

tion with a specific amplitude. But since there is no the eigensolution to speak about, what

would be the form of the post-buckling solution? If no post-buckling solution could be

found, what would be the meaning of the buckling condition of the class of problems,

including the one first solved by Biot? Attempts have been made to clarify these last two

points, but no conclusive answers have been obtained so far.
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A brief description is now given to the problems studied in this paper. We consider

plane deformations so that a point initially at (ZX,Z2) moves to (z,,z2), and

z, = X,Z, + «,(Z), z2 = X2Z2 + u2( Z)

where X, and \2 are two constants characterizing a primary deformation, and u, and u2

are assumed to be small. The objective is to assert the existence of a buckling condition of

X, and X2 under which nontrivial m, and u2 exist. The specific cases considered include:

(A) Circular Regions with X, = X2;

(A-l) Annular Region,

(A-2) Circular Hole in Infinite Region,

(A-3) Circular Disk;

(B) Arbitrary Regions with X, = X2;

(C) Rectangular Regions:

(C-l) Finite Rectangular Region,

(C-2) Semi-infinite Strip,

(C-3) Half Space.

The buckling conditions for cases (A-2), (A-3), (C-2) and (C-3), together with analogous

cases of (B), are found to be the same.

2. Finite plane elastostatic strain for compressible harmonic materials. Let D be the

domain of the (Z,,Z2)-plane characterizing the cross section of a cylindrical body in its

undeformed configuration. We assume that the cylindrical body is subjected to a plane

deformation so that the position of a point (Z,,Z2) after deformation is (z,,z2). The

deformation may be represented by a transformation.

4) for all ZA e. D (2.1)

which maps D onto a domain d of the same plane.

Let FaA be the components of the deformation-gradient tensor associated with the

deformation (2.1). Then

FaA = Za,A> (2-2)

and its fundamental scalar invariants may be taken as

/ = detF = A,A2, (2.3)

I = FaAFaA = K\ + K\, (2.4)

where A, and A2 are the principal stretch ratios.

The plane-strain elastic potential U for the class of harmonic materials discussed in

[2, 4-7] is given by

U=2\l[H(R)-J], R = A, + A2, (2.5)

where (x is a positive constant and H a given function of R. The function H(R) cannot be

completely arbitrary. A thorough investigation of the various restrictions may be found in

[5]. For our purposes it suffices to list the following properties:
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(I) tf(2)= \,H'(2)= 1.(2.6)

(II) RH"(R) - H'(R) > OforO < R < oo,(2.7)

(III) There exists an R0 e (1,2) such that

H'R <0 for 0 < R < R0,

>0 forfl0 < R < oo. (2.8)'

(IV) H"(R) > \ for 0 < /? < oo. (2.9)2

In terms of the function H, the components oaA of the Piola stress tensor a are

9U . I H'(R)
3 FaA R aA S~FaA +

H'{R)

R tabtABFbB( (2-10)

where eab, zAB are the components of the two-dimensional alternator. In the absence of

body forces, the equations of equilibrium are just

°aA,A=0 onD■ (2-11)

We shall be working primarily with the Piola stresses, but the components jah of the

Cauchy stress tensor t are given by

_ , H'(R)
Jab ~ jy FaA^bA +

H'(R)

R (2-12)

where 8ab is the Kronecker delta.

Let C be a curve in D defined by

Z, = Ca(L) (2.13)

where L measures the arc length along C. The unit tangent and normal vectors S and N of

C are defined by their respective components

S, = Q(L), Na = zabC'b{L) (2.14)

The image of C under the mapping (2.1) is a curve c in d defined by

*fl = cfl(/) (2.15)

where / measures the arc length along c. The components of the unit tangent and normal

vectors s and n of c are, respectively,

sa = c'a( 0> na = tabc'b{l), (2.16)

where

c'a(l) — FaACA(L)dL/dl, (2.17)

{dlf = FaAFaBC'A{L)C'B(L)(dL)2 (2.18)

The traction vector acting on an arc element dl is just

t dl = Taft«„ia dl = oaANAia dL = TdL (2.19)

where T and t are, respectively, the Piola and Cauchy traction vectors.

1 The Baker-Ericksen inequality requires H'( R) > 0.

2The stronger condition H"(R) > 1 holds for R > R0.
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3. Perturbation about a state of finite uniform deformation. Deformations which differ

only slightly from a state of uniform strain may be represented by a transformation of the

form

za = + ua(ZA) (no sum on a) (3.1)

where \a define the primary deformation. The functions ua, together with their deriva-

tives, are assumed to be small in comparison with the primary deformation. For the

purpose of the present paper a set of equations linear in ua will be derived. Terms that are

nonlinear in ua are henceforth to be neglected. Using (3.1), we obtain from (2.2)—(2.5).

F /\ + »„ ), (3.2)

\ U2,\ ^2 + m2,2 I

I = (\2, + X22) + 2(X,hi , + X2w22 )> (3-3)

J = X,X2 (~^\u2,2 ^2mI,|)> (3-4)

R = r + (w, , + w22), r = X, + \2. (3.5)

The elastic potential U may now be written as

U= U0+ U, + U2+ ■■■ (3.6)

where

t/0 = 2fi[//'(r)-\1\2],

Ux = 2(i[i/ (/•)(«, , + w22) — (X,w22 + X2m1j1)],

^2 = (r) ~ l)(Mi,i + "2,2) + — "2,2)

+ (H'(r)/r - i)(«I 2 - u2A)2 + Uut<2 + w2,,)2] (3.7)

We note in passing that U2 is positive definite only if

H"{r)>,L, H'{r)/r>{. (3.8)

A reference of (2.6)-(2.9) indicates that the material function H admits the possibility

H'(r)/r < j, (3.9)

and hence U2 is not always positive definite. Indeed, the several buckling solutions

obtained in this paper are a direct consequence of this admissible condition. On the other

hand, (3.9) does not necessarily lead to a negative second variation of the total energy

which is an indication of instability (see e.g. [8]).

The Piola stress components computed from (2.10) are

°aA = °aA + °aA (3-10)

where

baA = °aA = dU2/duaA- (3.11)

The equations of equilibrium governing ua may now be determined by substituting (3.11)

into (2.11), viz.,
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rH"(r)
"a,AA + H'(r) '

®aA^bBub,BA ~ (3-12)

For the purpose of establishing certain boundary conditions, we shall restrict ourselves

to the two special situations:

A. Arbitrary D and X, = X2.

B. Rectangular D and arbitrary \a.

It is clear that for either case the normal to the boundary 3D is not altered by the primary

deformation. Treating the boundaries 3D and 9 d, respectively, as the curves C and c

defined in Sec. 2, we obtain

dl/dL = \S) + 8aAua£QQ, (3.13)

C'a = Ka^A + ( Ua,A ~~ KaKdUc,bF'b^'d) (5) (3.14)

where \(S) denotes the primary stretch ratio along C. For convenience, we shall write

*a = KaQ + ia, na = taAC^ + ha, (3.15)

where ha = eabsh and sa is just the second term of (3.14). The following components of the

Piola and Cauchy traction vectors are computed:

T • N — o(Ar) = TN = NANBbBa6aA, (3.16)

T • S = Ts = NASBbBa6aA, (3.17)

b(N) . 1
t " - -f-1 = t„ = T—

^(S) ^(S)

1
t ■ s = t,

\s)

T (N) X C C
*N \ AaUa,B^A^BK(S)

T _L AT C
TS+, ^AaUa,B^A^BK(S)

(3.18)

(3.19)

where

®(JV) = °aA8aBNANB- (3.20)

The following three types of homogeneous boundary conditions will be considered:

Constant Dead-Load Traction

Tn — Ts = 0; (3.21)

Constant Hydrostatic Traction

tn = K = 0; (3.22)

Lubricated Contact Surface

ts = 0 and uana = 8aAuaNA = 0. (3.23)

For the solutions of (3.12) we follow the complex formulation established in [2], Thus

Z = Z^ + iZ2, (3.24)

u(Z) = «, + iu2 = kW(Z) - Z W'(Z) -w(Z), (3.25)
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where

rH»(,) + «■(,) . .

( ' rH"(r) - H'(r) ' 11

where W', w' are holomorphic functions of the complex variable Z in D. The Piola stress

components may be combined to yield

d22 - io]2 = 2[i[xW' +W7 + ZW77 + ^], (3.27)

an + id2, = + ~W - ZW7 - "S7], (3.28)

where

4/T(r)/T'(r) - rH"(r) - H'(r) ( .

X[ ' rH"(r)-H'(r) ' K '

Using these relations, we may combine the various terms introduced in (3.16)—(3.23) to

obtain

^(7V+its)= C7-^l[xW+ZW7+ w], (3.30)

+ C' rf£.
(xw+ zr + w) - °(Af) (kH/- z»" - w)

ZfX\(5)

(3.31)

= [xw + r + (zr + w')c'2]

-^\*W-W-{zW+»')C% (3.32)

+ ius — i~C" (kW — ZTf77 - vv), (3.33)

where C(L) = C,(L) + iC2(L). Equations (3.30) and (3.31) are immediately applicable

for the conditions (3.21) and (3.22).

To derive the conditions needed in (3.23), we note from (3.33) that the vanishing of un is

simply

Im ~C(kW-Zr — w) = 0. (3.34)

Differentiating the above with respect to L, and then applying the result to the condition

of vanishing ts, we obtain

Im{(x + k)W + (l + o(Ar)/2|i\(S))^(kW- ZW - w)} = 0. (3.35)

4. Circular regions. Let D be the annular region defined by A < \Z\ < B. The primary

deformation is defined by za = \8aAZA so that

r = 2\, an = a22 = o — 2jx[//"'(r) — X]. (4.1)

The objective is to determine whether nontrivial solutions of the form (3.1) exist for

certain values of X when D is subjected to certain types of boundary conditions.
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The constant dead-load traction condition along a circular boundary |Z| = p may be

derived from (3.21) and (3.30). We shall use D[p] to denote this condition and

D[o]=[XW+zW+ w]|2|_p = 0. (4.2)

The constant hydrostatic traction condition along a circular boundary |Z| = p may be

derived from (3.22) and (3.31). In view of (4.1) and the fact H' * 0, this condition,

denoted by //[p], is simply

tf[p]= [W+ZW7 + *]|Z|_p = 0. (4.3)

We note in passing that /f[p] is independent of the primary deformation. Finally, the

lubricated contact condition along a circular boundary |Z| = p, denoted by L[p], may be

obtained by combining (3.34), (3.35) and using (4.1). It is

L[ p]- "('♦£)■-r-ll + 4^-£Tr + (.-£)£ = 0. (4.4)
\Z\-p

In terms of the annular region D[A <\Z\< B], it can be shown that of the three

boundary-value problems

H[A] = H[B] = 0, (4.5)

L[A] = L[B] = 0, (4.6)

D[A] = D[B] = 0, (4.7)

only the last one allows nontrivial solutions. We shall first consider this case in detail.

The mathematical problem is that of the determination of W and w holomorphic in D

and satisfying the boundary conditions (4.7). It follows from these considerations that W

and w must be of the form

7"+1 A"
W-C — + C.n—, (4.8)

z"-1 A"+2
W = Cn 7 + C-n IT . (4-9)n jjn — 2 Zn

where n (n > 1) is an integer and C±n, c±n are arbitrary complex constants. These

constants are zero unless the characteristic condition

2(r) 2(ct)E>2-i)a-«)V-' _ i—\2 (410)
XU XnK > (1 - ««-')(l -«"+1)' \B)'

is satisfied. Using the inequality

n— 1

Y, a* > na(n-1)/2, (4.11)

k~ o

one can show that

Xn(°0 < 1 for all n and 0 < a < 1. (4.12)

Moreover,

X^(°0 («2 — l)«n"1 for n > 1 as a -> 0, (4-13)
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o. o

o(
l.o

Fig. 1.

Xn(°0 1 _ «2(1 _ a) /12 for n > 1 as a -* 1, (4.14)

lim x«(a) = 0 forO<a<l. (4.15)
n-* oo

The qualitative behavior of Xn(°0 's provided in Fig. 1.

The characteristic equation (4.10) now becomes

x(r) = ± x„(°0 (4.16)

«M.(1±».(.))/(«.m^). (4,7,
'(r)

The properties of the two sides of (4.17) may be established by using (2.6)—(2.9):

[H'{r)/r]' > 0,

H'(r)/r < 0 (0 < r < R0), H'(R0)/R0 = 0, H'(2)/2 = {, (4.18)

H'(r)/r > 0 (R0 < r < oo), H'(r)/r -* 1 as r -* oo,

^ - 0 ± " irt ' I 'or. <«„<,< 2. (4.19)

It follows that each of the two equations (4.16) has at least one root. Let rc+(a,n) and

r~(a,n) be, respectively, the roots associated with the equations with + x„ and -\n. Then

(4.18), (4.19) together with the condition

(1 + Xn)/(4 - ^7^) > (1 - Xn)/(4 - ^77^)- (4-20)

lead to the conclusion that r~(a.,n) < rc+ (a,n). Moreover,

1 < R0 < r~(a,2)... < r'(a,00) = rc+(a,oo) < ... < /-c+(a,2) < 2 (4.21)



FINITE PLANE ELASTICITY-HARMONIC MATERIALS 469

which indicates that the buckling load is a hydrostatic compression, i.e.,

a = b*(a,n) = 2|x[//'(/-c±(a,«)) - ^(<*,«)] < 0, (4.22)

6;(a,2) < ... < o~(a, oo) = ac+(a, oo) < ... < ac+(a,2) < 0. (4-23)

Finally, (4.13)—(4.16) imply that if rc is a root of the equation

*(rc) = 0, (4.24)

then

lim rc±(tx,n) = hm /^(a.w) = rc. (4.25)
a—»0 n —* co

Let (Cn,C_n,cn,c_n) = (C„±,C_*,c*,c_±„') be the constants associated with the roots

r = r*(oL,n) of the characteristic equation (4.10). These constants can be expressed in

terms of a single constant, and the relations are

( n + \ \ 1/2/ j _ a«+1 \'/2 J  

c-» = ± (;—r I ^~Vn Q* > (4-26)
n — \ } \ l - J al/2

' (4-27)
1 - a"

1 - a""

^ = («- I) / (4.28)1 — a

This formally concludes the class of solutions governed by the Dead-Load Traction

conditions. This class of problems does not seem to have been discussed in the literature.

As an illustration, we consider a cylinder made of Standard Harmonic Material for

which the material function H(R) has the form

+ <4 29»

where v is a material constant that may be identified with Poisson's ratio for R ~ 2. The

roots of the characteristic equation are found to be

+ / \ 3 — 2v 1 — 2v , . , .'• ' 2(T^) * 2(T^T) X"(«)' (4'30)

The associated buckling loads are

b±(a,n) = [-1 ± x.(«)] ^ ^ (4.31)

and

0c"(a,2) < ... < ac (a, oo) = - ^ — = 6c+(a,oo)

< ... < ac+(a,2) < 0 fora^O. (4-32)
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For the case a = 0, we have

3 - 2v . .
r = r =

2(1 -v)' c 2(1 — v) *

k(rc) = 2(1 - v) (4.33)

The associated explicit results are:

Circular Cylinder of Radius B

W(Z) = C„b(fp1, w(Z) = -(«+ l)Cnfi(|)" (4.34)

«(Z) = 5
n + 1

2(l-v)C„(-j + (« + 1)C„I 1 - — W —
zz\/z

(4.35)

(ur + iWe)lz-Be" = 2(1 - v)BCne'"\ (4.36)

Cylindrical Hole of Radius A

/ 7 \ 1) I 7 \ ~<"+')
W(Z) = C_„Ay — j , w{Z) = (n — l)C_„Ay — j , (4.37)

u(Z) = A
. _ I ZZ\/Z\~("+1)

2(1-v)C.,|7) (4.38)

(ur + in,)|z.^» = 2(1 - v)^C.(4.39)

It is seen that the buckling conditions for the last two cases are the same Eq. (4.24) which,

as we shall see in the sequel, also governs the buckling of a number of other cases. It

should also be mentioned that the specific results (4.34)-(4.36) agree with those described

by Sensenig [9],

We now return to the statement that neither (4.5) not (4.6) allows nontrivial solutions.

The statement is obvious for (4.5) since the primary deformation characterized by r is not

involved in the boundary conditions. For the case defined by (4.6), nontrivial solutions of

the form defined by (4.8) and (4.9) are possible only if the condition

(«> 2) (4.40)
rH * i - x2„(«)

is satisfied. This is, however, impossible since < 1 by (4.12) and hence the condition

(2.7) would be violated.

5. Regions with curvilinear boundaries. The class of problems defined by (4.7) can

obviously be generalized to include regions that may be conformally mapped onto an

annular region. We take the case of a solid cylinder with an arbitrary cross section D as an

example. We suppose that D may be mapped onto the unit circle |£| < 1 in the complex i;

(= £| + i'S2)-place via the transformation

Z = m(&) foralH e Z>£{|S| < 1). (5.1)

Moreover, define

S(S) = JF(m(£)), u(£) = w(w(S)) (5.2)
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which are holomorphic in D^. The dead-load condition becomes (cf. (3.21) and (3.30))

X0(£) + Q'(S) + «(S) = 0, |S|=1. (5.3)
m (?)

The solution is clearly zero unless \(r) = 0. For that case the solution may be expressed

in terms of a single arbitrary function, viz.,

Ott) =/(?;), «(n = -^#/'(s) (5.4)m (S)

where / is holomorphic in Z)?. More general cases may be treated by a similar approach.

The case of an elliptic cylinder with a confocal crack is perhaps an interesting problem.

6. Rectangular regions. Let D+ be the rectangular region defined by

D + : -L < Z, < + L, 0 < Z2< IB. (6.1)

The rectangle is loaded on the sides Z, = + L so that the prebuckling deformation is

defined by the pair of values (\,,\2) leading to the solution:

6n = 2|i[H'(r) - \2], cr22 = 2n[H'(r) - X,] = 0,

a12 ~ a21 0. (6.2)

The objective is to determine whether nontrivial solutions exist under the following

boundary conditions:

TN = Ts = 0 on Z2 = 0, 2B; (6.3)

ts = un = 0 on Z, = ± L. (6.4)

Bucklings of rectangles have been studied by many researchers (see, e.g., [1, 8, 10-14]).

In terms of the complex formulation and (3.30)-(3.33), these conditions are

\W+zW+w = 0 for Z2 = 0, 2B, |Z,| < L. (6.5)

Rel"^ - ZW - wl = 0 , ,
\   J, for Z, = + L, 0 < Z2 < IB. (6.6)

Re[xW+ ZW' +w]=0

Since both H' and H" are positive, there is no possibility for the sum k + \ to vanish. It

follows from (6.6) that

Re W = Re(zlr + iv) = 0 for Z, = + L, 0 < Z2 < 2B. (6.7)

Define a new function WH(Z) such that

jW(Z) for Z e D+,

wh(z) = { l[Zw(Z) + w(Z) ] for Z e 2>-[|Z,| < L, -2B < Z2 < 0].

(6.8)

It follows from the first of (6.5) that WH{Z) is holomorphic in D = D+VJ D~. Moreover,

h,(Z) = -x WH(Z) - ZW'H(Z) for Z e D+. (6.9)



472 CHIEN H. WU AND GUANGZHONG CAO

The two conditions (6.7) can now be reduced to the single condition

Wff(Z) + Wff(Z) = 0 for Z, = ± L, \Z2\ < 2B. (6.10)

Also, the second of (6.5) now becomes

x[WH{Z)-WH(Z)\ +{Z-Z)W'H(Z) = 0 for |Z,| < L, Z2 = 2B. (6.11)

The solutions and the associated buckling condition are:

W„(Z) = A" If e»"(Z-<S)/2L + e-in.(Z-iB)/2L\ (M °dd)' (6 ,2)
HK ' iAn I[ > (neve n), v 7

, N , nvB n-uB ,, ,
x(r)sinh—= —j—, (6.13)

where An are real constants. These are just the solutions obtained in [10]. We note that

there are infinitely many eigenmodes and the associated eigenparameters are distinct.

By formally letting B -* oo in the above, the problem reduces to that of the buckling of

a semi-infinite strip of width 2L subjected to lateral load in the sense of (6.3) and (6.4).

The explicit results are simply

W„(Z) =A")ein"'z/2L JModd)' (6.14)
"V ' >A„I (n even), V ;

X(r) = 0. (6.15)

The properties of the characteristic equation (6.15) have been studied in [2]. It has at least

one and at most a finite number of roots. Associated with each one of the roots, however,

there are infinitely many modes of the form (6.14). In fact, any linear combination of the

form

WH(Z) = £ AneinvZ/2L + i £ Anein«z/2L (6.16)

n odd neven

is also a possible mode. Thus the physical meaning of an eigenmode becomes ambiguous.

We note again that (6.15) is just (4.24).

The functions defined by all the possible solutions, (6.14) and (6.16), are periodical in

Zj. They can, therefore, be formally extended to Z, = + oo. Thus the buckling of the

(upper) half space may be formally described by (6.15) and

WH(Z) = A{k)e'kZ (k > 0) (6.17)

J/-00
' A(k)eikZdk. (6.18)
o

The earliest work on the buckling of a half space was carried out by Biot [1], His work,

together with many other later results [15-18] was based on the assumption of periodicity

in Z,. Our Eq. (6.15) and (6.17) are also based upon the same assumption. We shall see,

however, that the assumption of periodicity is not essential to the establishment of the

buckling condition (6.15). It comes out of the present complex formulation naturally.

The term mode or eigenfunction is customarily used to indicate a specific function

dictated by an eigenvalue which very often also determines the "wave length" of the
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function. For the several classes of buckling problems governed by the buckling condition

x(r) = 0, the buckling solution is completely arbitrary and hence the term mode is no

longer appropriate in the sense described. Moreover, the "wave length" of a buckling

solution is totally unrelated to the eigenvalue. Still, some of the buckling solutions appear

to be more natural than the other in that they come out spontaneously from an innocuous

mathematical analysis. All of the buckling solutions obtained in this paper and the cited

references are of this nature, and we shall term them "natural modes" with the under-

standing that the term does not really have a specific definition.

For the case of a half space, there appears to be another class of natural modes which,

in physical terms, may be even more appropriate than (6.17). We shall derive them directly

from the general complex formulation and, in the process, shall show that the assumption

of periodicity is not essential to the establishment of the buckling condition. The

mathematical problem is that of the determination of holomorphic functions W and w in

D+ [Z2 > 0] such that (cf. (6.5))

+ zW + w = 0 for Z2 = 0. (6.19)

For the conditions at infinity we require that oaA —> 0 so that (cf. (3.27) and (3.28))

W'(Z),w'(Z) -* 0 as |Z| - oo for Z e D+. (6.20)

The analytic continuation (6.8), in which D~ is now the lower half space, and (6.19)

immediately lead to the conclusion that WH is holomorphic in the whole plane. This

conclusion, together with (6.20), shows that WH = 0 unless x('") = 0. Thus the buckling

condition is totally unrelated to the buckling solution. Conversely, when the condition

\(r) = 0 is satisfied the condition (6.19) may be easily satisfied by the choice

W - f(Z), w = -Zf'(Z) (6.21)

where /(Z) is an arbitrary function holomorphic in D ¥ and satisfying the conditions

(6.20). One set of "natural modes" would be

/(Z) =/n(Z) = An/(Z + /')" (n> 1) (6.22)

where An are real so that the solution is either symmetric or antisymmetric with respect to

the Z2-axis depending on whether n is odd or even. The traction-free surface displacement

associated with (6.22) is

«(Z.) = «,(Z„0) + »tt2(Z„0) = k (rc)An(Z, + /)"", (6.23)

which shows the bulging of the surface near Z = 0.

Practically every paper on the subject of buckling of a half space begins with a

statement on possible geological application. With such a statement in mind, it is perhaps

not too over-zealous to claim that the localized buckling may be even more applicable

than the periodical buckling. Mathematically, though, the set of localized natural modes is

neither better nor worse than the set of periodical natural modes. In fact, they should be

related. The solution (6.21) may be obtained from (6.18) by setting

A{k) = (6.24)
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7. Post-Buckling. Post-buckling analysis requires the inclusion of higher order terms and

the result is in general an amplitude-eigenvalue curve branching off a critical eigenvalue

(see, e.g., [19]). To the best of our knowledge, analysis of this nature has not been applied

to cases where infinitely many solutions are associated with a single critical eigenvalue.

Our attempts have been motivated by this observation and so far we have not been able to

overcome certain difficulties involved.

Consider, for example, the buckling of the upper half space. If we try to trace the

branch generated by (6.17), the higher order equations will involve a "forcing" term of the

form e~'kZ. Similarly, tracing a branch generated by (6.21) will lead to a forcing term of

the form An/(Z — /)". This phenomenon is typical of all the cases we have considered. In

an ordinary case, the "frequency" of the homogeneous part of the higher order equations

is fixed by the choice of mode and hence all one has to do is to remove one secular term.

But here the homogeneous part of the higher order equations is not affected by the choice

of natural mode and, worse than that, the " forcing" function contains many secular terms.

Either there is a way to remove all the scalar terms or the answer has to be that there are

no nontrivial solutions. In the latter case, what would be the meaning of a buckling load

obtained in this paper and many other cited references?
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