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THE NONLINEAR CIRCULAR MEMBRANE

UNDER A VERTICAL FORCE*
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Abstract. The exact theory for the deformation of a plane circular membrane under a

vertical force is derived. It is shown that the system of equations can be reduced to a

single, nonlinear, ordinary differential equation. In addition it is shown that the Foppl

approximation is the first term in an asymptotic expansion of the exact theory.

1. Introduction. In 1907 Foppl [1] suggested an approximate theory for the study of

certain plane membrane problems. This theory has proved to be of particular interest in

studying the radially symmetric deformation of a plane circular membrane under a

vertical force. In this case the Foppl equations can be reduced to a boundary value

problem for single, nonlinear ordinary differential equation with the radial stress as the

quantity to be determined [2], This equation has been studied in detail in [3-5].

One problem with the Foppl theory is the ad hoc nature of its derivation. Thus, even

though the Foppl approximations are physically plausible, there is not even a formal

mathematical justification. Indeed it is not clear in what sense, if any, the Foppl theory

approximates the exact theory nor is it obvious how to proceed in a systematic way to

obtain better approximations. In this paper we will show that the Foppl theory is the first

term in an asymptotic expansion of the exact theory and in addition, we will indicate the

procedure for obtaining higher order approximations.

The equations governing the radially symmetric deformation of a plane circular elastic

surface under a vertical pressure P (for simphcity we assume P is constant) is a

combination of three sets of relations—(1) the strain-displacement equations, (2) the

constitutive equations, (3) the equilibrium equations:

&r=[{\ + w)2 + (w')2\/2 - \, (1.1a)

&e = u/r, (1-lb)

or = or( &„&,), (1.2a)

oe = o8( Sr,&9), (1.2b)
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d f ar(r + w)(l + u')

[(1 + u')2+(w')2]
1/2

| - <4o + m')2 + ("')2],/2 = °> (1.3a)

dl ^r + u>' U? = 0 (1.3b)■< -
M[(1+W')2 + (h/)2],/2J H

(' = d/dr). u and w are the radial and vertical displacements, &r and &e are the radial and

circumferential strains, ar and ae are the radial and circumferential stresses, and h is the

thickness of the membrane. The Foppl theory assumes Hooke's law. In this case the

equations (1.2) become

°r = . E 2 (&r + V&e)> C-4a)
1 — V

o9 = + V&r) (1 -4b)
1 — v

where E is Young's modulus and v is the Poisson ratio. For the boundary conditions on

(1.1), (1.2) and (1.3) we prescribe either radial displacement (the displacement problem)

u(a)=n (1.5)

or the radial stress (the stress problem)

ar(a) ~ a (1-6)

(a is the radius of the undeformed membrane). We also assume that w(a) = 0 and all

quantities remain finite at r — 0.

In Sec. 2 it will be shown that the system of equations (1.1), (1.2), and (1.3) can be

reduced to a single ordinary differential equation. In Sec. 3 we will obtain the Foppl

theory as the first term in an asymptotic expansion of the exact theory and we will

indicate how to obtain higher order approximations. In the appendix (Sec. 4) the

equations (1.1), (1.2), and (1.3) are derived.

2. Reduction of the equations. The pair of equilibrium equations (1.3) can be rewritten

d C r2r(l + «')] ^ _ n i \
^1 l+S. f"2'"0' <2Ja>

d I rzy) + Pr = 0 aib!
dr [ 1 + Sr J h

where we have introduced the change of variable

2r=(l+S,K, 2fl = (l+S>e. (2.2)

In the case that the constitutive equations are derivable from a strain energy density

function, i.e. if there is a function W($r, Se) such that

_ W _ 3W
°r as' °e 3Sfl ^ '
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then

2s = (l+S,)|^. (2.4)

It will be assumed that this system can be solved for Sr and Se as functions of 2,. and 2tf.

A sufficient condition would be that the Jacobian

d((i + s9)dw/d$„(i + $r)djv/d$t)

a(s,.s>) 1 j

It is easily verified that if

a2w a2w I a2iw

as,2 aSfl \ asras<
¥= 0 (2.6)

when Sr — = 0 then (2.5) will be satisfied when the strains are sufficiently small. In any

case we assume

&r = er(Zr,2e), St = et(Sr,Sg). (2.7)

The equations (2.1) may be integrated to find

rZr(l + u)

1 + Sr

r2,w' Pr

1 + Sr 2h

The equations (2.8) may be combined to show that

f 2#dr, (2.8a)

(2.8b)

r 2 =
P2r4 |

Ah2
[%dr

J(\

1/2

(2.9)

-las5
The choice of the positive root in (2.9) insures that the membrane is in tension.

If equation (2.10) is combined with (1.1a) we find that

Sr + 1 = er(2r, 2.) + 1 = ° ■ (2-11)
Jo "T

where we assume that k'>-1. Equivalently

i I , _ /o , er(^r' ^e)fo^e dT

r?r + r2r

It is a consequence of (1.1b) that

(2-12)

«i' = ^re,(2„2,) (2.13)
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so that

l+±re,(2„2,) = ± + (2.14)

where we have introduced the notation

r2r(l + «')
rS=/.x""=^Tir- <2I5)

In this notation we have

2,
P 22
^- + S2

Ah2

1/2

, 2, = (O. (2.16)

In view of (2.16) it is clear that (2.14) is a second order ordinary differential equation for

the determination of S.

The boundary condition on 5 are either

1/2

,(0'|
p22

—r + 52Ah2

_ u(a) _ £

a a (2.17)

(cf. (1.5)) or

[P2r2/4h2 + S2]V2

1 + ee([P2r2/Ah2 + 52]'/2, (rS')')

(cf. (1.6)). In either case we require that 5(0) is finite.

= a (2.18)

3. Approximate theories. As was indicated in Sec. 1 Foppl theory assumes the constitu-

tive laws are given by (1.4). These constitutive equations are derivable from the classical

strain energy density function

W= ->()E 2\ (Sr2 + + 2v&fie)- (3-1)2(1 - vz)

Thus the Lagrange stresses (cf. (2.4)) are

2r - , E 20 + S»)(Sr +
1 — V

2, = —^(l + £r)(Sfl + ,Sr). (3.2)
1 — V

Equation (3.2) can be solved for &r and S0 to find

&r = er(Zr,Ze)

= 1(2, - .2,) + ^(,2? - (1 - ,)2r2, - *22|)

+ 0([22 + 22]372) (3.3a)
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~ ee(^r> )

= |(2, - v2r) + y2(vZl - (1 - v)2r2e - v222r)

+e([2f2 + s|]3/2). (3.3b)

It is convenient to introduce the following changes of variable

p = r/a, k3 = P2a2/4h2, (3.4)

S = kT. (3.5)

The parameter k defined in (3.4) is related to a parameter which occurs naturally in the

Foppl theory. In any case equation (2.14) becomes

1 +jpPee{[k[kp2+T2]V2,k-^ (PT))

\kp2 + r2]1/2 [A:p2+r2]'/2

The boundary conditions corresponding to (2.17) and (2.18) are

er(k[kp2 + T2]V2, d(pT)/dp)T

^2+rr',^r)u,=<3.7,

+  (3.8)

1 + e,(A:[A:p2 + 72]'/2, kd(pT)/dp)p=1

and T should be finite at p = 0. The quantities X and s are defined by (3.7) and (3.8).

The functions er(2r, E#) and etf(2r, 2fl) (cf. (3.3)) may be rewritten in terms of T

er( k{kp2 + T2)]/2,k-^(pT)

k_

E
~ v{kp2 + r2)l/2

+ |i{k^p2 + t2) - 0 - ")(*p2 + r2)1/2^(pr) ~ "2(^(pr)

+ 0(A:3), (3.9a)

eeiyk{kp2+T2)W2,kj-p{pT)

k_

E
~^(pT)~ v(kp2 + T2)V2

+ J${v(tp{pT)) ~ (1 ~ ")(^2 + T^/2Tp{pT) ~ 'W + ^

+0(£3). (3.9b)
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It is a consequence of (3.9) that

eikikp2 + T2Y/2, kd(pT)/dp) \ [ j
- lT-v^-{pT)\ +e(k), (3.10a)

k E\ dp

ee(k(kp2+T2)l/2,kd(pT)/dp) _ i / d
— (pT)-vT +0(A:). (3.10b)

k E\dp

In addition

(3.U)

It is a consequence of (3.10) and (3.11) that (3.6) can be written

i f (i <»r> -*T)+w -i[T-'i("T))+ m =0 (3J2)

Equation (3.12) can be rearranged to show that the equation which is accurate to 6(k) is

d2T , 3 dT , E
+ + = (3-13)

dp' P dp IT1

Equation (3.13) is the Foppl equation. Indeed there is no difficulty in putting (3.13) into

the exact form used in either [3] or [4] and [5]. The boundary conditions on (3.13) accurate

to Q(k) are determined from either (3.7)

l(^(pr)-,r)u, = v„ (3.H)

or (3.8)

71(1)=*. (3.15)

In both cases we require that T(0) should be finite. The conditions (3.14) and (3.15) agree

exactly with the boundary conditions usually prescribed in the Foppl theory.

In principle there is no difficulty in finding theories accurate to higher order. Indeed

expansions of er and ee accurate to 6(k2) can be obtained from (3.9). The remaining terms

in the equation can also be determined to 6(k2). As a consequence (3.6) and both the

boundary conditions (3.7) and (3.8) can be explicitly determined to G(A:2).

4. Appendix. The exact equation. In this section we will derive the equations (1.1) and

(1.3). A point in the circular membrane with coordinates (x, y, 0) has a new position

(£, 7j, 0 after deformation. In polar coordinates we may write

(rcos 0, rsin 6,0) -> ((r + «)cos 6, (r + w)sin$, w)

where u is the radial displacement and w is the vertical displacement. The assumption of

radial symmetry implies that u = u(r) and w = w(r), i.e. both u and w are independent of

0.

In order to determine the strains we note that as a result of the deformation an element

of length dS before deformation will be transformed into an element of length dS* after
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deformation where

(dSf = (dr)2 + r2(dd)2, (4.1)

(dS*)2 = [(l + uf + (w')2\(dr)2 + (l + "f r2(d9)2. (4.2)

It is convenient to choose the relative extensions in the radial and circumferential

directions as the definition of the radial and circumferential strains (the symmetry

assumption implies that the shear strains and shear stresses vanish). Thus we find

^ [(l+u')2+(W')2Y/2dr-dr

= Jr , (4.3a)

(l + ")rd6 - rdO

TdO

The equations (1.1) are an immediate consequence.

=   <43b>

t/2.

Fig. 1
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In Fig. 1 we have drawn an element of the deformed membrane and indicated the

magnitude of the faces on the positive faces (the quantities are defined in Sec. 1). The unit

normal to a face r = constant is

q + "y+"*~ (4.4,

[(1 + u'f + (w')2]IA

and the unit normal to the face 6 = constant is 6 where

r = cos Oi + sin Oj, (4-6)

0 = -sin Oi + cos Oj (4.7)

with i, j, k the unit vectors in the x, y, and z directions. The equilibrium conditions

become

r + Ar

r , 711/2- l9 + AS

+ o9h[{ 1 + u'f + (w') ] ^Ar (4.8)
orh(r + «)[(! + «')f + w'k]

[(1+U')2 + (W)2]'/2

Dividing (4.8) by hhr&d and taking the limit as Ar -» 0 and A^ -» 0 we find

i {°'<;+")t<'+',)^lf1| - 4c++wfV'+p4="■ («)
dr{ [d + »f + («.-)]■A I

The equations (1.3) are an immediate consequence of (4.9).
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