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1. Synopsis and introduction. By a strip is here meant a plane region of infinite length

bounded by two parallel straight lines. The strip is further indented symmetrically by a

pair of For U notches, one on each edge. The Fnotch consists of two equal line segments

inclined symmetrically to the normal of the edge of the strip and connected smoothly at

the closed end by a circular arc. The open end is divergent. The entire notch possesses an

axis of symmetry. The U notch is a particular case of the F notch in which the two line

segments are parallel and both intersect the edge normally.

The purpose of this paper is to present a potential solution for such a region with each

boundary at a prescribed potential equal in magnitude but opposite in sign.

2. The problem. The geometry of the given strip with the pair of F notches on the edges

is shown in Fig. 1. For convenience, the dimension of the strip is measured by a typical

length b or the actual depth of either notch. In this manner, the straight portions of the

lower and upper edges are denoted by y = 0 and y — 2a, respectively, where a > 1 on

physical considerations. The radius of the circular arc DCG of the lower F notch ADCGA'

is denoted by A. The angle of inclination of the line segments AD and GA' to the normal

of the edge is denoted by xp. Besides, the opening of the A A' is denoted by 2y, where

Y = {A + (1 — A)sin <//}/cos \p. (l)

The upper F notch is of the same size. Furthermore, let the potential on the lower

boundary of the strip be c0 and that on the upper boundary be — o0. No generality is lost

if we take v0 = 1.

3. A set of harmonic functions. Define two pairs of polar coordinates by

z = x + iy = irexp(-iO),

z* — z — 2ia = ir* exp( — id*), (2)

such that

x — rsin 9, y = rcos 6,

x = r*sin#*, y — 2a — r* cos 6*. (3)

*Received January 25, 1983.
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Fig. 1. The strip with a pair of V notches; length beong measured in unit b.

The pair (r, 6) has its pole at the origin 0 and the pair (r*, 6*) has its pole on the^ axis at

the point 0* or >> = 2a. The angle in either pair is measured clockwisely from the^ axis.

Consider a function in the region 0 < y < 2 a:

H0(x, y) ——~^r—t" f f(k) sinh k(y — a) cos kx dk. (4)
r r J o

The function consists of three parts. The first part has a singularity at 0 and the second a

singularity at 0*. It is harmonic, save at the singularities, and is even in x. It gives the

following values along the lines y = 0, a and 2a, respectively:

2 Q. /«oo

HJx, 0) = / f(k) sinh kacos kx dk,
0 x2 + 4 a2 Jo

H0(x,a) = 0, (5)

2 ci f
H()(x,2a) = —  —7+ I f(k) sinh kacos kx dk.

x + 4 a1 Jo

The first expression is given by the second and third parts only. The first part is zero along

y — 0 save at the origin. The third expression is given by the first and third parts only.

The second part is zero along y = 2a save at the point 0*. Both the first and third

expressions vanish identically provided that by Fourier cosine transform,

2 rx 2 a
f(k) =  / —   cos kx dx

77 sinh ka J0 x2 + 4a2

= -e~2ka/sinh ka. (6)

The second expression is given by all the three parts. These relations indicate that the line

y — a is a line of antisymmetry. With the value off(k) in (6), the function becomes

i i 1 rCC

H0(x, y) = Re[~ + j — JQ ~^smh k(y - a) cos kx dk. (7)

The preceding function is useful in constructing the required potential solution. Succes-

sive differentiation of the function with respect to x gives functions also with the desired

properties but odd derivatives must be excluded since they are not even in jc and cannot
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enter into the desired symmetrical solution. The set of harmonic functions is therefore

( —l)s 32j

= Re ;(-ir, 'Mr
^2J+1 (z-lia)2s+'

1 /• co e-2ka

— -—— / . , , k sinh k{ y — a) cos kx dk. (8)
(2s)\ J0 sinhAra u ' v '

Note that here a constant factor is introduced for convenience.

4. The solution. The potential solution for the given strip is constructed as follows:

00

V(x, y) = 1 - J + 2 A2,H2j(x, y), (9)
i=0

where A2s are parametric coefficients. The solution is harmonic, even in x, and antisym-

metric with respect to the line_y = a as desired. It possesses two singularities with alternate

signs on the edges of the strip, one at the origin and the other at the poin 0*. Both such

singularities are excluded from the strip owing to the presence of the notches. The solution

gives potentials on the lower and upper edges of values 1 and — 1, respectively, save at the

singularities.

5. The mapping function. To adjust the remaining boundary conditions on the notches, a

mapping function to transform the notch is needed. Such a transformation for the V and

U notches has been considered by the author in a recent paper [1], However, the value of X

here is defined differently. With the present X, the mapping function of the V notch is

given in two stages by

z = /(I - X) - Xe"'+{1 + iqW2{c)/Wx{c)), (10)

c= 1 +«(? + !)/(£- 1), (11)

where

q = 23~2Sr(2 - 5)T(4+ 5)cos'/2,

S = \p/-rr (o<8<{),

Wl(c)=2Fl(t^8,i-8;3-28;c), (12)

^2(c) = c-<2"25>(1 -c)2F,(a + i,«-±;2;l - c),

in which 2F, is a Gauss' hypergeometric function. The resulting mapping function

transforms the curve of the V notch ADCGA' in the z plane through the real axis in an

intermediate c plane into a portion of the circumference of a unit circle p = 1 in the f

plane from <f> = —plo<j> = /3. Here (p, <f>) are a pair of polar coordinates defined by

S = ipe~'*. (13)

The value of /? is given by

ft = tt/2 + 2tan~'(l — a), (14)
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where a is the positive real root between 0 and 1 of the following equation of c:

->3-2S w (r\ l 1

r(2-8,m + s)—^ = —--p^. (.5)

The transformations of the points on the cirve of V notch ADCGA' are shown in Table 1.

Table 1. Transformations of points on curve of V notch.

Point z c f <f> (p = 1)

A — (A + (1 — X)sin \p}/cos \p a ie'P —/?

D /(I - X) - Xe~'* 1 -1 -ir/2

C i 2/0

G i(l — X) + Xe'* ±oo 1 77/2

A' {X + (1 — A)sin xpj/cos \p — a/(l — a) ie~'P /3

In the case of the U notch, the corresponding mapping function is obtained by simply

putting ip ~ 0 in (10) whereas (11) remains unchanged. It was further found that the

hypergeometric functions involved in this case can be expressed in terms of complete

elliptic integrals. The mapping function (10) becomes alternately

z = -X + i(\ - X) - 2iX (2~ C)E' ~ cK' (16)
V ' (2 — c)E — 2(1 — c)K y '

Accordingly, the equation (15) is to be replaced by

(2 - c)E' -cK' _ 1 - X

(2 - c)E - 2(1 - c)K 2X K '

The complex variable c is also the square of the modulus of the complete elliptic integrals.

Note that here the customary notations for the complete elliptic integrals are used.

6. Boundary conditions on notches. Let any point on the curve of the lower notch in the

z plane be denoted by z0. It is seen that by the mapping functions, z0 is first transformed

into c0 on the real axis of the c plane and then c0 is transformed into a portion of the

circumference of a unit circle in the f plane as a function of <J>. Thus, the resulting

mapping function expresses z0 as a function of <j>. By (11), c0 and <f> are connected by

c0 = 1 + tan(7r/4 + </>/2). (18)

Write

z0 = x0 + />0- (19)

Then the function V on the curve of the lower notch is

v 00

Hx0, y0) = 1 - f + I A2sH2s(x0, y0). (20)
5=0
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Expand this function into a Fourier cosine series in (f> over the interval ( — /?, /?) in the

form:

1 00 i
— -  v 1 tYl 7T(b .
nxQyy0)=-a0+ 2. amcos——, (21)

m= 1 "

where by symmetry, for m> 0,

2 rO , . W77A , .  

am = -p) K(*o> yo)<x>s—jf-d<i>- (22)

Hence, the boundary condition on the curve of the lower notch is satisfied if for

m = 0,1,2,...,

am ~ 280 m, (23)

where Sn m is a Kronecker delta. This leads to a set of equations for determining Als as

follows: For m = 0,1,2,...,

lmG2sA2s = 280 m- gm, (24)
s = 0

where

2 /-o / j,

= (25)

By antisymmetry, when the boundary condition on the curve of the lower notch is

satisfied, the relevant boundary condition on the curve of the upper notch is automatically

satisfied. The solution is therefore complete when the coefficients A2s are solved from (24).

7. Numerical examples. The Gauss' hypergeometric function when |c|< 1 is represented

by the series:

(ai)n(fti)n c"

n=o (?,)„
2F,(a,,0,; y,;c) = 2 —T~\   TTT' (26)

where

(h)„ = T(n + h)/T(h). (27)

As mentioned before, the root a of the equation (15) or (17) lies between 0 and 1. The

range of c in the integrals (25) is from a to 2 as shown in Table 1. Hence, the total range

of c to be considered in computation is at most from 0 to 2. For the sake of better

convergence of the series, the following scheme is adapted in computation:
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w\(c) =2^(2 — 5,1 — 5; 3 — 25; c) for 0 < c =£ 0.7,

_ r(3-23) f, ~ B-s)„+1(f-fi),+1
(-c) W

for0.3 <c < 1.7,

ie-'^r(3 -28) - (i-g)n+,(a- 3)h+, Lb(c)-

(1 — 5)r2(f — 5)c(,~25)/2 [ n\(n+ 1) c"+

for 1.4<c<2, (28)

w I \- F(25 ~ 2)(J _c) rf <r ' p t 1 c> \*'2\ ) ~  rr—77 TT2^i(i ~ o, § - S; 3 — 25; c)
(5-4)r2(5-i) " '

r(2 — 25)(1 — c) , „0 , ,
+ ^z^2fAs + M - i;2S - 1; c)

(f-s)r2(f-s)c2

for 0 < c < 0.7,

= c-(2-2«)(i _c)2/r](5 + ii6_i;2;1 _c) for 0.3 < c =£ 1.7,

_ c-(3-2«)/2(1 _c)2F||5_iii_5.2;^ILLJ for 1.4<c<2,

where, for n 3= 0,

Kn(c) = ln(l - c) + —+
n + 1 n + § - 5

+2 2 i
« = o\ m + 2 S m + I I m = 2

1 1 1
L,XC) = ln(-c) -

n+1 1-5 1-8

+ 2 brr— ^)+2 2 «-G +(29)m=o\m+1 m + i-5 m-§ + 5/ m = 2

in which, for m 3= 2, 00 1

(30)
n = 1

and for the logarithmic terms involved,

ln(l — c) = ln| 1 — c| — ( ?'
I Z7T, if C > 1 ,

(1 - c)ln( 1 - c) = 0, if c = 1, (31)

ln( —c) = lnc — i-n, if c > 0.

Note that two of the preceding functions are the original functions in (12) while the rest

are transformed functions [2], The overlapping values of c may be used for checking

purpose. The mapping function in (10) is also valid in the limiting case 5 = 0. Neverthe-

less, the second of the first two transformed functions for W2 in (28) does not hold for

6 = 0. The next function may be used for the combined range 0 < c < 1.7. On the other
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hand, if the mapping function in (16) is used, the complete elliptic integrals may be

evaluated by Gauss method of arithmetic-geometric mean. This method is useful even

when the modulus is complex [3].

The root a of the equation (15) or (17) is solved by using a method devised by the

author. By this method, the root can be computed one digit at a time until the desired

accuracy is reached. A description of the method will be given in a separate paper to

appear elsewhere. The subsequent computation of /? is straightforward. The results are

shown in Tables 2 and 3. The values corresponding to 5 = 0 or i/> = 0 are for the U notch.

Table 2. Values of a.

8 i A = 0.1 A = 0.2 A = 0.3 A = 0.4

0 0° 0.5569562 0.6873197 0.7658807 0.8216731

0.05 9 0.5122765 0.6453784 0.7267243 0.7847184

0.10 18 0.4586555 0.5929492 0.6768990 0.7373738

0.15 27 0.3958618 0.5283969 0.6139599 0.6766972

0.20 36 0.3245698 0.4505061 0.5353760 0.5992477

0.25 45 0.2471183 0.3594965 0.4394602 0.5018117

Table 3. Values of /3.

S 4* A = 0.1 A = 0.2 A = 0.3 A = 0.4

0 0° 2.404905 2.176894 2.030751 1.923740

0.05 9 2.478353 2.252369 2.104321 1.994887

0.10 18 2.563144 2.343936 2.195823 2.084449

0.15 27 2.657710 2.452143 2.307625 2.196188

0.20 36 2.758887 2.575705 2.440693 2.333106

0.25 45 2.861482 2.710137 2.592595 2.495191

The following two cases, namely, a = 2, A = j and ^ = 0 and 9°, are computed as

illustrative examples. To facilitate evaluation, the function Hls in (7) and (8) is developed

by expansion and integration into the following series for s > 0:

h2s(x> y)= 2 Re
n = 0

= 2
71 = 0

(z + 2 nai)2s+l (z — 2 nai — 2 ai)2s+'

cos(2s + \)6n + cos(2^ + 1)0*

+ (y + 2 na)2fs+])/2 + (y- 2 na - 2fl)2}(2s+,,/2

(32)

where 6„ and 0* are

en = tan 1 ——, 0* = tan 1 -z y- ■ (33)
" y + 2 na y ~ 2 na — 2 a
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The series converges rapidly when s is large. The first series for j = 0 can be summed into

a function in closed form. The sums of the succeeding series can be found from this

function by differentiation. The first few such sums are

. 7rz
/ coth —Ho(x, =

^(*>^) = -(i)3Re

H^x'y) = ('t) Re

2 a

i csch — coth ■
2 a 2 a

1 oirz) , , TTZ 7TZ
— + csch"— csch —coth
3 2a I 2a 2a (34)

/ \ / 77 X7„ r / 2 2 ,,)I2 , a WZ \ ,,TZ , 77Z
//6(x, jv) = — (— ) Re / — + -csch2— + csch4— csch2 —coth —

6 7 Mat \ 45 3 2a 2a) 2a 2a

They are useful in evaluation when 5 is small. The integrals in (25) are evaluated here by

using Simpson rule. The computation is carried out in two parts, one part from — ji to

— it/2 and the other from —n/2 to 0. The first part is further divided into 80 double

divisions and the second into 100 double divisions. To test the accuracy, the computation

is repeated by changing the width of the double divisions by 10%. The values are found

stable to five significant figures.

To solve (24), the set of equations is truncated from m = 0 to m — M— 1, in which the

first M coefficients of A2s are retained. When the truncated set of equations is solved by

matrix inversion or otherwise, the potential in the strip can be computed. In particular, the

value along the line x = 0 across the narrowest section of the strip is given by

M 1

V(0,y)=l-?-+ I A2sH2s(0, y). (35)
5 = 0

It is inferred from existing solutions of notch problems that the resulting values in the

present problem are anticipated to exhibit Mitchell-Ling effect of truncation [4], [5], [6].

This is to say that the value of the potential at a given point forms an oscillatory sequence

with the value of M, whose elements are alternately below and above, and as M increases

Table 4. Values of V(0, y) across narrowest section for a = 2 and A = j.

y xp = 0 xp = 9°

1 1 1

1.1 0.7326 0.7492

1.2 0.5533 0.5767

1.3 0.4242 0.4487

1.4 0.3264 0.3492

1.5 0.2493 0.2688

1.6 0.1862 0.2018

1.7 0.1325 0.1442

1.8 0.0852 0.0929

1.9 0.0417 0.0455

2 0 0
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converge very slowly to, the true value. Owing to this effect, accurate value of the potential

can be obtained by merely taking the average value corresponding to two appropriate

consecutive integers of M. The values of the potential across the narrowest section of the

strip shown in Table 4 are the average values corresponding to M = 15 and 16. Some

typical values are shown in the table below:

M xp = 0 xp = 9°

15 0.7330 0.7485

16 0.7323 0.7500

average 0.7326 0.7492
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