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Abstract. Several problems are discussed regarding flow in a horizontal channel. The

channel bed may be impervious to infiltration, or may allow a constant rate of infiltration,

or may be impervious to the left of some point in the channel bed and allow a constant

rate of infiltration to the right. The free boundary is the time history of the motion of a

piston at which the water height ji{x) has been specified. The case fi(x) = 0 is the dam

breaking problem. In the dam breaking problem in which the channel bed allows a

constant rate of infiltration a more general form of a centered rarefaction wave is

required, i.e., the characteristics are not straight lines. Two problems are formulated for

channel beds that are partly impervious and partly porous. Shock formation may arise

here. This possibility is exhibited in a single nonconservation equation.

1. Introduction. In this section we formulate a number of problems in channel flow

involving fixed and free boundaries. In these examples the channel is horizontal, the flow

is frictionless, the channel cross section is uniform and rectangular, there is no lateral

inflow, but the channel bed may be porous. For the convenience of the reader we give a

derivation, in Sec. 2, of the equations of channel flow under more general conditions, i.e.,

positive slope, friction, lateral inflow, and infiltration. The problems we formulate can also

be stated in terms of one-dimensional gas flow in a cylinder of uniform cross section with

porous walls if the adiabatic equation is p = jgp2.

We formulate first a fixed boundary problem. The channel extends to infinity in both

directions and has an impervious bed, i.e., the infiltration is 0. There is a piston at ^ = 0,

and stationary water to the left of the piston at height h0. The piston moves to the right

according to the specified motion x = s(t), where

0 <*'(/) < 2c0, s"(t)> 0, c0=(gh0Y/2. (1)

If u and h are velocity and height then

h, + {uh)x = 0, u, + {{u2 + gh)x = 0. (2)

There is an interface x = r(t) separating moving from stationary water which moves to

the left with speed c0, i.e., r(t) = -c0t. Thus

h(-c0t, t) = h0, u(-c0t,t) = 0, t> 0. (3)
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At the piston face the water particles have the velocity of the piston, so

u(s(t), t) = s'(t), s(0) = 0, t> 0. (4)

There are two cases:

(a) i'(0) = 0, (b) j'(0) >0. (5)

In the fixed boundary problem (2), (3), (4), the equations (2) are satisfied in -c0t x < s(t).

This problem is discussed in Sec. 3.

The problem above becomes a free boundary problem if s(t) is not specified but the

height ix(x) at the piston face is specified, fi'(x) «£ 0. Then (2) and (3) still apply but (4) is

replaced by

h(s(t),t) = n(s(t)), u(s(t),t) =s'(t), j(0) = 0. (6)

There are two cases:

(a) M(0) = h0, (b) n(0) < h0. (7)

Thus (2), (3), (6) is a free boundary problem, with x = s(t) the free boundary. The case

H(x) = 0 is the dam breaking problem discussed by Stoker [2, p. 313], This problem is also

discussed in Sec. 3. The solution in the case (7a) does not exist for all /jl(x), fi'(x) < 0, but

there is a solution if

fe dx

/ 1 T\ < 00"Jo h0 - n(x)

The solution always exists in the case (7b).

We conside now the free boundary problem above, in the case n(x) = 0, when the

entire channel is porous with constant infiltration rate a(volume/area time). This is the

dam breaking problem with a porous channel bed. Again there is an interface x = r(t)

separating moving from stationary but subsiding water, the level of the water to the left of

x = r(t) declining according to h(x, t) = h0 — at. Thus the interface does not move with

constant speed, but r{t) is defined by

r'(0 = -[g(h0 ~ «0]'/2> r(0)=0,

r(f) = -ir[co ~ (co ~ Xz)V2]' * = £«• (9)

so

3X

The complete formulation of the problem is

h, + (uh)x = -a, u,+({u2 + gh)x = 0,

h(r(t),t) = h0-at, u(r(t),t) = 0 0 < t < tQ, (10)

h(s(t), t) — 0, j(0) = 0, 0<t<t0,

where the differential equations in (10) are satisfied between r(t) and s(t) and below

t0 = h0/a. There is no water in the channel after t = t0. This problem is discussed in Sec.

4. We note that there is only one condition at the free boundary, in contrast to the two

conditions exhibited in (6). This is plausible physically because n(x) =0 means that the
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piston motion has no effect on the flow. This is also true in the case a — 0, so the second

condition in (6) can be omitted. But there is a difference: the equation u(s(t), t) = s'(t) is

true when a — 0, but not true when a > 0. In both cases, i.e., /i(x) = 0, a = 0 and

jn(x) = 0, a > 0, the solution is a centered rarefaction wave with center at. the origin, but,

while the CRW is easy to obtain in the case a = 0 because the characteristics composing it

are straight lines, this is no longer true in the case a > 0.

In Sec. 5 we formulate two problems in which the channel bed is partly porous and

partly not. In the subsidence problem we have the infiltration rate /(x) = 0, x < 0,

/(x) = a, x > 0, and h(x, 0) = h0 = constant, u(x,0) = 0. There is a left moving interface

x = -c0t, and a right moving interface x = s(t), which separates moving from stationary

but subsiding water. The formulation is (43), (44). The main question here is the

possibility of shock formation, which may occur before time t0 = h0/a, when there is no

water to the right of s(t0). After t0 the formulation is (43), (45), (46). Shock formation may

occur after t0. The second problem is the dam breaking problem, i.e., ju(x) = 0, with

f(x) = 0, x < x0,/(x) = a, x > x0; the formulation is (47). The free boundary is the time

history of the water edge x = s(t). Shock formation may also occur in this problem.

In Sec. 6 we consider the initial problem value problem

u, + uux = <p(x), u(x, 0) = u0(x), (11)

for the purpose of determining the effect of <p(x) and u0(x) on shock formation. If

<f>(x) z 0 the differential equation in (11) is a nonconservation law, so there is an analogy

to the problems of Sec. 5. If u0(x) = constant and <j>(x) has a point of decrease then shock

formation does occur in (11). This lends some support to the possibility of shocks in the

problems of Sec. 5.

2. The equations of channel flow. We derive the equations of flow in a wide channel of

uniform rectangular cross section. This is done in Stoker [2, pp. 452-455], except for

infiltration, which we include in this discussion. Let p be the density of water, b the

channel width, 6 the constant angle which the channel makes with the horizontal (the

channel slopes down to the right), h(x, t) and u(x, t) the depth and velocity, Sf{u, h) the

friction slope (pgb Sf hAx is the resisting force to a slab of the thickness Ax), and q(x, t)

and f(x, t) the lateral inflow (rainfall) and infiltration rates in volume per unit area per

unit time. Let s,(r) and s2(t), s2(t) > £i(0> be plane sections moving with the water. The

mass between the sections is

/Si
h dx.

Then, writing hk = h(sk(t), t) and uk = u{sk(t), t), k = 1,2,

J htdx + (uh)2 ~ (uh)i (12)m'(t) = pb

We have also

m'(t) = pbj 2(q - f) dx. (13)
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Equating (12) and (13), dividing by s2 — su and letting T x and -s2 we get the

continuity equation

h,+ (uh)x = q - f. (14)

The momentum M(t) between the sections is

M(t) = pbj uh dx.
S\

Then

M'(t) = pb J (uh),dx + (u2h)2 — (u2h){ (15)

M'(0 is the sum of three terms: the rate of momentum loss through infiltration (there is

no gain or loss of momentum in the * direction through lateral inflow), the body force,

and the net pressure force at the two sections. The first of these terms is

pbj fudx. (16)
s\

The body force is

pgb sin 6 f h dx — pgb f 2hSfdx. (17)
S |

The pressure force at the section x = sk(t) is

±Pgbf\hk - v) dy,

where + goes with k = 1 and - with k — 2. Thus the net pressure force is

-iPgb{h\ - h}). (18)

From (15)-(18) we get, on dividing by s2 — s,, letting 5, T x and s2-!■■*> anc^ writing

S = sin 6,

(uh), + (u2h)x = -fu + gh(S - Sf) - {{gh2)x. (19)

If u = uh then (19) becomes

°'+ (t + \gh2)x=~^ +8h(S~Sf)- (2°)

Thus (14), with v = uh, and (20) can be taken as the continuity and momentum equations

for channel flow. But, using (14) in (19), we get

u, + (|w2 + gh^ x = g(s - sf) - y, (21)

so that we may also use (14) and (21) as the equations of channel flow. In the discussion of

shock formation we need to use (14), with v — uh, and (20) because (20), rather than (21),

is the differential expression of momentum conservation.
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3. The fixed and free boundary problems with zero infiltration. If we introduce c = (gh)x/2

in (2) we get

(u + 2c), + (« + c)(w + 2 c)x = 0, (22)

(m - 2c), + (u - c)(u - 2c)x = 0.

Thus the Riemann invariants u + 2c and u — 2c are constant, respectively, along the

characteristics C, and C2, where

C,: Yt =u + c' C2: ^=u-c. (23)

The characteristics originating onx = -c0t carry the constant value u + 2c = 2c0 since

u = 0 and c = c0 on x = -c0t. Therefore if the C, characteristics cover the entire domain

D between x = -c0t and x = s(t) then u + 2 c = 2c0 in D. Since u — 2 c is constant on a

C2 characteristic, both u and c are constant on a C2 characteristic, so each C2 characteristic

is a straight line. The value of dx/dt on the C2 characteristic originating at the point

(s(t), t) is
u(s(t), t) - c(s(t), t) = fs'(') - c0.

We consider now case (5a), .s'(O) = 0. In this case the C2 characteristic at the origin

coincides with x = -c0t. Let (x, t) be any point in D, and let the C2 characteristic through

(x, t) intersect x = s(t) at t = T. Then

x — s(T) 3 ,, , , ,
t_T = ~2S iT) ~ c0- (24)

The two functions of T, x and t fixed, 0 < T t,

y=x t , y = \^{t) - c0, (25)

have the following properties: the second is a nondecreasing function (because s"(t) > 0)

which has the value -c0 at T — 0, and the first, which is dx/dt on the segment joining

(x, t) to (s(T), T), is a decreasing function which has the value x/t at T = 0 and goes to

-co as T -» t. Thus, since x/t > -c0, (25) has a unique intersection T(x, t) so (24) has a

unique solution. But u is constant along the C2 characteristic through (x, t) so

u(x, t) = u(s(T), T) = s'(T(x, 0). (26)

From u + 2c = 2c0 in D we get

c(x,t) = c0 - is'(r(x, 0)- (27)

The right side of (27) is > 0 because s'(t) < 2c0. The solution of (2), (3), (4) in the case

■s'(0) = 0 is given by (26) and (27).

In the case (5b), j'(0) > 0, the value of dx/dt along C2 characteristics originating at

{s{t), t) goes to b — |j'(0) — c0 > -c0 as / -» 0. In the region between x = bt and

x = s(?) the discussion above apphes, so u and c are defined by (26) and (27). In the

region between x = -c0t and x — bt there is the CRW

u = — + — c = — - — C28)
3 31' 3 31' ^ >

which coincides with (26) and (27) on the common boundary x = bt.
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In the special case s(0 = at, a < 2c0, we have b = \a — c0. In the region between

x = bt and x = at there is the constant regime u — a, c = c0 — {a, and, in the region

between jc = -cQt and jc = bt, the CRW (28). To the left of x — -c0t there is the constant

regime u = 0, c — c0 so the CRW separates two constant regimes. When a = 2 c0 then

b = 2c0, and there is only the CRW between jc = -c0t and * = 2c0t. On jc = 2c0t, c — 0,

so h = 0. This is the solution to the dam breaking problem.

In the free boundary problem (2), (3), (6) we assume that /x'(jc) < 0 for small jc. We

consider first the case (7a), n(0) = h0. Since u + 2c = 2c0, u(s(t), t) — s'(t), and

c(s(0. 0 = [gM(>(0)]l/2 we get

*'(') + 2[g/x(i(/))]1/2 = 2(gh0)1/2, s(0)=0. (29)

The initial value problem (29) has only the solution s(t) = 0 if [ju(jc))1/2 has a continuous

derivative in the neighborhood of x = 0, but if (8) applies then

t~Ux)~2^7~2l~h\f(30)

is the solution of (29); here f = f(jc) is the function inverse to jc = s(t). The integral in

(30) is convergent since it is less than

< oo.
Jo h0 - ntf)

Since £'(0) = + oo, s'(0) = 0. Also

?'(*)35 Hgh0Yvl = (2c0)_1

so 0 ^ s'(t) < 2c0. When H'(x) = (2c0)"' (so s'(t) = 2c0), n(x) — 0. From

s"(t) = -g1/2[/i(j(0)]_l/V(^(0)5'(0

we get s"(t) > 0. With this s(t) we then determine u and c by (26) and (27).

In the case (7b), s'(0) > 0. We define s{t) by (30) (condition (8) is not needed) and

determine u and c as in the fixed boundary problem.

When jii(;c) = 0 the second condition in (6) can be omitted, i.e., the free boundary

problem can be formulated as (2), (3), and h(s(t), t) = 0. This problem has the solution

s(t) = 2c0t, with u and h = g"'c2 given by the CRW (28), so s'(t) = 2c0 and u(s(t), t) =

2c0. Thus the second condition in (6) is true anyway, even though it can be omitted. The

solution of (2), (3), and h(s(t), t) = 0 is unique if we impose the requirement that

h(x, t) > 0 when x < s(t). For if s(t), u, h is a solution and P is a point of jc = s(t) not

on x = 2c0t then, on the C2 characteristic issuing from P into -c0t < x < s(t), h = 0.

Thus there is no such P, so s(t) = 2c0t and u and c are given by (28).

4. The dam breaking problem with constant infiltration. This is problem (10). The

problem has the equivalent formulation (r(t) is given by (9))

(u + 2c), + (u + c)(u + 2 c)x — ~X/c,

(u — 2c), + (u — c)(u — 2c)x = X/c,

c(r(t), t) = (cq - \t)W2, u(r(t),t)= 0, 0 < t ^ t0, (31)

c(s(t), t) = 0, s(0) = 0, 0<t*zt0.



FREE BOUNDARIES IN ONE DIMENSIONAL FLOW 325

The characteristics are given by (23). The curve x = r(t) is the C2 characteristic passing

through the origin. Analogous to the case A = 0 we look for a CRW with center at the

origin; this is a solution of (31) such that all C2 characteristics pass through the origin. To

this end we introduce characteristic coordinates. Let a(x, t) = a and fi(x, t) = fi be,

respectively, the family of C, and C2 characteristics. Along a C, characteristic a is

constant and along a C2 characteristic fi is constant. We choose the parameters a and fi as

follows: a is the t coordinate of the intersection of the C, characteristic with x = r(t), and

/? is the limit of u(x, t) on a C2 characteristic as (x, t) -* (0,0). Thus /3(x, t) = 0 is the C2

characteristic x = r(t). We assume that through each point to the right of x = r(t) there is

exactly one C, and one C2 characteristic. Thus the mapping of the domain to the right of

x — r(t) onto the first quadrant of the (a, f3) plane is one to one, except for x = 0, t — 0,

which maps onto the fi axis. The C2 characteristic x = r(t) maps onto the a axis, the other

C2 characteristics map onto fi = constant, and the C, characteristics map onto a =

constant. In the (a, f3) plane we get, after some calculation,

(a) up + 2cp = -\tp/c, (c) xp = (u + c)tp, (32)

(b) ua - 2ca = \tjc, (d) xa = (u- c)ta.

The boundary conditions on the a axis are given by (33) below; these conditions are a

consequence of (1) the a axis is the map of x = r(t), and (2) the choice of the parameter a

as the t coordinate of the intersection of the C, characteristic with x = r(t):

w(a,0) = 0, c(a,0) = (cp — Aa)'/2, (33)

x(a,0) = /"(«), ?(a,0) = a.

On the fi axis the boundary conditions are given by (34) below. The conditions x(0, fi) = 0

and r(0, fi ) ~ 0 are clear (because the fi axis maps onto the origin), and the condition

w(0, fi) follows from the choice of the parameter fi as the limit of u(x, t ) as (x, / ) goes to

the origin along a C2 characteristic. If we set a = 0 in (32a) we get, since tp(0, fi) = 0,

fi) + 2cp(0, fi) = 0,

w(0,13) + 2c(0, fi) = w(0,0) + 2c(0,0) = 2c0.

This implies the condition on c(0, fi ) '\n (34):

w(0, /?) = /?, c(0,p) =c0- W, x(0, fi) = 0, /(0,JB) = 0. (34)

We note that c(0,2c0) = 0 and c(X^'co,0) = 0. The free boundary in the (a, fi) plane is

therefore the curve c(a, fi) = 0 joining the two points (0,2c0) and (A~'c„, 0). Thus the

solution of (31) is obtained by solving (32), (33), (34) in the domain bounded by a — 0,

/3 = 0, and c(a, fi) = 0. The free boundary x = s(t) in the (x, t) plane is defined

implicitly by c(a(x, t), f3(x, t)) = 0.

In the case A = 0 the problem (32), (33), (34) is easily solved. Indeed we get, from (32a)

and (32b) and the boundary conditions (33) and (34), u + 2c = 2c0 and u — 2c = 2/? —

2c0, so

u{a,f3) = f3, c(a, f3) = c0— j/3. (35)
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From (32d) and (35) we get x — {\ft — c0)t so, from (32c),

2(2c0 — /i)tp — 3t = 0. (36)

Thus, from (36) and (33), we get

2 cn
3/2

t(a,ft) = 2Co _ p] > x(a, P) = ~ Co )'(«>£)• (37)

The solution is valid in the strip {a > 0,0 < ft < 2c0}. From (37) we get ft = (2/3)(c0 +

x/t) which, inserted in (35) gives the CRW (28). The free boundary, which is the locus

c(a, yS) = 0, is yS = 2c0, or, in the (x, t) plane, x = 2c0t.

When X > 0 an explicit solution is not available; an existence theorem for (32), (33),

(34) is required. We provide, instead, a plausibility argument which is, at the same time, a

(crude) computational procedure. Let k be small and let a = ik, ft = jk, = 0,1,2, - - •

be two sets of equidistant parallel lines in the first quadrant of the (a, ft) plane. Let

utj, Cjj, xtj, tjj be the values of u, c, x, and t at a = ik, ft = jk. Then a discretized version

of (32) is

(a) cnj-\)uij + 2c,(y-i)cij + Xtjj = ciU_])ui(J_]) + 2 cf(j_^ +

05) c(i-\)juij ~ 2c(i_v)jcij — XtIJ — — 2c^_^j — (38)

(C) (ui(j-\) CHj-\))hj Xij ~~ (UHj-I) C/(y— 1)1) _ XiU~1)'

(d) — C(i_\y)tij — Xjj = ( ^(i_ \)j ~ C(i-\)j)t(i-\)j ~~ X(i-\)j-

In (38) we have replaced the non-differential terms in (32) by their values at the lattice

point to the left or below the point a = ik, ft — jk. The system (38) is linear in the four

unknowns utJ, ctJ, ttJ, xtJ and has the determinant

4c'0-i)c(<— \)AUi(j~i) _ "('"!)> + c('-i)v + (39)

Thus if cj(J_l} 0, c(,_1)y 0, and the bracketed term in (39) is not 0, equations (38)

determine mj;, c/y, ?,y, and x}J in terms of the values of u, c, t and x at ((/ — 1)/:, jk) and

(ik,(j — 1 )k). The linear system (38) is supplemented by the initial specifications, derived

from (33) and (34),

",o = °> ci0= (c%-\ik)V2, xi0 = r(ik), tl0 = ik, (40)

"oj % = co~ lJk> xoJ = 0> 'oj =

where i, j — 0, 1,2, Although the linear system (38) does not depend on k, k appears

in the solution through the initial specifications (40). We note that, in the bracketed term

in (39), w,(y_i) ~ u(i-\)jsmall (i.e. of order k) while c(,_l)y + c,(y_n is not small until c

gets close to 0. Since u0j, c0j, r0j, x0j and ui0, c,0, ti0, x,0 are known from (40) we can use

(38) to calculate uijy c, , ttJ and xtJ up to, very nearly, the locus c(a, ft) = 0.

The free boundary x = s(t), which is the time history of the water edge, begins at the

origin and terminates at the point x0 = -2cq/3A, t0 = Cq/X = h0/a. At time t0 there is

no water in the channel. The graph of x = s(t) is the locus of points on the C2

characteristics on which c = 0. Since u has the least upper bound 2 c0 this implies that the
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curve x — s(t) enters the first quadrant with slope 2 c0, advances to some maximum value

of x, and then retreats to x0 at time t0. Since h = Oonx = s(t) we get

hx(s(t), t)s'(t) + h,(s(t), t) = 0,

and, from the first equation of (10),

«(*(0. t)hx(s(t)> 0 + 0 =

0[*'(0 ~ u(s(t), /)] = a. (41)

From (41) we get, since h — 0 on * = ■?(?),

hx(s(t),t) <0

u(s(t), t) > s'(t). (42)

Thus, in the case a > 0, the water at the edge makes a positive angle with the horizontal;

in the case a — 0 that angle is 0. It is clear from (42) that u is positive on that part of

x = s(t) for which s'(t) > 0 and remains positive on x — s(t) somewhat beyond the

turning point. Indeed it is plausible that u(x, t) > 0 for all x and t except for points lying

on x = r(t). This is easily proved if we make the equally plausible hypothesis that

hx(x, t) < 0 for all jc and t. For suppose (jc,, tx) is in D = {/-(/) < x < s(t)} and is a point

with maximum x for which u = 0. If (x,, rL) is an isolated point then both u, and ux are 0

at that point and, from the second equation of (10), we get hx(xx, tx) = 0. If (*,, ?, ) is not

an isolated point and x = a(t) is the curve through that point such that u(a(t), t) = 0,

then, on differentiating this equation with respect to t and noting that ct'('i) = 0, we get

«,(*!, /|) = 0, so again, from the second equation of (10), we get hx(xx, tx) — 0. There

remains the possibility that (x,, tx) lies on the decreasing part of x = s(t), but this is ruled

out by the second equation of (10), which shows that u,(xx, tx) >0. This implies that

u < 0 on x = xx, t2 < t < tx for some t2, so there are points with larger x at which u — 0.

5. Problems involving channel beds that are partly impervious and partly porous. We

formulate first a subsidence problem. The channel extends to infinity in both directions,

with the infiltration f(x), in volume per unit area per unit time, having the value 0 for

x < 0 and the positive constant a for x > 0. We assume that u and h are initially 0 and h0.

When 0 < t < t0 = h0/a there are two interfaces, x = r(t) and x — s(t), separating

moving from stationary water. The interface r(t) is given by r(t) — -c0t, while it is

reasonable to suppose the interface 5-(r) is defined by

s'0) =[g(ho - «0]l/2, s(0) = 0.

The equations are

h, + (uh)x = -/, u, + (^m2 + gh)x = 0, (43)

with boundary conditions

h(r(t), t) = hQ, u(r(t),t) = 0, h(s(t), t) = hQ - at, u(s(t), t) = 0. (44)
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The main point of interest in this problem is the possibility of shock formation. There are

several possibilities:

(a) there is no shock formation up to time t0,

(b) a shock £(/) forms at time , 0 < t] < t0, and £(r) < s(t), t{ < t < t0,

(c) a shock forms at time £(f,) < s(r,), but, at some time t*, t0, £(t*) = s(t*).

After time t0 the time history of the water edge x = s(t) becomes a free boundary with

(44), in case (a) above, replaced by

h{r(t), t) — h0, u(r(t),t) = 0, h(s(t),t) = 0, t > t0, (45)

and the initial conditions

h(x,t0) = h0(x), u(x,t0) = u0(x), -c0t0< x <2cl/3\, (46)

where h0(x) and u0(x) are known from the solution of (43) and (44) at t = t0. It is

possible that shock formation occurs after t0.

The dam breaking problem, which we have discussed in the case of zero infiltration or

constant infiltration, can also be formulated for the case f(x) = 0, x < x0, f(x) = a,

x > x0, where x0 may be positive, negative, or 0. In the case x0> 0 the formulation is

h,+ (uh)x = -f, u, + (\u2 + gh)x = 0,

h(-c0t, t) = h0, u(-c0t,t) = 0 t> 0, (47)

h(s(t),t) — 0, s(0) = 0, t 0.

The case jc0 < 0 is more complicated. If x0 < 0 and |jc0| is large then the problem has two

distinct parts: the first part is the problem discussed in section 4 and the second part is the

subsidence problem formulated above. But if jc0 < 0 and |jc0| is small then, in addition to

the left moving interface x = r(t) and right moving interface x — s(t), there is an

interface x — a(t) between x = x0 and x = r(t) which is moving to the right and which

coincides with x = r{t) at x = x0/2 at time t = t0 — A"'(|Xx0 + Cq)2/3. The first case

occurs when x0 < -4cq/3A and the second when 0 > x0 > -4c(j/3A. Shock formation

may occur in all three of the cases x0 < 0, x0 > 0, x0 = 0.

6. The equation u, + uux — <j>(x). The continuity equations in (43) and (47) are

non-conservation equations because of the right sides, -f(x), which are step functions with

a single decreasing step. To determine the posssible effect of such a term we consider the

initial value problem (11) for a single equation.

In the case <f>(x) = 0 the equation is a conservation law. Then if u0(x) is nondecreasing

and is continuous and differentiable, except possibly at isolated points, (11) has a

continuous solution in the half plane t > 0. If u0(x) has a point of decrease then a

continuous solution in the half plane does not exist, but there is a generalized solution [1],

Suppose <j>(x) z 0. If <p(x) is nondecreasing and if w0(x) is continuous and u'0(x) > 0,

except at isolated points, then, if u0 and <p are bounded, (11) has a continuous solution in

the half plane t > 0. But if, for some x0, u'0(x0) < 0, and <j>'(x) =£ 0, then ux becomes

infinite for finite t on the characteristic originating at x = x0. This can be proved, using

the argument in [1], as follows: let q{t) — ux on that characteristic. Then

q' = uxt + uuxx.
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Differentiating (11) with respect to x we get

"x< + ""x* + ("J2 = </>'(*).

so on the characteristic we have

q' + q2 = 4>'(x). (48)

Dividing by q2, integrating, and using <j>'(x) < 0, we get

-<7(0 ' +?(0)"' + t<0,

-q(t) >[(-mJ(*0))"1 - (49)

Since u'0(x0) < 0, (49) implies that q = ux goes to -oo for finite t on the characteristic

originating at x = x0. The assertion remains true if u'0(x0) = 0, <j>'(x0) < 0, and </>'(*) < 0,

which is the situation if w0(x) = constant and <f>(x) has the point of decrease x = x0. To

prove this we get, from (48), on dividing by q2 + 1 and integrating,

-i f -i2 + <t>'(x) , f< Q2
tan"1 q = / vv ' dt < - \  dt,

•*o 9+1 ^o^+l

2

-q > tan [' q dt. (50)
Jo q + 1

Since -q is an increasing function of t there are the following possibilities:

1. -q(t) — a, t -> 00, 0 < a < 00,

2. -q(t) -> 00, t ^ t0, t0 < 00.

The first possibility is ruled out because the right side of (50) is + 00 for some finite t

while the left side is finite for that t. Thus we have the second possibility, which implies

shock formation. The following example exhibits this possibility: Let a > 0, /? > 0,

u0(x) = /3, <f>(x) = 0,x <0, </>(*) = -a, x > 0. The shock £(/) is, in p/a =£ t < 3fi/a,

and in t > 3/8/a,

(8a) '(3^ — at)(/3 + at), (51)

(16a) '(a? - 3/3)(-3at + fi). (52)

The shock originates at x = ft2/2a, t = ft/a, so u is continuous below t = fi/a. In the

first quadrant u = -at + ft, except in the region between the t axis, the shock (51), and the

parabola x = - {at2 + /it joining the origin to (ft2/2a, ft/a), where u = (ft2 — 2ax)1/2.

In the second quadrant u = ft below (52), and

u= {{ft ~ at) ~ 2I//? — at)2 4ax]'/2

above (52).
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The discussion above supports the possibility of shock formation in (43), (44) and in

(47). It is possible that an extension of the argument above regarding ux might be

obtained, but that argument is insufficient to specify the shock, if it exists.
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