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Abstract. In this note we discuss the thermal stress problem for a thermorheologically-

simple linearly-viscoelastic body, subjected to a spatially-uniform temperature field and

homogeneous boundary conditions, assuming that Poisson's ratio is constant and inertia

negligible. In particular, we consider the following optimization problem: of all tempera-

ture paths 6{t), 0 < t < tf, which belong to a given function class, is there one which

renders a given stress measure a minimum at time tf. We show that a resulting optimal

path 6(t) (if it exists) is canonical: 6(t) is independent of the shape of the body and of the

particular homogeneous boundary conditions.

The viscoelastic problem. We consider a thermorheologically-simple viscoelastic material

subject to a spatially-uniform temperature field. We assume that Poisson's ratio v is

constant. The stress S(x, t), strain E(x, t), and temperature1 6(t) are then related through

the constitutive equations2

S(x, t) = f'G($(t) - £(s))Q(x, s) ds,
Jo

with G(t) the scalar relaxation function, a the coefficient of termal expansion,

'Received January 18, 1983. This study was supported by the Army Research Office and the National

Science Foundation.

1 Actually, 6 is the temperature increment relative to a fixed reference temperature.

2Cf., e.g., Muki and Sternberg [1].

3 We use the following notation (cf., e.g., Gurtin [2]): upper-case boldface letters are second-order tensors;

AT and tr A are the transpose and trace of A; | A | = (A^A^)'^2 (summation over repeated subscripts implied);

I is the identity; divS is the vector field with components dS^/dxy, Vu is the tensor field with components

du,/dXj.
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i(t)=fy8(p))dp (2)

the reduced time, and <p(0) the shift factor.

As a customary, we assume quasi-static conditions; the remaining field equations then

take the form

divS = 0, E = |(vu+ vuT) (3)

with u(x, t) the displacement. Here and in what follows the time is confined to the interval

0 < t < oo, it being tacit that u, E, S, and 0 all vanish for t < 0.

We limit our attention to the homogeneous boundary conditions

u = 0 onS,, Sn = 0 onS2, (4)

where S, and S2 are complementary subsets of — and n the outward unit normal to — the

boundary of the body <$.

The boundary-value problem (l)-(4) can be solved, at least formally, as follows. Write

(1), in the form

S = G#Q. (5)

Since 0 is independent of position, the operation # commutes with spatial differentiation.

Hence (3)2 becomes

G # (div Q) = 0,

which is satisfied by taking

div Q = 0. (6)

Similarly, the boundary condition (4)2 is satisfied provided

Qn = 0 on S2. (7)

Our problem thus reduces to solving the linear thermoelastic problem defined by the field

equations (1)2, (3)2, and (6) and the boundary conditions (4), and (7). Let Q = P(x)

denote the solution to the boundary-value problem corresponding to 0(t) = 1, for all t.

Since the boundary data are null and the field equations linear, the solution of the

thermoelastic problem is4

Q(x,r) = 0(OP(x);

hence (5) yields

S(x, t) = t(/)P(x),

t = G # 6. (8)

Optimal temperature paths. Assume we are given a (spatial) stress measure 2(A) defined

for all sufficiently nice (symmetric, second-order) tensor functions A(x) on $. Regarding

the properties of 2, we need only suppose that 2 > 0 and that

Z(0A)=|J8|2(A) (9)

4 We assume the data such that both elastic and viscoelastic problems are well posed (in the sense of

existence and uniqueness).
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for any scalar constant /?. Examples of stress measures are the L2-norm

1/2

2(A) =

the sup-norm

459

/ \M2dv
Ja\

2(A) = sup |A(x)|;
xe®

the \0-evaluation of | A | (x0 a particular point of ®)

2(A)=|A(x0)|;

the L2-norm, sup-norm, or x0-evaluation of either the octahedral shear stress or the

principal-stress magnitude corresponding to A.

The optimization problem under consideration consists in finding temperature paths

that minimize the associated stress measure.5 To state this problem succinctly, let us agree

to use the term temperature path for a function 6(t), 0 < t < tf, which belongs to some

prescribed function class <3. For example, may be the set of all sufficiently regular

functions that have 0(0) and 0(tf) equal to given initial and final temperatures. Given a

temperature path, we write

S/(x) = S(x,tf),Tf= r(tf)

for the corresponding functions computed using (8). (Here and in what follows tf> 0 and

W are fixed.)

Optimization problem. Find a temperature path 0(t) that minimizes the stress measure

2(S\f).
By (8), and (9),

2(S/)=|r/|2(P). (10)

2(P) = 0, (11)

then all temperature paths are optimal; we henceforth exclude from our discussion

situations in which (11) is satisfied. We then conclude from (10) that the optimization

problem is equivalent to the

Reduced optimization problem. Find a temperature path 6(t) that minimizes | iy|; i.e.,

that minimizes the functional

j\(0{P)) dp)<? (s) ds (12)6

5 This problem —within an essentially one-dimensional framework — was studied by Weitsman and Ford

[3], Weitsman [4], and Gurtin and Murphy [5]. Problems of this type arise, for example, in the curing of

polymeric materials (cf. [3-5]).

6 Generally, solutions of this problem will not be everywhere differentiable [3-5], so that (12) must be

interpreted in some generalized sense (cf. [5]).
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A direct consequence of this equivalence is the following interesting result: the optimal

path, if it exists, is independent of the shape of the body, of the particular homogeneous

boundary conditions, and of the particular stress measure.

The foregoing equivalence is important as it allows one to determine the optimal

temperature path without solving the underlying boundary-value problem.

Actually, a slightly stronger result is possible. Let us agree to call a temperature path 6

better than a temperature path 0 provided

2(S,) < Z(Sf)

(using obvious notation). It then follows from (10) that: if 6 is better than 0 for a given

body under given homogeneous boundary conditions, 6 is better than 6 for any body under all

such boundary conditions, and for any choice of stress measure.

This result is important experimentally as it shows that a "good" temperature path

determined experimentally using a configuration amenable to testing is "good" for bodies

of all shapes.
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