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A PERTURBATION METHOD

FOR SOLVING A QUADRATIC EVOLUTION EQUATION*

By

JOHN W. HILGERS and ROBERT J. SPAHN

Michigan Technological University

Abstract. A quadratic evolution equation of the form

u = Lu + eQu

is considered where L and Q are particular linear and quadratic integral operators

respectively. This equation has been proposed to describe the variation with time of

u(x, t), the volume density of an ensemble of particles undergoing concurrent coalescence

and fracture.

The equation is solved in an important special case by standard perturbation techniques

where e is the sufficiently small parameter. This method, in combination with certain

results from the theory of semigroups of linear operators, provides computable approxi-

mations as well as an existence proof. An example is also given.

A number of mechanical and physiochemical processes involve ensembles of particles

undergoing concurrent coalescence and fracture (see bibliography in [4]). The result is an

ensemble volume density that varies with time.

An equation proposed by T. H. Courtney (see [4]) to describe the evolution of the

volume density with time is:

4— = —Bxau(x, t) — Cxyu(x, t) ( ° *yyu{y, t) dy
at J0

+ 2B f\a~'u(y, t)dy + y f yy(x - y)yu(y, t)u(x - y, t) dy
Jx L Vo

with m(x,0) = u0(x) for 0 < x < V0. (1)

In (1), u(x, t) dx is the number of particles at time t with volume between x and x + dx,

u0(x) is the initial volume distribution and

xu0(x) dx — total volume of all particles in the ensemble. (2)
o
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Parameters B and a are positive and represent the " tendency to fracture". C is a positive

constant representing the "coalescence tendency" and y gives the dependence of coales-

cence on particle size. If particles are spherical and coalescence depends on surface area

then y = 2/3.

In [4] it was shown that a unique, nonnegative, volume conserving solution to (1) exists

for all t > 0 in the L, space,

X = j/: J °\f(x)\x dx < cc

In the present paper an alternate representation for this solution is derived which may in

some cases be more useful computationally. Since this coincides with the solution

constructed in [4] (by means of Picard iteration) no attempt will be made to rederive the

above properties.

Equation (1) will be simplified by introducing the substitution

w(x, t) — xyu(x, t), (3)

in which case (1) becomes

3 w
-rj- = Lw + eQw, w(x,0) = xyu0(x) = w0(x) (4)

where

Lw — — Bxaw(x, t) + 2Bxy ( °ya~y~xw{y, /) dy
J X

B rx fVo~x
Qw — — xy I w(y,t)w(x—y,t)dy — Bxyw(x,t)l w(y,t)dy

2 Jo Jo

e = C/B.

L is the linear "fracture" operator (terms with coefficient B) and Q is the quadratic

"coalescence" operator.

It is convenient from several standpoints to solve (4) in L2[0, V0], that is, seek

w(-, t) G L2[0, F0] for each t > 0 which solves (4). It is thus assumed that (i) y < 3/2 and

(ii) y < a. Condition (i) ensures that «(•, t) G X whenever vv(-, t) G L2[0, V0], Condition

(ii) guarantees that L is bounded from L2[0, V0] into itself (see Proposition 1 below).

In (4) the eQw term is to be viewed as a perturbation on the linear problem,

dw/dt = Lw. When this approach is taken one often seeks a solution valid for e

sufficiently small. Since e = C/B this defines the condition C « B, or a situation in which

the effect of coalescence is small compared to fracture. This case is of interest to

researchers in the field. It turns out, however, that the solution developed below is good

for arbitrary e. Inequality (15) below implies a trade-off between the size of e and the time

interval [0, T] on which the series solution is known to be valid. Regardless how large e

becomes, a sufficiently small T can always be found so that (3) and (5) give a unique,

nonnegative solution to (1) valid on [0, T], It is an open question whether stronger results

can be obtained, for example, if the series solution remains valid outside [0, T\ and

possibly for all t > 0.
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Following standard perturbation procedures (see [3] and [5]), a solution in the form

00

w(x, 0=2 EkPk(x>') (5)
k=0

is substituted into (4). Equating coefficients of ek the following equations obtain:

^ = Lp0 for k = 0,

^f = LPk+ fk for k > 1

where

B k 1
ft rX

fk{x,t) = -xy 2 / Pniy'^Pk-n-iix-y'^dy
1 n = 0J0

-Bxy 2 p„(x,t)fV° Xpk_n_\(y, t) dy. (6)
n = 0 0

Once initial conditions are specified these equations can be solved recursively since fk

involves previously computed p;'s. Now,

00

w(x,0) = 2 °) = wo(x)>
k=0

therefore choose

po(x,0) = w0(x), pk(x, 0)=0, k> 1,

leading to the fully specified initial value problems

^f = Lp0, po(x,0) = w0(x)

= LPk+ fk> Pk(*> °)=0> k>l- (7)

To solve (7) the theory of semigroups of linear operators is utilized (see [6, Chap. IX],

[1, Chap. I] and [2, Chap. XVII, Sec. 1.7]). The correspondences:

/A'**) *+Fk(t)>

w(-,t) <-> $(?)

are made where {^J, {Fk} and <I> are functions from [0, oo) into L2[0, V0], The system (7)

then becomes

% = L%, %(0) = w0,

% = L% + Fk, %(0) = 0, k> 1. (8)

Hereafter the norm || • || will denote the usual L2[0, V0] norm. The same notation will

also denote the operator norm for operators in B{L2, L2).
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Proposition 1. If a > y then L is a bounded, linear operator from L2[0, V0] into itself.

Proof. Using the triangle inequality,

\\Lh\\ <5||xa/!(x)|| + 2b\x" (V°ya~^xh(y) dy
II Jo

For the first term,

\\xah{x)\\2= (V°x2ah{x)2 dx < V2a\\h\\2.
Jo

Using the Schwarz inequality in the second term, it is clear that

2 -

|xy JVoy°'-y-*h(y)dy = j\x x2^ J^-^'hiy) dyj

\\h\\2V2a 1

2«(2y+l) «<>*■>■ 2'

IIAII2F0'y+l if a = y + ^ .

From this it follows

ILII <
BF° (' + V a(2y2+ 1) ) + f

35K0a if a = y + —. Q.E.D.

Using the usual variation of parameters formula (see [6, Chap. XIV, Sec. 5] and [1,

Chap. I, Sec. 3.3]), the formal solutions to (8) are

*o(0 = e'Lw0,

*k(t) = f'e('-s)LFk(s)ds, k> 1, (9)
Jo

and so

00

<D(0 = e'Lw0 + 2 e* f'e('~s)LFk(s) ds. (10)
k=\ Jo

Proposition 2. If Fk is continuous from [0, oo) to L2[0, K0], so is LFk.

Remark. Hereafter the term continuity will mean strong continuity.

Proof. This follows directly from the boundedness of L. Q.E.D.

Theorem 1. The functions {^: k > 0} given in (8) and {Fk: k> 1} given by (6) are

continuous functions from [0, oo) to L2[0, V0],

Proof. The proof is inductive and in three steps. Step 1. Show % is continuous. Step 2.

Show Fk is continuous if ^0, <Vk_, are. Step 3. Show if Fk is continuous, so is <Vk.

Step 1: The properties of the exponential operator (see [6, Chap. IX, Sec. 1]) give

¥„(/ + At) - %(t) = [e(,+tu)L - e'L]w0 = e'L[eA,L - l]w0.
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Therefore,

II %(t + AO - ^(OH < lle'£l| lkAri - /II 11 w011

< e'l|LII(elA'lllz-" — 1)|| w011 -» 0 as At -» 0.

Step 2: Repeated use of the triangle and Schwarz inequalities yields (omitting the

details):

Ili^ + AO-F^Oll

1/? ^
VJ+l/2 1 {ll*„(r + AO" + AO - **-„_i(/)ll

«=o

+ ll^_n_,(0ll II^ + A0-^(0II}

This proves step 2.

Step 3. From (9) we have

*k(t + At) — ̂ k(t) — f e(,+^'~s)LFk(s) ds

■ f'e('~s)LFk(s) ds.
Jc\

If /0'+A'e(' s)LFk(s)ds is added and subtracted then taking norms, (see [2, Chap. XVII,

Sec. 1.7]) the following inequality obtains:

ll^(? + AO - **(011 < (e'A'' "L" ~~ 0J'+A'el' j| "i" llds

+ reel's Il|L" ||Ft(i)H ds.

Since Fk is continuous it follows <Vk is also. This proves the theorem. Q.E.D.

Theorem 2. The functions given in (9) are strong solutions to (8).

Proof. Theorem 1 and Proposition 2 imply the hypotheses of Proposition 3.2, Chap. I of

[1] are satisfied. This proves Theorem 2. Q.E.D.

Corollary 1. tyk exists and is continuous for k> 0.

Proof. This follows from (9) and Theorems 1 or 2. Q.E.D.

Although (9) gives solutions to (8), it remains to be shown that the series in (10)

converges and solves (4).

Assume 0 < t < T for some T > 0. From (9) it follows that

||¥t(0ll <e™fT\\Fk(s)\\ ds. (11)
Jo

To get an estimate for l|Ffc(i)|| an argument similar to the proof of Theorem 1, step 2

yields

"5 D k~ 1

11^(011 <^^+1/2 2 II*„(0H ll^-„-.(0ll- (12)
n = 0
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Substituting (12) into (11) gives

11^(011 <^^+,/2^,li" 2 [Tl\%(s)\\\\%^(s)Ms. (13)
1 n = 0y0

Proposition 3. For k 0 and 0 t < T it follows

II ¥*(011 <bC*ak (14)

where

b = Ilwolle7""^1, C0 = ¥-bTVJ+l'2enL*

and

2 ^n^k—n> a0 ^'*k + 1
n — 0

Proof. Inequality (14) is clear for k = 0. Suppose it is true for k = 0,1,... ,N. We show

(14) then follows if k = N + 1. Using (13) we have

ll*w+1(/)ll<^K0'+,/V«« i fT\\%(s)\\\\%.H(s)\\ds
1 „=.nJ0n — 0

Applying (14) under the integral yields

T D N

ll*w+I(0H V0y+l/2e™n^ 1 anaN_n
n = 0

= bC»+,aN+l. Q.E.D.

Theorem 3. Let T > 0 and e > 0 satisfy

e<l/4C0 (15)

where C0 is given in Proposition 3. Then the series 2^=0 and 2^°=0 £A ¥A converge in

L2[0, V0] uniformly in t for 0 < t < T.

Proof. Using (14),

2 e***(0
k = N+ 1

OO 00

2 £*11^(011 < 2 bekC£ak
k=N+1 k=N+1

Now,

_ (2A:)!

k k \ (k + 1)!

so that ak < 4k for k > 0. Thus,

2 ek%{t)
k = N+ 1

b 2 (4 C0eY
k = N+ 1
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If 4C0e < 1 this quantity is small if N is large. The bound is independent of t. From (8) it

follows

11**11 < llill \\%\\ + ||Fk || for k > \ .

Then using (12) and (14) it follows

11**11 < bC£ak(\\L || + Te~™)

and so the same argument gives the uniform convergence of 2^=0 ek^k- Q.E.D.

Theorem 4. If e and T satisfy (15) then the solution given in (10) solves (4) for 0 =£ t < T.

Proof. Using (8) and the linearity of L:

2 ek% = Ll ek%+ 2 ekFk (F0 = 0).
k = 0 k = 0 k—0

Letting N -> oo, and now using the continuity of L:

2 = L 2 + 2 ekFk.zk " c 1 Zj c 1 k-

k — 0 \ k = 0 I k = 0

The proof is complete if it can be shown that

d_
dt

2 ek% = 2 ek% and (i)
k =0 k=0

«e 2^ =2^- («)k — Lj ° 1 k

k = 0 / A = 0

Equality (i) follows just as in advanced calculus since 2*=0 e*** converges uniformly and

** is continuous. Equality (ii) follows from the continuity of Q, the way {FA } is defined

and the convergence of 2^=0 ek || Fk ||. This proves the theorem. Q.E.D.

Before concluding with an example consider

Proposition 4. If L is given in (4) then for h £ L2[0, V0]

e'Lh = exp (-tBxa)

x h(x) + ax^ 1 (^I jr(jrzyyy J*°ya y \ya-xa)k 'h(y)dy

Proof. Write e'L = a-'8*"1 ■ e2,Bx^J where I is the identity and

Jy°ya~y~lh(y) dy

(16)

Uh =

is a Volterra integral operator. Clearly

e-,Bx°'(h) = e~tBx'h(x).

Further, a simple induction argument shows

(xW)kh = — [yy-y-\y« - x«)k~]h(y) dy. (17)
(k - \)\ak 1 Jx
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Using

g2tBxyU — |

k=0

and (17), (16) follows. Q.E.D.

Example. Assume initially all particles have the same volume, xQ. Approximate this

initial distribution by

4>o(x) = ~ *o) (18)
xo

where 8 is the Dirac S-function and the constant V0/x0 is introduced to satisfy (2).

Substituting (18) into (16) gives

p0(x, t) = e'Lw0 = e ,Bx"^-xy8(x - x0)

+ aV0x"0-2e-'Bx"xW(x0 - x) f f^)* (*°"- ^ (19)£1
k=], a ) k\{k — 1)!

where H is the Heavyside unit step function.

Equation (19) gives the solution if e = 0, that is if there is no coalescence. The pulse at

x0 is decreasing exponentially with time in favor of a continuum of smaller particle

volumes.

To observe the effect of coalescence the higher order terms must be included.

P\(x, t) = f'e('~s)LF](s) ds

where

B rx r^o~x
/,(*, t) = —X^ \ p0(y, t)p0(x — y, t) dy — Bxyp0(x, t) / p0(y, t) dy.

i j0 j0

To carry out the computation analytically is, even in this simple example, quite involved.

Multiplying the terms in (19) together and integrating yields for /, seven very complicated

terms. In the interest of brevity the terms in i//, will be described qualitatively. New terms

introduced by will be of the form

g,(*. t)S(x - 2x0) + g2{x, t)H(x - x0)H(2x0 - x),

where g, and g2 are continuous in both variables. The pulse at x = 2x0 results from the

coalescence of particles of volume x0. The continuum has been extended out to x = 2x0

by the second term. The 0(e) approximation will never introduce peaks beyond x = 2x0.

If the e2p2 term is included, however, terms like S(x — 3x0) and S(x — 4x0) will be

introduced and the continuum of values will be extended out to x = 4x0.

The computational difficulties encountered in this relatively simple example suggest

that the equations be integrated numerically. This will be left for future consideration.

Summary. A nonlinear integrodifferential equation describing the evolution with time of

the volume density of an ensemble of particles is solved using perturbation theory. While

most appropriate in the case C « B, or fracture dominating coalescence, the solution is
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shown to be valid for all e. Indeed, (15) implies a trade-off between the size of e = C/B

and the time interval, [0, T], on which the series solution is known to be valid. As e

increases, T must decrease. The question of the convergence of the solution outside [0, T)

for fixed e remains open.
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