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1. Introduction. In order to provide a continuum mechanical model for capillarity, the

Dutch physicist D. J. Korteweg many years ago proposed a form for the (Cauchy) stress

tensor which includes terms depending on density variations in the fluid [6]. This theory of

Korteweg, although dormant for nearly 75 years, has recently become the object of

renewed interest since it turns out to give an approach to the problem of liquid-vapor

phase transitions in fluids which is purely mechanical in basis, and which can be used to

supplement standard thermostatic equilibrium theory in important ways [1, 2, 4, 5],

Pursuant to this revival of interest, we shall here show that, unless rather special

conditions are satisfied, the only geometric phase boundaries which are consistent with

Korteweg's theory are either spherical, cylindrical, or planar. That is (the effect of gravity

always being ignored), the physical situations which can occur in phase transitions

governed by Korteweg's theory are either spherical liquid bubbles in an ambient vapor

atmosphere, spherical vapor bubbles in an ambient liquid bath, planar interfaces between

the phases, or finally (no doubt unstable) circular cylindrical interfaces between the

phases. This rather surprising conclusion can perhaps be best understood as a conse-

quence of the fact that the mechanical equations of equilibria (Cauchy's equations) have

three independent components while liquid-vapor phase equilibria are determined by just

one physical variable—the density.

From a physical point of view our result mirrors the tendency of surface tension to

produce phase boundaries which have constant mean curvature; in the present circum-

stances, however, this tendency is seen in an extreme isoperimetric form.

Since we will be dealing with an overdetermined system of partial differential equations

the result can also be viewed from a purely mathematical point of view. In fact, when

reduced to its essentials, the problem becomes precisely that of determining the local

structure of solutions of the system

Am = /;(«), | grad u \ = g(u),

where u is a twice continuously differentiable real function defined on some open

connected set in R3 and h(u) G C°, g(u) G C1 are functions defined on the range of u,
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with g(u) ^ 0. In this situation, Pucci [3] has shown that any solution of this system

necessarily has level surfaces which are either (pieces of) concentric spheres, or concentric

circular cylinders, or parallel planes. Applying this result to Korteweg's theory then leads to

the principal conclusions of the paper.

In the following section we derive the differential equations of Korteweg's equilibrium

theory, and in Sec. 3 we apply Pucci's result to determine the local behavior of solutions.

Finally, in Sec. 4, we treat the global behavior of phase interfaces, the main results being

contained in Theorems 2 and 3. We conclude with several remarks which relate our results

to earlier studies of the Korteweg equations and finally discuss whether the special

conditions noted above should in fact be required whenever the theory is used.

2. Korteweg's equilibrium theory. Equilibrium configurations of continuous media are

governed by the well-known Cauchy equations

^ = 0, .= 1,2,3, (1)

where JtJ is the Cauchy stress tensor, and the natural summation convention is applied for

repeated indices. For fluids in which long-range molecular interactions are significant to

equilibrium, as in the case of phase transitions, Korteweg [6] proposed the following form

for the stress tensor:

T/y = ~Phj + Vij (2)

where ItJ is the Kronecker symbol and

»«=(«ip + #|vo|%+ (r^ + a|||Sr

Here p — p(p) is a given function representing the pressure of the fluid in terms of its

density p; the coefficients a, /?, y, 8 are again functions of density, representing long-range

molecular effects; Ap is the Laplacian of p; and we have written (as we shall occasionally

also write in the sequel) Vp for grad p. Ordinarily the functions p, a, fi, y, S depend on the

fluid temperature as well as on the density. Since we are dealing with fluid equilibrium,

however, one can suppose that the temperature is a given constant, equal to the ambient

temperature of the surroundings; accordingly it can be suppressed in the formulation of

the problem.

If the expression (2) is used to eliminate TtJ from (1) we are left with three partial

differential equations for the single physical parameter p, considered as a function of the

space variables xu x2, x3. These equations have been discussed in the plane case in [1, 2,

5], and in the radially symmetric case in unpublished work of the author.

For general three dimensional configurations there have been no previous studies. Here

we shall show that, unless the Korteweg coefficients satisfy certain quite special conditions,

the only possible equilibrium configurations are those in which the density function

p(x]y x2, x3) has level surfaces which are pieces of

(a) concentric spheres, or

(b) concentric circular cylinders, or

(c) parallel planes.
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Physically speaking, a region in which there is a rapid transition of density from one value

to another represents an interfacial layer between fluid phases. Consequently we can

interpret our result to show, as stated in the introduction, that the only geometric phase

boundaries which are consistent with Korteweg's theory are either spherical, cylindrical, or

planar (unless certain special conditions are met).

In order to carry out this program, we first eliminate JtJ between (1) and (2) to obtain

9 , „A_ -L H   |2\ „/ 02P 3P_*_3P

where

a = a + y, b = /8 + 8, c — y' — S

and primes denote differentiation with respect to p. Without difficulty, the above equation

can be rewritten in the vector form

gradj —p + aAp + + jc j | Vp|2j = (cAp + jc' ] Vp|2jgradp. (3)

It is this equation which we shall use in what follows.

Naturally, precise conditions on the coefficients a, b, c must be given, together with a

formal statement of the specific differentiability class of a solution function p(x,, x2, x3).

In particular we shall suppose concerning the coefficients that

(i) a, b are continuous functions of the density, and

(ii) c is continuously differentiable.

By a solution of (3) in a domain £2 we shall mean a twice continuously differentiable

function p such that

—p + aAp + (b + jc) | Vp |2 £ C1 (4)

and for which (3) is satisfied everywhere in S2. Note that condition (4) may hold even when

the density is not three times differentiable.

3. Local behavior. This section consists of a purely mathematical study of the principal

equation (3) of Korteweg's theory. We begin with a well-known result of analysis, proved

here however under relatively minimal hypotheses.

Lemma 1. Let F, G, and u be real functions defined on some open region £2 in (R3, such

that (in £2)

(i) F and u are continuously differentiable

(ii) grad F — G grad u.

If grad u # 0 at a point P G £2, then there exists a neighborhood S2' of P and a

continuously differentiable function /: 0? -> R such that

F — f ° u, G = f ° u in £2'.

Proof. By appropriately rotating coordinates at P we can assume (in a rectangular

system x, y, z)

1^0 at P.
az
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Consequently by the implicit function theorem there exists a neighborhood Q of P in

which x, y, u are allowable coordinates, diffeomorphically related to x, y, z. Write

0(x, y, u) = F(x, y, z(x, y, «)), *(x, y, u) = G(x, y, z(x, y, u))

so that $ is of class C1 in Cl. Clearly

, „ 3$ - 3$ r, 30 ,
8™df= a7, + a7-' + ̂ grad"

so from the condition grad F — G grad u (since grad u is linearly independent of i,j in fi).

30 _ 30 _ 30

~dx~dy~' '

Thus 0 = f(u) in some (possible smaller) neighborhood S2' of P. In turn ¥ = df/du in S2',

which is the required conclusion.

Lemma 2. Suppose that the coefficients p, a, b, c in equation (3) satisfy the conditions (i),

(ii), and also

A = be + j(c2 — ac') ¥= 0.

Let p be a solution of (3) in some open set 2 of IR3, with grad p ^ 0 in 2. Then in the

neighborhood of any point P of 2 equation (3) can be reduced to the form

I Vp|=g(p), Ap-h(p),

where g is a continuously differentiable function and h a continuous function of p.

Proof. Taking u = p and

\F= ~p + a\p + (b + $c) | Vp |2,

| G = cAp + jc' | Vp |2

in Lemma 1, and using equation (3), we see that for each point P E I, there exists a

corresponding neighborhood 2' of P and a C1 function/: R — K such that

F — fop, G — f o p in 2'.

In turn, from (5) we get easily

Ap = (1 /A){(b + {c)f - c'(f + p)} = h(p),

I Vp |2 = (1 /A){c(f + p) - af'} = {g(p)}2

in 2'. Now | vp |2 is continuously differentiable since p is of class C2. This implies (since

x,y, p are coordinates in 2') that g: IR -» R is equally of class C1. It is obvious that h(p) is

continuous.

Naturally g(p) ^ 0 since grad p =£ 0.

It follows now from Pucci's theorem [3] that the level surfaces of p in some neighbor-

hood of P must be either concentric spheres, concentric circular cylinders or parallel

planes. By an elementary chaining argument this conclusion obviously extends to the

entire set 2 where grad p ¥= 0. We state this formally as
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Theorem 1. Suppose that the coefficients p, a, b, c in equation (3) satisfy conditions (i),

(ii), and also

A = be + ^(c2 — ac') 0.

Let p be a solution of (3) in some connected open set 2 in IR3, with grad p =£ 0. Then the

level sets of p are either pieces of concentric spheres, or concentric circular cylinders, or

parallel planes (but not combinations of these).

4. Main results. We next turn our attention to the global case, that is when p is a

solution of (3) in all R \ Of course in this situation we cannot suppose that grad p ¥= 0

everywhere, a fact which causes some complications. The principal conclusion is the

following

Theorem 2. Suppose that the coefficients p, a, b, c, in equation (3) are continuously

differentiable, and also

0, A t^O.

Let p be a solution of (3) in IR3, not identically constant. Then the level surfaces of p are

either concentric spheres, or concentric circular cylinders, or parallel planes (but not

combinations of these).

Proof. Since p is not identically constant there exists a nonempty connected open set 2

where grad p 0. By Theorem 1 the level sets of p in 2 are either pieces of concentric

spheres, concentric circular cylinders, or parallel planes.

What must be shown is that this conclusion holds not only in 2 but in fact in all of IR3.

It will be enough to consider the case when the level surfaces in 2 are concentric spheres,

since the other two possibilities can be treated using essentially the same arguments. Thus

suppose that we have a connected open set 2, which without loss of generality we can

suppose to be a ball, within which grad p ¥= 0 and the level sets of p are pieces of

concentric spheres, as shown in Fig. 1.

Fig. 1.

Let 0 be the center of the concentric spheres of 2, and let r denote the spherical

coordinate in IR3 with respect to 0 as origin. Obviously p = p(r) in 2, with

- dP -+ n

since grad p ^ 0. This being the case, it follows at once that pr =£ 0 at each boundary point

of 2, except possibly the two points P] and P2 where the boundary of 2 is tangent to the
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concentric spheres (as in Fig. 1 we suppose that 0 lies outside 2, as can always be assumed

without loss of generality). We can now apply an obvious continuation argument, based

on Theorem 1, to extend the region in which grad p ¥= 0 and the level sets are concentric

spheres to a complete annular shell, as shown in Fig. 2. In particular p = p(r) in this

region, which we shall denote by T.

Fig. 2.

Now if grad p ^ 0 at any boundary point of the shell T, then by the radial symmetry it

is clear that grad p ¥= 0 at all points of the same boundary component. Another continua-

tion argument based on Theorem 1 then allows one to extend the region T in which

grad p ¥= 0 and the level sets are concentric spheres to larger radii (if the outer boundary

of T is involved) or to smaller radii (if the inner boundary is in question).

Next consider the situation when grad p — 0 everywhere on the outer spherical boundary

of T. In other words, we have p = p(r) in T and p = constant, pr = 0 on the outer

boundary.

Suppose for contradiction that also prr = 0 on the outer boundary. The differential

equation (3) in Y can be written in polar coordinates in the form

d ^ -p + aiprr + ^pr) + bp*) = ^p;, (4)
dr \ r \rrr r'

that is

2 , -> , rr2c
t' rtr -t- n

(6)

Pr = O.

2 ■) rr 2c -)
aar = ao — bo + / —o~ dr + p,

r Jr r

Since a =£ 0, and since a, b, c are continuously differentiable, a standard uniqueness

theorem for ordinary differential equations1 now implies that p = constant in T, this being

an obvious solution obeying pr ~ prr — 0 at the outer radius of T. But the relation

p = constant is impossible since grad p ¥= 0 in T.

1 Actually (6) is a functional ordinary differential equation, but there is no difficulty adapting the usual

proof of uniqueness to it.
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Having shown that prr ¥= 0 on the outer boundary of T, it follows that prr ^ 0 in some

slightly larger spherical shell T' surrounding I\ At the same time pr = 0 on the outer

boundary of T, so obviously pr 0 in F'. By applying Theorem 1 again we infer that the

level surfaces of p in F' likewise are either pieces of concentric spheres, concentric circular

cylinders, or parallel planes. It is evident that this situation is compatible with the

behavior of the level surfaces in T only if the level surfaces in F' are spheres concentric

with the spherical level surfaces in F.

We can of course apply the same argument at the inner spherical surface of T.

From the various cases just considered it follows that the set T: r0 < r < r, can always

be extended to a set T*: r0* < r < rf with r0* < r0, r* > /•, and with p = p(r) in T*.

Obviously this process never ends unless r0* = 0, r* = oo, completing the proof of the

theorem.

When the solution p is not defined in all R3, but only in some connected open subset of

R3, a straightforward variant of the previous process still applies. Thus we get

Theorem 3. Suppose that p, a, b, c are continuously differentiable functions of p, and that

a =£ 0, A ¥= 0.

Let p be a solution of (3) in some connected open subset £2 of R3 and suppose p is not

identically constant. Then the level surfaces of p are either pieces of concentric spheres, or

pieces of concentric circular cylinders, or pieces of parallel planes (but not combinations

of these).

We note in conclusion that the variation of density from one level surface to another is

governed in the spherical case by the equation

+ afprr + ^pr) + bp?j =~p;, (7)

{-/> + "(prr + 7P.) + %2} = ~rP^ (8)

dr{ y \rrr r

in the cylindrical case by the equation

d_

dr

and in the plane case by the equation

~{-p + aPrr +bp;} = 0. (9)

Equation (9) is integrable by quadratures, as shown in [1] and [5], and a fairly complete

theory of plane phase transitions is accordingly available. A similar theory for Eqs. (7) and

(8) has not yet been developed, since these equations have no simple global theory.

It is interesting that in case A = 0 it is possible to obtain first integrals for both (7) and

(8), in which case one can in fact develop analogous results to those in [5]. Thus the

condition A = 0 not only is necessary in order to have nonradially summetric solutions, but

equally facilitates the integration of (!) and (8) in the radial case!

The question can be raised whether A = 0 is a physically necessary restriction or the

Korteweg coefficients. Without it the theory allows very few equilibrium configurations, as

we have demonstrated, a fact which might be considered unusual, but which surely does

not force the condition A = 0. One may argue that in any any case the Korteweg theory is

only an approximation, but this objection can be ascribed to any particular theory: the
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question really becomes, is the approximation itself a physically realistic one when A is

not identically zero? While this question probably cannot be answered in generality

without careful analysis of intermolecular forces (cf. eg. [2]), nevertheless it turns out that

the second law of thermodynamics—in the form of a generalized Clausius-Duhem

inequality—does require A = 0, at least if all kinematically allowable motions of the fluid

can be realized by the application of some conceivable force system. This hypothesis is

itself open to physical criticism, however, both on general principles as well as on the

grounds that the required motions, whether or not they can theoretically occur, may in

fact be unattainable by virtue of being unstable.

Under the circumstances, one can certainly argue that the present result offers signifi-

cant further reason to accept the restriction A = 0 as necessary for any physically realistic

Korteweg fluid.
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