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FORMAL RELAXATION OSCILLATIONS FOR A MODEL

OF A CATALYTIC PARTICLE*

By

S. P. HASTINGS
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I. Introduction. This discussion is motivated by the following system of equations from

chemical engineering.

3m d2u 2 , s . ,
(U)' (0

Le^7 = + P<P2"F(v) (2)

where F(v) = ey<v~I)/o. The unknown functions u(x, t) and v(x, t) are proportional to

the concentration of reactant and temperature in a one-dimenisonal porous catalytic

particle. A complete explanation of this pair of equations can be found in the major

treatise of R. Aris [3], whose notation we follow throughout. In particular, the physical

significance and observed ranges of the parameters can be found there. (See especially Sec.

2.7). The equations are considered in a region 0 < x < 1, t > 0, with boundary conditions

3m 3t> , *
_ = _ = 0 at* = 0, (3)

= r(l - u) at x = 1, (4)

"|~ = M1 ~ v) at x = 1. (5)

The parameters, Le, y, /?, <p, v and /x are all positive.

Equations (1)—(5) describe a slab of catalyst with Arrhenius kinetics and Robin type

boundary conditions. While the particle is considered to occupy the region — 1 < x < 1,

only solutions which are symmetric around x = 0 will be discussed, resulting in boundary

conditions (3)—(5).

A further inspiration for this work is an important numerical study of a variant of this

problem which was carried out by J. C. M. Lee and D. Luss [7]. Spherical geometry and

Dirichlet boundary conditions (u = v — 1) were assumed, and it was found that periodic
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solutions appear when Le is small enough. The initial appearance of these oscillations as

Le is lowered from 1 seems to result from a Hopf bifurcation, but as Le decreases further,

the sinusoidal character of the solution is lost.

In [9] W. H. Ray and the present writer suggested that these periodic solutions tend to a

"relaxation oscillation" as Le -> 0. We studied a related model, the ordinary differential

equations of a continuous stirred tank reactor (CSTR) in some detail, and noted

qualitative similarities of this system to van der Pol's equation. (The scaling and notation

in that paper were different from those used here.) A related study was done by Chang

and Calo [4]. Both of these references concentrate on spatially homogeneous situations,

though in [9] some conjectures are made concerning spatially inhomogeneous solutions,

the purpose of this paper is to give a more complete analysis of a spatially non-uniform

configuration.

The numerical integrations of Lee and Luss were done with y = 30, which is "large" in

this context. It was found that the solution changes slowly for all but about 6% of the

cycle, while during this relatively short interval a "hot spot" develops near jc = 0 and

spreads rapidly toward x = 1, with very steep spatial gradients being exhibited for a brief

time.

An appropriate averaging, or "lumping" technique can be used on Eqs. (l)-(5) to arrive

at a pair of ordinary differential equations resembling those of the CSTR, and as in [8,9],

relaxation oscillations are found. Four distinct sub-intervals of a single period can be

identified, two of length O(Le) as Le -> 0 for fixed y, one of length 0(l/y) as y -> oo

uniformly in Le, and one of length 0(e~Y/y2) as y -» oo, also uniformly in Le. These four

intervals are not apparent in the computations of Lee and Luss, probably because

numerical stiffness prevented choosing Le smaller than 1/10.

We do not carry out a careful asymptotic analysis of the p.d.e.'s, though if feasible this

would be a worthwhile project. The treatment here is too coarse to explain the hot spot.

Instead, a somewhat simplified model is studied in enough detail to make the relaxation

character of the oscillations clear. This is done formally, giving what amounts to the

lowest order term of an expansion of the periodic solution in powers of Le. A simple

graphical method is presented for estimating how large y must be to support oscillations

for given /3 and <p. A few computations are included to show that periodic solutions occur

for reasonable values of fl, y, and <p, if Le is small enough. Estimates of the period and

amplitude of the oscillation for large y are presented. Well known results can be used to

obtain a more accurate asymptotic estimate of the period as y -» oo.

II. Formal relaxation oscillations. A prototype for the study of relaxation oscillations is

van der Pol's equation y + p.(y2 — 1 )y + y = 0. Setting s = et, U(s) = — e/0' y(r) dr,

V(s) = y(t), and e = 1/jn leads to the equations

e2V = V— (V3/3) + U,

U'= - V (6)

where ="d/ds", and we assume (without loss of generality) that ey'(0) = y(Q) —

y(0)3/3. For e > 0 this system has a unique orbitally asymptotically stable periodic
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Fig. 1

solution, and as e -» 0 the phase plane trajectory of this solution tends to the dotted curve

in Fig. 1.

By a "formal relaxation oscillation" for (6) we mean a piecewise continuous curve

s -» (V(s), U(s)) such that U and V are periodic with some smallest period p > 0 and the

following conditions hold in [0, p].

(a) U — (V3/3) - V

(b) U is continuous, and V is continuous except at jump points s, and s2 in [0, p}.

(c) U'(s) = — V(s) except as 5, and s2.

(d) At s, and s2, V jumps from a relative maximum or minimum of the cubic curve

U — (V3/3) — V to a stable equilibrium point of the single equation

e2V = U(Sj) + V- V3/3.

The precise form of the nonlinearity is not important, not is it necessary that the

equation be linear. As a generalization of (6) consider a system

e2V'=U-f(V),

U'=g{U,V). (7)

One could list properties of / and g which imply the existence of relaxation oscillations. In

Fig. 2 we simply sketch a typical phase plane, including the curves U = f(V), g(U,V) = 0,

and a dotted curve which indicates the trajectory of a formal oscillation.

Observe that the equilibrium points of (7) are all on a decreasing segment of the curve

U = f{V). Otherwise the system may not support a relaxation oscillation because the

equilibrium point could be stable.

Turning to (l)-(5), in order to discuss relaxation oscillations one must consider the

"reduced system" (as Le -» 0), which consists of (1) together with a "steady state"

problem in v, namely

v" + y(p2uF(v) = 0,

t/(0) = 0, o'(l) = M(l-o(l)). (8)
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This problem defines v as a function of x for each t, since m( •, t) varies with t according to

(1).
Unfortunately it is difficult to analyze the solutions of (8) for various functions u, even

if Dirichlet boundary conditions are assumed, and so we have been unable to prove the

existence of a formal relaxation oscillation for (l)-(5).

III. A partial averaging. For this reason we now introduce a system consisting of an

ordinary differential equation for the concentration u coupled with a partial differential

equation for the temperature v. The model, which was apparently first given by N. R.

Amundsen and L. R. Raymond [2], describes a situation in which " there is no resistance

to mass transfer within the particle, and any resistance which may be present may be

lumped at the surface... and characterized by a mass transfer coefficient. Heat generated

within the particle must be conducted to the surface through the particle, the heat carried

by the reactants and products being neglected." Upon rescaling it may also be viewed as

an approximate model of a particle with very low temperature conductivity.

The equations are

^ = 1 - u - (p2uj*F(v(x, 0) dx, (9)

LC^ = 9^ + l3(p2uF^' (10)

|^(0,0 = 0, o(l,/)=l. (H)

The simplified nondimensional form will suffice for a qualitative explanation of the

oscillations. The Dirichlet condition on v at x = 1 results, formally, from letting ju -» oo in

(5). Although Amundsen and Raymond indicated that they found this system difficult to

analyze, subsequent mathematical advances make (9)—(11) significantly easier to deal with

than (l)-(5), at least in the limit as Le -» 0. This will be seen further on.

The system (9)—(11) can be obtained from (l)-(5) by formal asymptotics. By rescaling

in (1), a parameter 1/tj, i) « 1, can be introduced in front of the diffusion term 32u/3x2,

while keeping Le small. It is also necessaru to let v = rj in (4), and take o(l) = 1 instead of

(5). This approach is similar to that of D. Cohen and A. Poore in their analysis of a

tubular reactor [5]. If a solution is sought in the form

00 00

u(x, 0=2 ",(*> Ov', v(x, 0=2 «,■(*> 0 V
<=o <=o

then the lowest order terms u0 and t>0 are found to satisfy (9)—(11). Unfortunately, it is not

clear that the assumption tj « 1 is physically justified in our case. Nevertheless, study of

this system is worthwhile if it leads to greater understanding of the factors which can give

periodicity in an exothermic chemical reactor. For example, our results suggests that

oscillations can be driven by temperature gradients together with fluxes of reactant and

heat at the boundary.

Mathematically the system (9)—(11) is still infinite dimensional, since it involves a

partial differential equation, and we are not aware of previous demonstrations of formal

relaxation oscillations for such a model.
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Recent results of H. Matano [8] imply that if (u(t), v(x, t)) is a solution (9)—(11) and

t)x(x, 0) < 0 on (0,1), then vx(x, t) <0 for all x in [0,1], t > 0. This implies that solutions

of this system cannot exhibit the sort of hot spot seen by Lee and Luss, in which distinctly

non-monotone temperature gradients are seen at times in the cycle.

IV. Formal relaxation oscillations for (9)-(ll). By formally taking Le = 0 in (1) we

arrive at the boundary value problem

v" + <p2uF(v) = 0,

i/(0) = 0, o(l) =1. (12)

This is a much studied problem, with the most complete published results to date

appearing in a recent article by N. Dancer [6]. He shows, for more general problems as

well as (12), that solutions of (12) with u(0) — 1 = 0( 1/y) as y -» oo are close to solutions

of the so-called Gelfand problem

v" + Sey = 0
(13)

/(o)=j(i) = o

where y ~ y(v — 1) for large y. This problem can be solved exactly [3] and it is known

that there is a critical value Sc « .878 such that (13) has two solutions if S < Sc and no

solutions if S >SC. Dancer's work then gives complete asymptotic information about the

"small" solutions of (12); that is, those solutions with t>(0) — 1 = 0(l/y). Recently J. B.

McLeod [private communication] has obtained even more complete results, for all

solutions of (12).

As a preliminary remark about (12), note that F(v) > 0, so that if v is a solution, then

t/<0 and v" < 0 on (0,1).

Let T = {(«, v(-)) | u > 0 and (12) is satisfied}. It is shown in [5] that T is a smooth

curve in R+ XC[0,1] with end point u = 0, v = 1. If f denotes the projection of this

curve into R2 given by the mapping (w, t>(-)) -> (u, o(0)), then it is easily seen that f is the

graph of a function u = m(o(0)). The definition of a formal relaxation oscillation can be

given in an elementary manner using this function. (More sophisticated concepts could be

used, but seem unnecessary here.) This definition parallels (a)-(d) above.

Definition. A formal relaxation oscillation for (9)-(ll) is a piecewise continuous curve

s -> (u(s), v(-,s)) in R + XC[0,1] with some period p > 0 such that the following conditions

hold in [0, /?].

(A) The equations (12) hold for each s. (In other words, u(s) — u( v(0, s)).)

(B) The function u is continuous, and v is continuous except at a finite number of jump

points sx, ,sm in [0, p],

(C) Equation (9) is satisfied except at the st.

(D) At each st, v(0, s) jumps from a relative maximum or minimum of u to a point v0 such

that the solution of the initial value problem

v" + P<p2u(s,)F(v) = 0

t/(0) = 0, o(0) = o0
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is a stable steady state solution of the boundary problem

Lel^r = T~T + P<P2u(s,)F(v),dt 9* (15)

|| (o,0 = o. ©(1,0 = i.

(It is known that (15) has a least one stable steady state solution [1].)

In order to construct such a "singular solution" of (9)—(11) it is necessary to analyze f,

showing that it is "cubic like", and that the steady state solutions of the full system

(9)—(11) lie, when projected, on a decreasing segment of f. As suggested in the earlier

discussion of ordinary differential equations (see Fig. 2), it is not necessary to show that u

has exactly one maximum and one minimum. In an asymptotic sense, for sufficiently large

y, most of the necessary properties of f follow from known results about the Gelfand

equation plus Dancer's work. However one key point, that steady states of the full system

project onto a decreasing branch of f, requires an extra computation. In fact, it is not

difficult to obtain criteria which insure the existence of a formal relaxation oscillation for

specific finite values of /?, <p, and y and which are easily checked numerically (even on a

pocket calculator.) As a first step, integrate (12) twice to obtain

"(«o) = (»o~ ])/ -*)*"(»(*))<&]

with v() = v(0). Since F is increasing and v is decreasing, it follows that

"(t>o) > tf(u0) = 2{v0 - \)//3<p2F(v0). (16)

On the other hand, since v" > 0, we obtain v(s) > t>0(l — s) and therefore

"(v0) < Q(v0) =(v0 - \)/ (j3<p2fjuer(v°~,)u/v°duj. (17)

U

Fig. 2
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It is easily computed that .R'(l) is positive and, if y > 4, R' changes sign at

K = \[\ ~f\ -4/y] <y/2

and at

^ = |[l + i/l - 4/y] > y/2.

Further, since F(u0) -» ey as c0 -» 00, R tends to infinity with v0.

Further information on T is found by computing F' and F". It is found that F' > 0, and

F"(v) > 0 if 1 < v < y/2. It is known [1] that under these circumstances, for a given

u> 0, (12) can have no more than two solutions with 1 < u(0) < y/2. Hence u can have

at most one (relative) maximum, and no relative minima, in (1, y/2).

To establish that u has at least one maximum and at least one minimum, it is sufficient

to check that

Q(v,)<R{v 0") (18)

for some u, > Vq .

Note that this condition does not depend on ft or (p. It is easily computed numerically,

after computing Q in closed form, and holds for y greater than about 6.56. (See Fig. 3.)

The next step is to analyze steady states of the complete system (9)-(l 1). If (u, *>(•)) is

such a steady state, then

u = l/ (l + <p2f F(v(s)) ds j

> P(v0) = \/(\ + <p2F(v0)), r = u(0).

Since (v0,u) also lies on f, it must be to the right of the first intersection of the graphs of

P and Q. On the other hand,

v0 = 1 + /8<p2« f'(l — s)F(v(s)) ds

= 1 + P<P2~ s)F(v(s)) ds/ (l + <f>2j*F(v(s)) ds j j

< 1 + p.

All of this leads to the following result.

Theorem 1. Suppose that y > 4 and 1 + /? < y/2. Let v = be the smallest solution of

P(v) — Q(v)- K v* > vo and P(v^) < R(Vq ), then (9)—(11) admits a formal relaxation

oscillation.

Fig. 3
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Proof. Our previous remarks show that in [1, y/2), u has exactly one maximum, say at

t>0 = u0, and no minima. Also, this function has at least one minimum in [y/2, oo). Each

(u, o0) in [0, oo) X [1, oo) defines a unique solution v(-,u, u0) of (13). The function

G(u, v0) = 1 — u — (p2u f F(v(s, u, t>0)) ds
Jo

is continuous, and indeed smooth, in (m, t>0). Consider the pair of equations

*r=V-«V).
U' = G(U, V). v '

Our hypotheses guarantee that all equilibrium points of this system lie in the region

1 < V < y/2 and to the right of V — t50. Therefore these solutions all he on a single

decreasing branch of f. Further, G(u(V),V) > 0 if V < v0 and G(u(V),V) < 0 if

V > y/2. Hence a formal relaxation oscillation can be constructed for (16), and this

corresponds in an obvious way to a formal relaxation oscillation for (9)-(l 1). This proves

Theorem 1.

It is, of course, necessary to check that the hypotheses of Theorem 1 can be satisfied,

and to say as much as possible about the values of p, <p and y which give oscillations. A

brief summary of some typical numerical results, covering some ranges of (1 and <p2 which

are given as feasible in [3], appears in Table 1. Values of y up to around 30 have been

reported in the literature.

Table 1. Smallest integer y such that P,(p,y

satisfy hypotheses of Theorem 1.

.5

.1

130

130

130

130

.3

38

38

38

38

.6

24

24

19

19

.9

19

16

16

16

It will be noted that the parameters chosen by Lee and Luss (/? = .15,(p = 1.1, y = 20)

do not fall in the range where we predict oscillations. This may be because our estimates

are conservative, or because of differences between their system and (9)—(11).

Theoretically we have the following result.

Theorem 2. For any given fi > 0 and <j> > 0, the system (9)-(ll) satisfies the hypotheses

of Theorem 1 if y is sufficiently large.

Proof. The lower root of R' is

©o=l + 1/y + o(l/y) as y -> oo,

and

R(vo ) = (2//Vey) + o( 1/y). (19)
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Also

F(»o ) = e + o(l)

Hence on [1, Vq ], P(v0) > 1/(1 + <p2e) + o(l).

On the other hand, it is easily shown that if 1 < t>0 < Vq , then

<p(f0) < (2/^<P2y) + o(l/y).

Hence on this interval Q(v0) < P(v0) if y is sufficiently large.

Lemma 1. At an equilibrium point (u, v(-)) of (9)—(11), (Q(y/2)) < u < R(Vq ) if y is

sufficiently large.

Proof. The first inequality holds because v0 < 1 + /? and Q(y/2) = 0(e~r/y2), while

*(1 + /3) = 0(l/ey<P/(l+P>>). For the second, consider a v0 such that P(v0) = Q(v0). Let

a = 7(^0 — l)/«0- Integrating to find Q in closed form shows that

1/(1 + <p2F(v0)) = a3v0/cp2y[(a - l)ea + l].

If v0 > Vq then a > 1 + o(l/y) so that either o > 1, or 11 — a |= o(l/y) and ea < e. In

either case, since v0 < 1 + y8, we find that

a3 > Ky

for some K which is independent of y. This leads io v0> \ + (K/y2/i) for some positive

K which is independent of y. To complete the proof of Lemma 1 and Theorem 2 we show

that Q(v0) < R(Vq ) if 1 + (K/y2/i) < t>0 < 1 + y and y is sufficiently large. First

identify an interval, which includes [1 + (K/y2/3), 1 + /?], on which Q is decreasing.

Lemma 2. For large enough y, Q is decreasing on

[l + 3(1 +/?)2/2y,l +0],

Proof. It is easily computed that Q'(v0) < 0 if

(c0 - l)/t>0 > Cueau du/y (Xu2ea"du, a = y(u0 - l)/u0,
Jo •'o

and further that /0' ueau du/u2eau du 3/2 for any a » 0. The result follows.

Hence we must show that Q( 1 + K/y2/3) < R(Vq ) for large y. But

0(1 + K/ y2/3) = K/^y2/^cp2 f\eKy+v3u/ (I + Ky~2/2) du

= o(l/y) as y -> oo.

Using (19), this completes the proofs of Lemma 1 and Theorem 2.

V. Asymptotic estimates of the period and amplitude. It is not difficult to obtain

asymptotic estimates, as y -* oo, for the period and amplitude of the formal relaxation

oscillation found above. It is first necessary to estimate Qmax — max1<SCo«1+J8 Q(v0).

It was shown in Lemma 2 that this maximum is taken on in the interval 1 < v0 < 1 +

M/y where M = 3(1 + fi)2/2. Setting Q'(v0) = 0 gives

f (u — (y(v0— l)u2/v0))ey(v°~^u/v° du = 0
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from which

G(®o) = vo/ | fl<p2y f^u2ey("°~ 1)u/t,° j du

<(3/)8«p2) + 0(lA). (20)

Let j -> (u(,y), «(•, 5)) be the relaxation oscillation. We can assume that u' > 0 on an

interval (0,T{) and u' < 0 on (7,, p), where p is the period. The amplitude of the

oscillation in u is A = u(Tl) — u(0). Figure 4 shows a possible projection of this "singular

solution" onto the (u, v(0)) plane.

It is clear that R(Vq ) < u{T^) «£ Qmax and 0 < h(0) < Q(y/2). Our estimates on Q and

R then show that

2

fi<p2ey \ y I fiy2 y \ 7

as y -» 00. The maximum value t>max of the non-dimensional temperature variable v hes

between o, and 2, where these are defined by the relations v2 > vt > y/2, Q(vt) = R(vq )

and R(v2) = Qmax- To estimate u, we have

*(o0~ ) = (2/fo2ey) + o( 1/y) = (t>, - 1)/ (>Scp2)')«/», du

< (t>, — \) / | ft?2/ ueiy~2)u du j

since u, > y/2. This gives

vt > 2ey/(y2e3) + o(ey/y2). (21)

Also,

Q max

from which

3 + „(>

ih'-i * 1
= 2(v2 — \)/^ 2(v2 - \)/ey

v2 <——r — + o(ey/y). (22)
2/3<p2 y '

The estimates (21) and (22) are somewhat unsatisfying, as it would be nice to pin down

more precisely the order of growth of the maximum temperature with y.

Fig. 4
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Estimates of the period are also easily obtained from these inequalities, by showing that

u' = 1 + 0( 1/y) on (0, Tx) and «' = — 0(y) on (Tv p). This leads to the conclusion that

jT, = p + 0(1) and

^ Jil,,, » +,|1
/3<p2ey IYI P<p2y V V.

A more accurate estimate of p is found from the exact solution of Gelfand's equation [3],

showing that p ~ .868/y8<p2y as y -> oo. This gives, as well, a refined estimate of the

amplitude A, but does not help improve on (21) and (22).

Finally, these estimates can be compared with the computations of Lee and Luss. For

their values of the parameters the best estimate of period above gives p .16, whereas

their computed period is about p = .25. However the maximum amplitude in temperature

found by Lee and Luss is many order of magnitudes lower than our estimate. This is

almost certainly due to the extreme stiffness of the system for small Lewis number. They

were unable to carry the computations below Le = .1, and indeed, it is not clear that very

much more could be achieved today.
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