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ON EXISTENCE OF SOLUTION OF THE DIRICHLET PROBLEM

of fourth Order partial differential equations
WITH VARIABLE COEFFICIENTS*

By
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Abstract. Sufficient conditions for the existence and uniqueness of the solution of the

Dirichlet problem of fourth order elliptic partial differential equations with variable

coefficients have been derived. In a number of examples of practical interest, the easy

applicability of these results has been shown.

1. Introduction. A large class of problems of mathematical physics lead to fourth order

elliptic partial differential equations with variable coefficients, the equations of the

bending problems of elastic—isotropic, orthotropic and anisotropic—plates with variable

(or constant) thickness being very particular cases of the general problem considered here.

Hence, it is necessary to find sufficient conditions for the existence and uniqueness of the

solution of the Dirichlet problem of these equations in weak form. This paper contains

new results in this direction.

2. Notations. Let be a domain in 1R2 with piecewise smooth boundary T such that

fi = S2 U T. Let H"'(Q) be the usual Sobolev space [1,4] of integral order m > 0 equipped

with inner product ( •, • )m a, norm II ■ llm 0 and semi-norm | • \m n such that //°(S2) =

Hq(&) = (u: v £ //2(fl), y0v = v |r = 0, Y]t> = (3u/3n) |r = 0j = D(Q) , (2.1)

where yk: H2(i2) -> H2~k~i/2(T) are trace operators with k = 0,1; H3/2(T) and HX/2(T)

being the fractional order Sobolev spaces on T [1,4]; D( 12) is the space of test functions on

0 [5].

3. The variational problem. To the Dirichlet problem (P) defined by: For given

/ G L2(£2), find u such that

Am = / infi, u |r = 0, (du/dn) |r = 0, (3.1)
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where

= (a,Jkiuuj),kl(x) forxGfi (3.2)

(in (3.2) and also in the sequel, the Einstein's summation convention has been followed), we

associate the Galerkin Variational Problem (PG) defined by: Find u G //02(fl) such that

a(u,v) = l(v) Vu £ Hq(U), (3.3)

where the continuous, symmetric bilinear form a( ■, •) and the continuous linear form /(•)

are defined by: Vu, w G //02(fl),

a(v,w) = (A v,w)0M= J^aijklv,ijw,kldQ, = a{w, v), (3.4)

l(v) = (/. u)o,s2 = f fvdQ, VoG//02(8);

the coefficients aijk) satisfy the following conditions: V/', j, k, I = 1,2,

«/y*/eC°(fi); aij */(*)> 0. a,j ki(x) = akiu(x) VxGfi. (Al)

But without loss of generality, we can always assume that V/, j, k,l — 1,2,

OijkM = akliJ(x) = aIJIk(x) = ajilk(x) VxGfi (A2)

since if, for example, aljkl ^ ajikl or al]kl ^ al/lk (see Case (I) in Sec. 4.1) for some

i, j, k, I = 1,2, we can always define V/, j, k, I = 1,2,

a,jki = (aijki + a,M + a,uk + au/k )/4 (3.5)

such that V/', j, k, I = 1,2,

aijkt(x) = akliJ(x) = dji/k(x) = ajikl(x) VxGli

and Vu, w G #o(£2),

a,jkiv>,jw'ki = a:jkivujw>kh a(v,w) = a(w,v).

Now, we prove the main theorem on the //o(£2)-ellipticity of a (•, ■ )•

Theorem (3.1). If the coefficients aijkl satisfy (A1)-(A2) and

inL(aun ~' a1112 ~ ^ i i 22) (-*■) >

inf (0,212 a\i\\ a\22i)(x) > 0, (3 6)
v(=n ^ * 'x eS2

inf^(a2222 — a2211 ~~ a2212)(-^) ->

Jt£!

then a( •, •) defined in (3.4) is 7/0 (fi )-elliptic.

Proof. From (A2), we have Vx G fi, V£ = (£u, |12, |21, £22) G IR4 with £21 = £12'

aijkl(X)£ij£kl (al 11 l(X)£n 2<3|122(-x:)€]1^22 + a2222( X ) ^22 )

"'"^(al21l('x:)^12^1l ai2i2(x)£\2 + <32212(-x)^22^12)- (^-7)
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Vxea,V£n,£22elR,

(aim (*)€?, + 2a U22(X )^ 11 ̂ 22 a2222(X)£ri)

~ (a 1111 (-^) a2222(X) ~ au22{X)){^ + £22)

+ (allll('x:)^22 a2222(X)^\)

= ail22(^)(ln + ^22) ^ 0-

Therefore, Vx G £2, V£n, £22 E R,

flnn(*)€?i + 2a 1122 ( -* ) £ 11 £ 22 a2222(X)%22

» 22 *^(allll fl1122)(-x)^?l (a2222 a\\22)(x)%2

(3.8)

Similarly, the following inequalities can be established: Vx e fi, V£n, £12, £22

(allll flll22)(*)fll 2a|||2(jc)^||(2|12) + ^ 1212 ( )(^^12 )

^ (allll ~~ a1112 ~~ ^ 1122 )(-*•)£ 1! ^ (al2l2 ~~ ^1112 )(^)(^^12 ) >

(3.9)

(3.10)
(a2222 a2211 )(*)£22 + 2ai222(x)%22(2£l2) (421212 a1211 )( ^ )(2£l2 )

> (a2222 ~~ a221l ~~ a22n)(x)^22 (a\2\2 ~ a\2\\ ~ a\222 )( ■* )(^ll2 ) ■

Then, using (3.7)—(3.10), we have: Vx G Q, V£ = (£u, £12, £21, |22) G R4 with |21 = |12,

aijkl(X)%ij£kl ^ (allll ~ alU2 ~ flU22)(JC)^ri

+ (a1212 — ^ 1211 — 421222 )(-x)(2^i2) + (a2222 ~ a22\\ ~ a2212 )( x )^22

=»a(«,t>) = faijkl(x) vUjv,kldQ

^ / [(Gllll — fl1112 _ a1122)(-X)(t>'ll)
Ja

+ 4(fl12i2 ~ d\2\\ ~ a\222)(x)(V>\2)

+ ( a2222 a22\2 a22\\ )(x)(u,22)2] dQ,

> a0f v,iivUjdQ = «0|f|2,n Vu G //02(^),
Ja

where

aQ = mini inf (aull - am2 - au22)(x),
v jceS2

2 inf (a1212 — al2n — 431222)(^)' int (^2222 — a22ii — a22i2)(x)} > 0-
xEtl x£tt '

Then, the result follows from the application of the Poincare-Friedrichs inequality [4],
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Now, if

inf (fliin — aw\7 ~ a\\22)(x) ~
J(6f!

inf («1212 ~~ a121l a\222)(x) — 0,

inf_(a2222 ~ a22\\ ~ a22l2)(X) ~~
xett

(See Case (II) in the Sec. (4.1)), then the Theorem (3.1) is not applicable. But we have

Theorem (3.2). If V/', j, k, I = 1,2,

aijkl ~ Ajjki + PijkK (3-11)

where Vi, j, k, I = 1,2, Aijk, satisfy the conditions (Al )-(A2) and (3.6) and f}jjkl satisfy

JaPijklvUjv,kldQ >0 v»e //02(fi), (3.12)

then a( ■, ■) is //02(fl)-elliptic.

Proof. Using (3.11), we obtain: Vu G //02(£2),

a( v,v) = J (Aljkl + P,jkl)vUjv,klcm

= / AijklVUjV'kld®

(by virtue of (3.12)), from which the result follows by the Theorem (3.1), since Ajjkl satisfy

(A1)-(A2) and (3.6).

Remark (3.1). [ijjkl in (3.11) do not satisfy (A1)-(A2) and (3.6) in general.

Theorem (3.3). If the coefficients aijkl satisfy (A1)-(A2) and (3.6) (resp. (3.11) and (3.12)),

the problem (PG) has a unique solution.

Proof. The result follows from the Theorem (3.1) (resp. Theorem (3.2)) and the

Lax-Milgram lemma [4],

Remark (3.2). Since a( ■, •) is symmetric, the Ritz variational problem (PR) correspond-

ing to (P) can be defined as follows: For given/ G L2(fi), find u G //02(12) such that

/(«)= inf J(v), (3.13)
»£//02( 0)

where

J(v) = 2a(v> v) ~ l(v) Vu e //02(!2). (3-14)

Proposition (3.1). If aijkl satisfy (A1)-(A2) and (3.6) (resp. (3.11)—(3.12)) and w E //02(fi)

is the solution of (PG), then u E //02(S2) is also the unique solution of (PR).

4. Examples. First of all, we shall consider the biharmonic problem whose results are

well known and then the bending problems of elastic—isotropic, orthotropic and aniso-

tropic—plates with constant and variable thickness in order to illustrate the generality of

the results obtained. In all the examples given below, only the //02(fl)-ellipticity of the
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corresponding bilinear form a( ■, •) has been proved by Theorem (3.1) (resp. Theorem

(3.2)), since the existence and uniqueness of the solution u £ //02(fl) of the corresponding

problem (PG) follows immediately from the Theorem (3.3).

4.1 The biharmonicproblem.

Case (I). For aljkl = SikSj„ Au = AAu. But aijkl ¥= ajikl, aijkl ¥= aiJlk in general, i.e. (A2)

is not satisfied, although (Al) holds, since al/kl = aklij. Define aijkl by (3.5) such that

«»/« = !. 51212 = 51221 = «2112 = «2i2i = 2, aijkl = 0 otherwise. Then, aijkl satisfy (Al)-

(A2) and also (3.6)^ since ^iiii ^1112 ^1122 K ^1212 ^1211 ^1222 — "2' ^2222

^2211 — ̂ 2212 = and the //02(fi)-ellipticity of a( •, •) defined by

a(v,w) = f SlkS,vUjw,kld2 = f v,ijw,IJdti
Ja Ja

follows from the Theorem (3.1).

Case (II). aijk, = SiJSkl yield Aw = AAm and a(v, w) = ja A«Aw dtt. Then aijkl satisfy

(A1)-(A2), but not (3.6), since atm — am2 ~~ an22 ^1212 — ai2ii ~ ^1222 = ^2222 ~~

#2211 — #2212 = 0- Hence, Theorem (3.1) is not applicable. In order to apply the Theorem

(3.2), define SjjSkl = ajjkl + P,jk/, where aijk, are those given above in Case (I) which

satisfy (A1)-(A2) and (3.6), and (i,jk, are given by: /?1122 = 022u = 1, /?1212 = /?2112 =

P2i2\ = P\2i\ = ~ 2> Pijki = 0 otherwise (see Remark (3.1)). Vt; G D(Q,),

f fiijklv' ijV' kl ~ 2 f ( ̂ , 11 f, 22 — (u,|2) ) — 0.
Ja

Since I>(£2) is dense in i/02(fi), Pljk, satisfy (3.12). Now, the //02(fl)-ellipticity of a( ■, •)

follows from Theorem (3.2).

4.2 Bending problems of elastic plates. The bending problem of a clamped thin elastic

plate is defined by (P) of the corresponding plate operator A given by (3.1), where

u — w(x,, x2) denotes the normal deflection at any point (x,, x2) of the middle plane S2 of

the elastic plate, T being its boundary along which the plate is clamped, the coefficients

aijk, denote elastic properties and thickness of the plate, /eL2(fi) denotes the load

function. We shall consider elastic plates first with constant thickness and then with

variable thickness.

a) Plates with thickness h = constant.

(I) For anisotropic case [3], a„„ = Dn, al212 = ^1221 = fl2i2i = ^2112 = D66> a\\n = "1121

= a12|| = #2111 = -^16' a1222 = a2122 = a2212 = a2221 = ^26 an<^ a2211 — a1122 — ^12' where

Djj denote rigidities [3] having the properties: Dn, D22, D66 > 0; Dn — vxDz2 = v2Dii'

0 < v, < j (i — 1,2); 0 < Z>16 < (1 v2)Du\ 0 *£ D26 < (1 V\)D22 and Z>16 + D26 <

£)66; and the Anisotropic plate operator A is given by: Au = Duu,uu + 4Z)16t/,1112 +

2(D,2 + 2D66)u,U22 + 4D26m,1222 + D22u,2222. The coefficients aijkl satisfy (A1)-(A2)

and also (3.6), since aim - aun - aU22 = Z>,,(1 - v2) - D{6 > 0, a1212 - al2U - au22

= Z>66 — (Z),6 + Z)26) > 0, a2222 — a22i2 — a22U — D22{ 1 — ^j) — D26 > 0. Hence, the

#02(fi)-ellipticity of the bilinear form a{ ■, •) defined by
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a{v,w) — f [(Z)||tJ,ii + 2 D]6v,]2 + ' 22 )vv' 11
Ja

2( D\(,V, 11 + 2 Z)66 U, 12 + ^26U'22)m;'12

+ (Z)|20,n + 2Z)26U,|2 D220' 22 )v^» 22]

follows from the Theorem (3.1).

(II) For orthotopic case [2,3,6,7], ann = D,,

'2211 = ^12 ~ ''l^ = p2^1»

fl1212 — fl122l fl2112 a2121 ~~ V"

fll2ll — alll2 — all2l ~~ fl21ll ~~ 0,

— (H — v2Dx)/2,

a22\2 a 1222 a 2122 ^ 2221 = 0, (4.1)

where

D, = E,h'/( 12(1 -«y>2)),

H = DX2 + 2D,, D, = <7/73/12,

G = E]E2/ (£, + (1 + 2?,)£2) = £,£, /(£2 + (1 + 2?2)£,),

E\V2 ~ E2vi, (4.2)

£, and p, (i — 1,2) are Young's moduli and Poisson's coefficients respectively. Then, the

corresponding Orthotropic plate operator A is defined by Au — Dxu,xxxx + 2Hu,xxll +

D2w,2222. The coefficients atjkl satisfy (A1)-(A2) and also (3.6), since

alll! ~ aw\2~ a\\22 = ^lO ~~ vl) > 0;

a 1212 — a121l — ^ 1222 — A > (4.3)

a2222 ~ a221l — a2212 — 0 — vl)^2 >

Hence, the //02(S2)-ellipticity of the corresponding bilinear form a( ■, •) defined by

a{v,w) =^[(Z),D,n + v2Dxv,22)w,u + 2(H - V2DX)V,X2W,X2

+ {v2D|t),,| + D2v,22)w,^£2 (4.4)

follows from the Theorem (3.1).

(Ill) For isotropic case [3,6,7], which is obtained from the orthotropic case in (II) by

putting £, = £2 = £ and vx = v2 = v in (4.1) and (4.2) such that £>, = D2 = H = D, the

Isotropic plate operator A is defined by: Au = Dk\u, and the //02(£2)-ellipticity of the

corresponding bilinear form a( ■, •) defined by

a(v,w) =Jd[(v,u + pv,22)w,u + 2(1 - v)v,x2w,x2 + (ro,H + v,22)w,22] dtt

(4.5)

follows from (4.1)—(4.3) and Theorem (3.1).

b) Plates with variable thickness h = h(x,, x2) > 0: The thickness function h satisfies

the following condition:
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heC0(£l), h0 = min _h(xi,x2)>0. (A3)
(x,,x2)eS2

For the sake of brevity, we shall consider only the isotropic plates with variable thickness,

since the proofs for the orthotropic and anisotropic plates with variable thickness h

satisfying (A3) are similar. For the isotropic case, aiijt = D, aU22 — ̂ 2211 = vann =

a\22i = a2121 = ^2112 = ~ *0/2, and aijkl = 0 otherwise, where

Z) = £>(*,, x2) = (Eh3/ (12(1 - r2)))(x,, x2) > Eh\{ 12(1 - r2)) > 0. (4.6)

Then aljkl satisfy (A1)-(A2) and (3.6), since auu — aun — aU22 = (1 — v)D > 0, 0,212

— anu — 0,222 = ~ v)/2 > 0, a2222 ~ a22U — a22i2 = (1 — v)D > 0. Hence, the

corresponding bilinear form a( ■, •) defined by (4.5), in which D is given by (4.6), is

//02(fi)-elliptic by Theorem (3.1).
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