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Abstract. The classical moving boundary problems arising in the freezing or chemical

reaction of spheres, cylinders and slabs are considered. An integral method is employed to

formally effect the integration of the motion of the moving boundary. This formal

integration permits upper and lower bounds to be deduced for the motion and in

particular simple upper and lower bounds are established for the time to complete freezing

or reaction (that is, when the moving boundary reaches the centre of the sphere or

cylinder). In addition an improved second upper bound on the motion is achieved by

demonstrating that the dimensionless temperature or concentration is bounded above by

the standard pseudo steady state approximation. The use of the integral formulation as an

iterative scheme and the generalisations for a time dependent surface condition and a non

nlinear diffusivity are also briefly considered.

1. Introduction. Moving boundary problems are frequently encountered in science and

engineering and are important in many industrial processes such as casting thermoplastics

or metal, freezing or thawing of foods and the production of ice. In chemical engineering

the chemical reaction of a spherical particle is an important process. In this paper we

consider the classical moving boundary problems arising in the freezing or chemical

reaction of spheres, cylinders and slabs and we establish essentially two new results.

Firstly we show that an integral formulation of the problem leads to a formal integration

of the motion of the boundary and secondly we show that the temperature or concentra-

tion is bounded above by the pseudo steady state approximation. The first result means

that upper and lower bounds can be deduced for the motion of the boundary and the time

to complete freezing or reaction, whilst the second result gives rise to an improved upper

bound for the motion of the boundary. For an extensive review of related literature we

refer the reader to Davis and Hill [1],

Henceforth for convenience we detail results only for the spherical geometry. Corre-

sponding results for cylinders and slabs can be deduced in an entirely analogous manner

and the main results can be found in a subsequent section. The classical Stefan problem
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for a sphere with Newtonian cooling on the surface is as follows:

8c 82c 2 8c , , , ,

¥ = ̂  + 7¥' *(<)<'<*. 0-0

c(l, 0 + 0^(1,0 = 1, c(R(t), t) = 0, (1.2)

|^(/t(/),0= "«*'(<). *(0) = 1, (1.3)

where a and fi are positive and non-negative constants, respectively, c(r, t) is the

dimensionless temperature or concentration and R(t) represents the position of the

moving boundary. It is important to note that in both the freezing and reaction problems

the temperature or concentration is non-dimensionalised so that c(r, t) satisfies,

0 < c(r, ?) < 1. (1.4)

The time to complete freezing, deoted by tc, is defined by R(tc) = 0. Since there is no

known exact solution to this problem, various numerical and semi-analytical techniques

have been devised.

Numerical solutions for such problems are given by Tao [12] while a number of authors

have presented perturbation and boundary layer approaches to the problem (for example,

Pedroso and Domoto [3], [4], Riley, Smith and Poots [5], Soward [10] and Stewartson and

Waechter [11].) Integral approaches are given, for example by Goodman [2], Savino and

Siegel [6], Shih and Chou [7], Shih and Tsay [8], and Theofanous and Lim [13]. Here we

utilize essentially the integral formulations employed in [6, 7, 8, 13] which is not always

apparent due to differences in notations and in transformations of basic variables. The

thrust of this paper is to exploit this method to effect a formal integration of the motion of

the boundary and consequently deduce a number of simple bounds. These simple, readily

obtainable results should be contrasted with the elaborate calculations involved in many

of the above papers.

The pseudo steady state approximation for this problem is formally obtained simply by

neglecting the time partial derivative in (1.1). The resulting temperature and motion of the

boundary are then given by

/ ,\   [r-MO]
cpss(r> 0 r i i / o i \ d i \i' 0 *^)

r[l + (0- l)*pss(0j

r = f [l + 2/J - 3tf2pss - 2(/? - l)*3pss], (1.6)

and this solution can be shown to be asymptotically valid for large a (see Pedroso and

Domoto [3]). In what follows we need to distinguish between the pseudo steady state

motion of the boundary, (1.6), and the actual motion. We therefore introduce a more

convenient notation

c0('-,') = cpss(r, t), R0(t) = Rpss(t). (1.7)

In addition it is convenient to define here the function appearing in (1.6), namely

S3(x) = 1 + 2p - 3x2 - 2(0 - l)x3. (1.8)
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We observe from (1.6) that the pseudo steady state estimate of the time to complete

freezing is given by

*0 = f( 1+20). (1.9)

A formal regular perturbation in powers of a-1, that is

c(r,t) = c0(r,t) + C'^'^ +°(~), 0-10)

gives rise to C,(r, t) which is singular as the boundary approaches the centre of the sphere.

However the order one corrected approximation to the motion of the boundary is well

defined for R(t) tending to zero, and in fact we have

<>■»>

so that in particular the order one corrected estimate of the time to complete freezing is

given by

t\ = (<X 6 ^(1 +2/?)- (1.12)

In the following section we utilize (1.4) to bound the motion of the boundary and show

that the time to complete freezing satisfies the simple inequalities

f(l+2j8)<re<^y-^(l+2j8). (1.13)

In the same section we also establish

c(r, t) < r , (1.14)
r[ 1 + (p-l)R(t)] V

which leads to an improved upper bound to the motion (which is in fact the first two

terms on the right hand side of (1.11)).

In Sec. 3 we state the main results for cylinders and slabs while in Sec. 4 we consider the

integral formulation as an iterative procedure. In Sees. 5 and 6 we respectively consider

the appropriate generalisations of the results of Sec. 2 for problems with a time dependent

surface condition and a non-linear diffusivity. In Sec. 7 some numerical results are

presented. Finally in this section we remark that since we assume that a well behaved

solution to this problem does in fact exist, we might refer the reader to the recent paperr

of Solomon, Alexiades and Wilson [9] for consideration of such matters.

2. Integral formulation and bounds. On multiplying (1.1) by r2 and integrating from R(t )

to r we obtain, on using (1.3),,

3c , N 8

JR(t)

and a further integration making use of (1.2)2 gives,

yr(r, t) = r-*VtfRJ*[a + c({, /)] dL (2.1)

m making use of (1.2)2 gives,

-(r'0 = ̂ / s(i _ f)[« + c(£. 0] (2-2)
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and a change in the order of integration is justified by observing that the appropriate

integrand is bounded on the region under consideration. From these two equations and

(1.2),, we find

1=1/' €[1 + (j8-1)€][« + cU,0]#, (2-3)
at JR(t)

which evidently integrates to give

t=(] £[l + (p-l)i][a + c{i,t)]di, (2.4)
JR(t)

or alternatively in terms of S3 defined by (1.8) we have

t = ^S,{R) + [' *[l + (0 - l)t]c(t, t) dt (2.5)
0 JR(t)

Since c(r, t) is unknown (2.5) represents only a formal integration of the motion of the

boundary. However from (1.4) and (2.5) it is apparent that the boundary motion satisfies

the simple inequalities

f (2.6)
From (2.6) we obtain immediately the inequalities (1.13) for the time to complete freezing.

These inequalities, although simple are clearly practically very useful, especially for large

a. It is apparent from (2.6) that the pseudo steady state boundary moves faster than the

actual boundary, that is R0(t) < R(t)- In the remainder of this section we establish (1.14)

which leads to an improved upper bound for (2.6) but (1.13) unfortunately remains

unchanged.

We use the convention that when R(t) is employed as the independent variable instead

of t we write

c(r, t) = c*(r, R). (2.7)

From (2.2) and (2.3) we find on eliminating R'(t)

c*(r R) - laR(r ~ *> ~ /**(*• ~ 0(^*/dR)U, R) dj]

r(aR[ 1 + (/? - 1 )R] - J* |[l +(P ~ l)l](3c*/3«)(|, R) d£) '

We note that the validity of the pseudo steady state approximation for large a can be at

least formally established from (2.8) by observing that the first terms in both the

numerator and denominator will dominate if a is large. In order to establish (1.14) we

have from (2.8)

C*(r"R) " r[l +(fi- \)R]

_ ([1 + (P- \)r]Kt{£- R)(dc*/dR){j, R)dt + {r-R )/r'g[l +(j8 - \)£](dc*/dR)(t, R) dj)

r[l +(P- \)R](aR[\ +(P~ 0«] " //J «[1 HP - \)i](Zc*/dR)tt,R)dt)

(2.9)

and for yS > 0 this expression is clearly negative provided that 6 c*/dR < 0. This is

certainly the case since
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= <210>

and from physical considerations clearly R'(t) < 0 and dc/dt > 0. Thus (1.14) follows.

From (1.14) and (2.5) we obtain in place of (2.6) the following inequality,

fs,w<,<fs,w + (^(U±M^), (,n)

which is an improved upper bound for the motion of the boundary but does not change

(1.13). Again we remark that the upper bound in (2.11) is precisely the order one motion

as given by (1.11). In the following section we state without derivation the main formulae

for cylinders and slabs.

3. Cylinders and slabs. For the cylinder instead of (1.1) we have

3c 32c 1 3c , x , , ,
-5- = —7 + — R(t) < r < 1, (3.1)
3/ 3r2 r dr v ' v '

while (1.2) and (1.3) remain unchanged. In terms of S2 defined by

S2(.x) = 2x2log x + (1 + 2/S)(1 — x2), (3.2)

the pseudo steady state approximation is given by

[log r — log j?0(f)] t=»s(R) (33)

o{,) [/8 — log jR0(0] ' 4S2(R°>- (3J)

Instead of (2.2) and (2.4) we have

c{r,t) = Yt( £0ogr - log£)[« + c(£,/)] d£, (3.4)
at

t~- C £(P - log |)[a + c(L 0] (3-5)
R(t)

and from (1.4) and (3.5) we obtain the inequalities

fs2(*)<f<-^j^s2(*), (3.6)

|(1 + 2/?)</c<^^i(l +20). (3.7)

Exactly as in the previous section we can establish that

c(r, /) < (log r — log «)/(/? - log R), (3.8)

and from (3.5) and (3.8) we obtain

f«*)<r «=!«*)+ i((1 + 2/1 + <3-9>

which improves the upper bound in (3.6) but not in (3.7).

For the slab we can use the same Eqs. (1.2) and (1.3) while instead of (1.1) we have

| = 0, *(,)<,<■, (3.10)
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and we interpret the time tc to complete freezing as the time taken for the moving

boundary to reach the origin. With 5, defined by

S,(x) = 1 + 2/3 - 2(1 + 0)x + x2, (3.11)

we obtain the following formulae:

%(-■<>=

'(r'0=a7 / (r ~ £)[« + <•(£> 0] (3.13)
Ot JR{t)

t= /"' (1 + /? -£)[« + c({,0]rff (3.14)
JR(t)

Equations (1.4) and (3.14) give

while the inequality

and (3.14) gives

| (3.15)

f (1 +2j8)<rf<^y^(l +2)8), (3.16)

:(r,t)<(r-R)/(l+0-R), (3.17)

Unlike the sphere and cylinder we obtain an improved upper bound for tc, namely

!(1 + W«,c«!(, + W + ilL±ff. <3-l9>
We note that in the case fl zero the problem for the slab admits the well known exact

solution

1/2

(r, t) = 1 - erf|-^-^ j/erf(!) , (3.20)

R(t) = 1 - {2yt)W1, (3.21)

where y denotes the positive real root of

, l/2 I y\ 1/2
aey/2

and it can be shown that these results satisfy the above equations (3.13)—(3.19) with

/? = 0. This exact solution is compared graphically with the pseudo steady state solution

in the final section of the paper. We also observe that for /? = 0, (3.18) and (3.19) together

with the exact result (3.21) both reduce to the same inequalities, namely

a =£a + |. (3.23)

Numerical values given in Table 1 indicate the validity of these inequalities.



INTEGRAL FORMULATION FOR MOVING BOUNDARY PROBLEMS 449

a

0.20

0.25

0.50

1.00

2.00

5.00

10.00

50.00

100.00

500.00

0.4453

0.5043

0.7801

1.3005

2.3145

5.3251

10.3291

50.3325

100.3329

500.3332

a+i

0.5333

0.5833

0.8333

1.3333

2.3333

5.3333

10.3333

50.3333

100.3333

500.3333

Table 1. Values of y 1 and a + j for various values of a.

4. Integral formulation as an iterative scheme. The procedure of [6, 7, 8, 13] is to utilize

(2.8) as an iterative scheme taking the pseudo steady state result as the initial approxima-

tion. Although we make no use of this procedure, we make one or two observations about

this method for the sake of completeness. From (2.5) and (2.8) we see that we may

generate successive approximations for t(R) and c*(r, R) by

tn+i(R) = ^S3(R)+f^[\ + (li- (4.1)

tf+i(r, R)

(aR(r - R) -(9/9R)f^(r - Qc.«( j, R) dj)

r(«/?[i + (/?- i)«] -(3/3*)/*€[i HP- iKk*U,R)dt) '

(4.2)

Due to the unusual nature of the integral Eq. (2.8) the problem of convergence of the

scheme appears to be a non-trivial matter. We merely make the following comments.

Firstly we observe that the pseudo steady state approximation (1.5) and (1.6) arises out

of (4.2) and (4.1) respectively by taking c_,(r, t) = 0 as the initial approximation. Thus

the pseudo steady state solution may be considered as a first iteration of the scheme and

not simply an arbitrary initial approximation as is commonly supposed. For the second

iteration we find

w ^ (r-*)(6a*[l +(/?- \)R]2 + (r - R)[3 + (ft - l)(r + 2R)])
C \ f iv I —  

2r(3a/?[l +(j8 - 1 )R]3 + 3)8(1 - rt)[l +(/? - 1)*] + {P ~ 1)2(1 ~ *)3) '

(4.4)
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and in principle it is possible to proceed further. However the calculations become rather

tedious and the results are of doubtful value. For example, for /? = 0 the scheme produces

results which have undesirable properties when a > 1. Thus

(0)

is not uniquely invertable for a > 1. Moreover for fi = 0 and a > 1 we find that c*(r, R)

has a denominator which vanishes for some R in (0,1) so that both c*(r, R) and ?3(R) are

unbounded. Clearly a detailed examination of the convergence of these schemes is

necessary.

5. Time dependent surface condition. In this section we consider the problem (1.1), (1.2)

and (1.3) with (1.2), replaced by

c(l,f) + 03c(l,O/3r = /(O, (5-0

where f(t) is assumed to be a positive monotonically increasing function of time. We

emphasize that generally the results of this section will not be applicable if /(/) is not

positive nor monotonically increasing. We employ the notation

g(t) = d*• (5-2)

The pseudo steady state solution is given by

( - /(0[r-*o(0] /,\-£e tJ>\ (*-x\
Co(r' } r[l + (p-\)R0(t)]' g( } 6 °)'

where S3(x) is defined by (1.8). For the integral formulation (2.1) and (2.2) are still valid

but in place of (2.4) we have

g(t) - f]' |[1 + (P- 1)£] [a + c(€, 0] dt (5.4)
R(0

From the equation corresponding to (2.8) and recalling that ft 3= 0 we can show that

instead of (1.4) and (1.14) we have together the inequalities

0<c(r,f)< vi </(0- (5-5)
v ; r[\ + (p - 1 )R(t)] W V '

From this and (5.4) we have, in the usual way, the following inequalities for the motion of

the boundary, which are in fact generalisations of (2.6) and (2.11) respectively,

fs](«)<8(')<[''+/(')]S]W, (5.6)

both of which yield

|(1 + 2f3)<g(tc)<[a+f6{tc)](\ + 2/3), (5.8)
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for the time to complete freezing tc. For example if we take f(t) = t, then (5.8) gives

f(l + 2/?)]'/2<fc<[}(l + 2)8)]'/2[« + ^(l + 2>8)]'/2 + (1 +62^. (5.9)

6. Non-linear diffusivity with no radiation. In this section we consider the problem

¥ = r_2^(r2Z)(c) If)' *(*)<r< 1, (6-1)

c(l,0 = l, c(R(t),t) = 0, (6.2)

D(0)|p(/i(0,0 = -«^(0, «(0) = 1, (6.3)

where D(c) is a positive monotonically increasing function of c such that Z>(0) is non-zero.

We introduce F(c) such that

F(c) = [CD(p)dp. (6.4)
•'o

The pseudo steady state approximation is given by

F{c°{r'r))=F(![i~' F{i)t=?{R°~1)2(1+2Ro)■ (6-5)

We find that in place of (2.2) and (2.5) we have

F(c(r, f))=Aj $(l [a+ c(£,/)]</£, (6.6)

F{l)t=( i(l-0[«+ *(€,/)]#• (6-7)
JR(t)

The integral equation for c*(r, R) = c(r,t) becomes

F(l)(a/?(r -R)- Jj(r - $)(dc*/dll)(e, R)

F(c(r,R))~ dc*/dR)(^R)di) ' (6'8)

and again assuming that R'(t) <0 and that dc/dt > 0 we can establish from (6.8)

(69)

Thus we have

0 < F(c*(r, R)) < F(c*0(r, R)) < F(l), (6.10)

and therefore provided that D(c) is monotonically increasing we obtain

•-•"■''-MTfeS?)-' »">
From (6.7) and (6.11) the inequalities corresponding to (2.6) and (2.11) are

5(R ~ 1)2(1 + 2R) <F(l)/< * 1\r - 1)2(1 + 2R), (6.12)
6 o
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^(R - 1)2(1 + 2R) < F(l)f
6

<f (R - l)'(l + 2R) +/Jf(l f) ii.

(6.13)

and for tc both (6.12) and (6.13) yield simply

(6.14)

Finally in this section we note that it is apparent from (6.6) that the case non-zero does

not permit a similar analysis.

7. Numerical results. For the slab, with ji = 0, Fig. 1 shows the variation of the exact

solution c*{r, R), as derived from (3.20) and (3.21) and the pseudo steady state solution

c*(r, R), derived from (3.12), at equal time intervals between (6y)_1 and (2y)_l. In Fig. 2

the variation, for the sphere, of cf(r, R), as given by (4.4) and c*(r, R), obtained from

(1.5) is illustrated for a = 2 and /3 = .5, at equally spaced positions of the moving

boundary R. We observe that cf(r, R) < c$(r, R). In Figures 3 and 4 we show, for the

sphere and cylinder respectively the upper and lower bounds for the motion of the moving

Z
o
H

H
z
w
CJ
z
o
u

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

DISTANCE

Fig. 1. Concentration verses distance for the slab with a = 1 and

/3 = 0 for exact c*(r, R)( ) and cj(r, R){—).
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1.00

• 90

z -70
o
H -60

H -50
Z
W
U .40
z
o
U .30

.20

.10

.00 J i I i !_^i L_j 1 . I l^J , I i I . I
.10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

RADIAL POSITION

Fig. 2. Concentration verses distance for the sphere with a = 2

and /3 = 0.5 for Cq(/\ /?)( ) and cf(r, R)( ).

£
<
Q

O
CO

.00 .55 1.10 1.65 2.20 2.75 3-30 3-85 4.40 4,95 5-50

TIME

Fig. 3. Upper and lower bounds for the motion of the moving

boundary for the sphere with a = 10 and (i = 1 (improved upper bound ).
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£
<
Q

O
ffl

.00 .83 1.65 2.<8 3.30 4.13 4-95 5.78 6.60 7.43 8.25

TIME

Fig. 4. Upper and lower bounds for the motion of the moving

boundary for the cylinder with a = 10 and J3 = 1 (improved upper bound ).

boundary, as determined from the inequalities (2.10), (2.11) and (3.6), (3.9), for a = 10

and J3 = 1. It should be noted that as J3 becomes larger, the improved upper bounds, given

by (2.11) and (3.9), tend toward the lower bounds, except for when the boundary is very

near the centre.
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